A wellness study of 108 individuals using personal, dense, dynamic data clouds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07-17

AUTHORS

Nathan D Price, Andrew T Magis, John C Earls, Gustavo Glusman, Roie Levy, Christopher Lausted, Daniel T McDonald, Ulrike Kusebauch, Christopher L Moss, Yong Zhou, Shizhen Qin, Robert L Moritz, Kristin Brogaard, Gilbert S Omenn, Jennifer C Lovejoy, Leroy Hood

ABSTRACT

Personal data for 108 individuals were collected during a 9-month period, including whole genome sequences; clinical tests, metabolomes, proteomes, and microbiomes at three time points; and daily activity tracking. Using all of these data, we generated a correlation network that revealed communities of related analytes associated with physiology and disease. Connectivity within analyte communities enabled the identification of known and candidate biomarkers (e.g., gamma-glutamyltyrosine was densely interconnected with clinical analytes for cardiometabolic disease). We calculated polygenic scores from genome-wide association studies (GWAS) for 127 traits and diseases, and used these to discover molecular correlates of polygenic risk (e.g., genetic risk for inflammatory bowel disease was negatively correlated with plasma cystine). Finally, behavioral coaching informed by personal data helped participants to improve clinical biomarkers. Our results show that measurement of personal data clouds over time can improve our understanding of health and disease, including early transitions to disease states. More... »

PAGES

747-756

References to SciGraph publications

  • 2009-08-27. Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2016-07-12. Serum metabolomics profiles in response to n-3 fatty acids in Chinese patients with type 2 diabetes: a double-blind randomised controlled trial in SCIENTIFIC REPORTS
  • 2012-03-08. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2013-06-20. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing in GENETICS IN MEDICINE
  • 2010-04-11. QIIME allows analysis of high-throughput community sequencing data in NATURE METHODS
  • 2011-12-01. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • 2012-10-31. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease in NATURE
  • 2011-03-02. Predictive, personalized, preventive, participatory (P4) cancer medicine in NATURE REVIEWS CLINICAL ONCOLOGY
  • 1989-07. Immunodetection of the amyloid P component in Alzheimer's disease in ACTA NEUROPATHOLOGICA
  • 2010-10-24. A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci in NATURE GENETICS
  • 2014-07-25. Host lifestyle affects human microbiota on daily timescales in GENOME BIOLOGY
  • 2010-09-09. UniFrac: an effective distance metric for microbial community comparison in THE ISME JOURNAL: MULTIDISCIPLINARY JOURNAL OF MICROBIAL ECOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt.3870

    DOI

    http://dx.doi.org/10.1038/nbt.3870

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090738316

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28714965


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biomarkers", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Databases, Factual", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exercise", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome-Wide Association Study", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Longitudinal Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metabolome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Microbiota", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Monitoring, Physiologic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nutritional Status", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proteome", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Arivale, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA.", 
                "Arivale, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Price", 
            "givenName": "Nathan D", 
            "id": "sg:person.01262420670.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262420670.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Arivale, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Arivale, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Magis", 
            "givenName": "Andrew T", 
            "id": "sg:person.0614672543.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614672543.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Arivale, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Arivale, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Earls", 
            "givenName": "John C", 
            "id": "sg:person.0763630470.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763630470.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Systems Biology, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glusman", 
            "givenName": "Gustavo", 
            "id": "sg:person.01012155701.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012155701.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Systems Biology, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Levy", 
            "givenName": "Roie", 
            "id": "sg:person.01155261606.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155261606.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Systems Biology, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lausted", 
            "givenName": "Christopher", 
            "id": "sg:person.01103266471.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103266471.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Systems Biology, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "McDonald", 
            "givenName": "Daniel T", 
            "id": "sg:person.01324411177.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Systems Biology, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kusebauch", 
            "givenName": "Ulrike", 
            "id": "sg:person.01103433727.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103433727.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Systems Biology, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moss", 
            "givenName": "Christopher L", 
            "id": "sg:person.01046003127.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046003127.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Systems Biology, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Yong", 
            "id": "sg:person.01232233470.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232233470.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Systems Biology, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qin", 
            "givenName": "Shizhen", 
            "id": "sg:person.01070070427.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070070427.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for Systems Biology, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/grid.64212.33", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moritz", 
            "givenName": "Robert L", 
            "id": "sg:person.0727763527.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727763527.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Arivale, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Arivale, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brogaard", 
            "givenName": "Kristin", 
            "id": "sg:person.01216027777.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216027777.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.", 
              "id": "http://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA.", 
                "Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Omenn", 
            "givenName": "Gilbert S", 
            "id": "sg:person.013417635337.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417635337.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Arivale, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA.", 
                "Arivale, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lovejoy", 
            "givenName": "Jennifer C", 
            "id": "sg:person.0607163467.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607163467.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Providence St. Joseph Health, Seattle, Washington, USA.", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Institute for Systems Biology, Seattle, Washington, USA.", 
                "Providence St. Joseph Health, Seattle, Washington, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hood", 
            "givenName": "Leroy", 
            "id": "sg:person.016174641237.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174641237.97"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/srep29522", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039256778", 
              "https://doi.org/10.1038/srep29522"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2013.73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017226766", 
              "https://doi.org/10.1038/gim.2013.73"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2012.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038992953", 
              "https://doi.org/10.1038/ismej.2012.8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004296205", 
              "https://doi.org/10.1038/ng.687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2009.97", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024882111", 
              "https://doi.org/10.1038/ismej.2009.97"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.f.303", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009032055", 
              "https://doi.org/10.1038/nmeth.f.303"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046541188", 
              "https://doi.org/10.1038/nature11582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2014-15-7-r89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022685985", 
              "https://doi.org/10.1186/gb-2014-15-7-r89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2010.133", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042916034", 
              "https://doi.org/10.1038/ismej.2010.133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00688180", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004042226", 
              "https://doi.org/10.1007/bf00688180"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2010.227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025739365", 
              "https://doi.org/10.1038/nrclinonc.2010.227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ismej.2011.139", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051863807", 
              "https://doi.org/10.1038/ismej.2011.139"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07-17", 
        "datePublishedReg": "2017-07-17", 
        "description": "Personal data for 108 individuals were collected during a 9-month period, including whole genome sequences; clinical tests, metabolomes, proteomes, and microbiomes at three time points; and daily activity tracking. Using all of these data, we generated a correlation network that revealed communities of related analytes associated with physiology and disease. Connectivity within analyte communities enabled the identification of known and candidate biomarkers (e.g., gamma-glutamyltyrosine was densely interconnected with clinical analytes for cardiometabolic disease). We calculated polygenic scores from genome-wide association studies (GWAS) for 127 traits and diseases, and used these to discover molecular correlates of polygenic risk (e.g., genetic risk for inflammatory bowel disease was negatively correlated with plasma cystine). Finally, behavioral coaching informed by personal data helped participants to improve clinical biomarkers. Our results show that measurement of personal data clouds over time can improve our understanding of health and disease, including early transitions to disease states.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nbt.3870", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2669381", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6377553", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2439112", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2440532", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "35"
          }
        ], 
        "keywords": [
          "genome-wide association studies", 
          "candidate biomarkers", 
          "clinical biomarkers", 
          "clinical tests", 
          "Wellness Study", 
          "understanding of health", 
          "molecular correlates", 
          "time points", 
          "polygenic risk", 
          "disease", 
          "biomarkers", 
          "association studies", 
          "daily activity tracking", 
          "activity tracking", 
          "behavioral coaching", 
          "individuals", 
          "polygenic scores", 
          "scores", 
          "risk", 
          "study", 
          "health", 
          "correlates", 
          "microbiome", 
          "participants", 
          "physiology", 
          "data", 
          "metabolome", 
          "early transition", 
          "period", 
          "whole genome sequences", 
          "test", 
          "related analytes", 
          "correlation network", 
          "identification", 
          "proteome", 
          "community", 
          "time", 
          "coaching", 
          "personal data", 
          "results", 
          "connectivity", 
          "understanding", 
          "point", 
          "measurements", 
          "genome sequence", 
          "state", 
          "sequence", 
          "traits", 
          "analytes", 
          "transition", 
          "tracking", 
          "network", 
          "data cloud", 
          "cloud", 
          "analyte communities", 
          "personal data clouds", 
          "dynamic data clouds"
        ], 
        "name": "A wellness study of 108 individuals using personal, dense, dynamic data clouds", 
        "pagination": "747-756", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090738316"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt.3870"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28714965"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt.3870", 
          "https://app.dimensions.ai/details/publication/pub.1090738316"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_732.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nbt.3870"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.3870'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.3870'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.3870'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.3870'


     

    This table displays all metadata directly associated to this object as RDF triples.

    346 TRIPLES      22 PREDICATES      109 URIs      89 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt.3870 schema:about N0f41cc08f9d54a59a533a24b83b48345
    2 N1eb52cba57ee4f5fa64d2ef332451fcd
    3 N22727f4971bb4818b19fbd7f0356e574
    4 N24f69becce4945939fc67851d74e7327
    5 N31eaf9e9a278424cad001028bb725ffe
    6 N3c68e42d47ed4e6dbc3c921442dcf7fd
    7 N49811272854a4a3d8d0af6aee863da2b
    8 N5744bad08cec4c76a2ab46dbaaa0c9f7
    9 N7bdb444af2504c63af8c556375bf8ff4
    10 N96105986503842a0aebb17f9688a0d41
    11 Na48967ed68804aeebe85121931ef9276
    12 Nae7cb89ccb934d458e9d12b79fe0a13b
    13 Nee134adba09d41d3b06452a324b9fc71
    14 Nf9291b9327ac4d03b08d9c239a2ecf40
    15 anzsrc-for:06
    16 anzsrc-for:0604
    17 schema:author N4dd749b34dd548b9aad413e3f773f167
    18 schema:citation sg:pub.10.1007/bf00688180
    19 sg:pub.10.1038/gim.2013.73
    20 sg:pub.10.1038/ismej.2009.97
    21 sg:pub.10.1038/ismej.2010.133
    22 sg:pub.10.1038/ismej.2011.139
    23 sg:pub.10.1038/ismej.2012.8
    24 sg:pub.10.1038/nature11582
    25 sg:pub.10.1038/ng.687
    26 sg:pub.10.1038/nmeth.f.303
    27 sg:pub.10.1038/nrclinonc.2010.227
    28 sg:pub.10.1038/srep29522
    29 sg:pub.10.1186/gb-2014-15-7-r89
    30 schema:datePublished 2017-07-17
    31 schema:datePublishedReg 2017-07-17
    32 schema:description Personal data for 108 individuals were collected during a 9-month period, including whole genome sequences; clinical tests, metabolomes, proteomes, and microbiomes at three time points; and daily activity tracking. Using all of these data, we generated a correlation network that revealed communities of related analytes associated with physiology and disease. Connectivity within analyte communities enabled the identification of known and candidate biomarkers (e.g., gamma-glutamyltyrosine was densely interconnected with clinical analytes for cardiometabolic disease). We calculated polygenic scores from genome-wide association studies (GWAS) for 127 traits and diseases, and used these to discover molecular correlates of polygenic risk (e.g., genetic risk for inflammatory bowel disease was negatively correlated with plasma cystine). Finally, behavioral coaching informed by personal data helped participants to improve clinical biomarkers. Our results show that measurement of personal data clouds over time can improve our understanding of health and disease, including early transitions to disease states.
    33 schema:genre article
    34 schema:inLanguage en
    35 schema:isAccessibleForFree true
    36 schema:isPartOf N0e6a9c758e804b7993519cc3d873ce9e
    37 N5d991da4a97d4f0291078828af4168e5
    38 sg:journal.1115214
    39 schema:keywords Wellness Study
    40 activity tracking
    41 analyte communities
    42 analytes
    43 association studies
    44 behavioral coaching
    45 biomarkers
    46 candidate biomarkers
    47 clinical biomarkers
    48 clinical tests
    49 cloud
    50 coaching
    51 community
    52 connectivity
    53 correlates
    54 correlation network
    55 daily activity tracking
    56 data
    57 data cloud
    58 disease
    59 dynamic data clouds
    60 early transition
    61 genome sequence
    62 genome-wide association studies
    63 health
    64 identification
    65 individuals
    66 measurements
    67 metabolome
    68 microbiome
    69 molecular correlates
    70 network
    71 participants
    72 period
    73 personal data
    74 personal data clouds
    75 physiology
    76 point
    77 polygenic risk
    78 polygenic scores
    79 proteome
    80 related analytes
    81 results
    82 risk
    83 scores
    84 sequence
    85 state
    86 study
    87 test
    88 time
    89 time points
    90 tracking
    91 traits
    92 transition
    93 understanding
    94 understanding of health
    95 whole genome sequences
    96 schema:name A wellness study of 108 individuals using personal, dense, dynamic data clouds
    97 schema:pagination 747-756
    98 schema:productId N1395cc5718a34c41a37c90b3ec49d9d9
    99 Na9bdba4eb6864a559df9bed91130d65c
    100 Nec4d6fcd875040c58992914f3db19bfa
    101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090738316
    102 https://doi.org/10.1038/nbt.3870
    103 schema:sdDatePublished 2022-01-01T18:45
    104 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    105 schema:sdPublisher N115bdc628ad645dc9ca8dad045326c99
    106 schema:url https://doi.org/10.1038/nbt.3870
    107 sgo:license sg:explorer/license/
    108 sgo:sdDataset articles
    109 rdf:type schema:ScholarlyArticle
    110 N00ae16e47ede4fa1ac505b80db276494 rdf:first sg:person.0614672543.24
    111 rdf:rest Ne7057e27c6e148d8bcc44b300c8bc773
    112 N09de0c1e90ae4889bc722cc3ed6e038b rdf:first sg:person.01103266471.30
    113 rdf:rest Nf9bfdfc8d8f94d1d900ccc900d32debf
    114 N0e6a9c758e804b7993519cc3d873ce9e schema:volumeNumber 35
    115 rdf:type schema:PublicationVolume
    116 N0f41cc08f9d54a59a533a24b83b48345 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Longitudinal Studies
    118 rdf:type schema:DefinedTerm
    119 N10f39fd3b3e94cdd80194181af992930 rdf:first sg:person.0607163467.44
    120 rdf:rest Nb26e4e70ed0246ee8e08fc617b4e3e9e
    121 N115bdc628ad645dc9ca8dad045326c99 schema:name Springer Nature - SN SciGraph project
    122 rdf:type schema:Organization
    123 N1395cc5718a34c41a37c90b3ec49d9d9 schema:name pubmed_id
    124 schema:value 28714965
    125 rdf:type schema:PropertyValue
    126 N1eb52cba57ee4f5fa64d2ef332451fcd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Humans
    128 rdf:type schema:DefinedTerm
    129 N22727f4971bb4818b19fbd7f0356e574 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name Microbiota
    131 rdf:type schema:DefinedTerm
    132 N24f69becce4945939fc67851d74e7327 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Nutritional Status
    134 rdf:type schema:DefinedTerm
    135 N31eaf9e9a278424cad001028bb725ffe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Monitoring, Physiologic
    137 rdf:type schema:DefinedTerm
    138 N3218e3f9ec404b2b97b61cac40dc478a rdf:first sg:person.01155261606.38
    139 rdf:rest N09de0c1e90ae4889bc722cc3ed6e038b
    140 N3c68e42d47ed4e6dbc3c921442dcf7fd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Metabolome
    142 rdf:type schema:DefinedTerm
    143 N49811272854a4a3d8d0af6aee863da2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Databases, Factual
    145 rdf:type schema:DefinedTerm
    146 N49e3aa6beb7c452790f9e1912178cdec rdf:first sg:person.01046003127.48
    147 rdf:rest Naf9f13eb2e4a4459a09c3938ef3e882e
    148 N4dd749b34dd548b9aad413e3f773f167 rdf:first sg:person.01262420670.00
    149 rdf:rest N00ae16e47ede4fa1ac505b80db276494
    150 N5744bad08cec4c76a2ab46dbaaa0c9f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Genome-Wide Association Study
    152 rdf:type schema:DefinedTerm
    153 N5d991da4a97d4f0291078828af4168e5 schema:issueNumber 8
    154 rdf:type schema:PublicationIssue
    155 N7bdb444af2504c63af8c556375bf8ff4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Neoplasms
    157 rdf:type schema:DefinedTerm
    158 N8f140409f35442919e12e738882bd155 rdf:first sg:person.01216027777.07
    159 rdf:rest Nd2f6b95f4e524461b533036d7e3533f9
    160 N96105986503842a0aebb17f9688a0d41 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Computational Biology
    162 rdf:type schema:DefinedTerm
    163 Na48967ed68804aeebe85121931ef9276 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Exercise
    165 rdf:type schema:DefinedTerm
    166 Na9bdba4eb6864a559df9bed91130d65c schema:name dimensions_id
    167 schema:value pub.1090738316
    168 rdf:type schema:PropertyValue
    169 Nae7cb89ccb934d458e9d12b79fe0a13b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Models, Statistical
    171 rdf:type schema:DefinedTerm
    172 Naf9f13eb2e4a4459a09c3938ef3e882e rdf:first sg:person.01232233470.26
    173 rdf:rest Nb855a388d7a6455e94a5b9b446c630b8
    174 Nb26e4e70ed0246ee8e08fc617b4e3e9e rdf:first sg:person.016174641237.97
    175 rdf:rest rdf:nil
    176 Nb855a388d7a6455e94a5b9b446c630b8 rdf:first sg:person.01070070427.26
    177 rdf:rest Ne4452d3827e34f7cabf009bc1f7d9054
    178 Nd2f6b95f4e524461b533036d7e3533f9 rdf:first sg:person.013417635337.41
    179 rdf:rest N10f39fd3b3e94cdd80194181af992930
    180 Ne4452d3827e34f7cabf009bc1f7d9054 rdf:first sg:person.0727763527.91
    181 rdf:rest N8f140409f35442919e12e738882bd155
    182 Ne63dabd2fd4941b19a6d926a3779e1a4 rdf:first sg:person.01012155701.36
    183 rdf:rest N3218e3f9ec404b2b97b61cac40dc478a
    184 Ne7057e27c6e148d8bcc44b300c8bc773 rdf:first sg:person.0763630470.06
    185 rdf:rest Ne63dabd2fd4941b19a6d926a3779e1a4
    186 Nec4d6fcd875040c58992914f3db19bfa schema:name doi
    187 schema:value 10.1038/nbt.3870
    188 rdf:type schema:PropertyValue
    189 Nee134adba09d41d3b06452a324b9fc71 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    190 schema:name Biomarkers
    191 rdf:type schema:DefinedTerm
    192 Nef04b4d0cd924a158f12c4e6e795bb3c rdf:first sg:person.01103433727.77
    193 rdf:rest N49e3aa6beb7c452790f9e1912178cdec
    194 Nf9291b9327ac4d03b08d9c239a2ecf40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Proteome
    196 rdf:type schema:DefinedTerm
    197 Nf9bfdfc8d8f94d1d900ccc900d32debf rdf:first sg:person.01324411177.44
    198 rdf:rest Nef04b4d0cd924a158f12c4e6e795bb3c
    199 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    200 schema:name Biological Sciences
    201 rdf:type schema:DefinedTerm
    202 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    203 schema:name Genetics
    204 rdf:type schema:DefinedTerm
    205 sg:grant.2439112 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.3870
    206 rdf:type schema:MonetaryGrant
    207 sg:grant.2440532 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.3870
    208 rdf:type schema:MonetaryGrant
    209 sg:grant.2669381 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.3870
    210 rdf:type schema:MonetaryGrant
    211 sg:grant.6377553 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.3870
    212 rdf:type schema:MonetaryGrant
    213 sg:journal.1115214 schema:issn 1087-0156
    214 1546-1696
    215 schema:name Nature Biotechnology
    216 schema:publisher Springer Nature
    217 rdf:type schema:Periodical
    218 sg:person.01012155701.36 schema:affiliation grid-institutes:grid.64212.33
    219 schema:familyName Glusman
    220 schema:givenName Gustavo
    221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01012155701.36
    222 rdf:type schema:Person
    223 sg:person.01046003127.48 schema:affiliation grid-institutes:grid.64212.33
    224 schema:familyName Moss
    225 schema:givenName Christopher L
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046003127.48
    227 rdf:type schema:Person
    228 sg:person.01070070427.26 schema:affiliation grid-institutes:grid.64212.33
    229 schema:familyName Qin
    230 schema:givenName Shizhen
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070070427.26
    232 rdf:type schema:Person
    233 sg:person.01103266471.30 schema:affiliation grid-institutes:grid.64212.33
    234 schema:familyName Lausted
    235 schema:givenName Christopher
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103266471.30
    237 rdf:type schema:Person
    238 sg:person.01103433727.77 schema:affiliation grid-institutes:grid.64212.33
    239 schema:familyName Kusebauch
    240 schema:givenName Ulrike
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103433727.77
    242 rdf:type schema:Person
    243 sg:person.01155261606.38 schema:affiliation grid-institutes:grid.64212.33
    244 schema:familyName Levy
    245 schema:givenName Roie
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155261606.38
    247 rdf:type schema:Person
    248 sg:person.01216027777.07 schema:affiliation grid-institutes:None
    249 schema:familyName Brogaard
    250 schema:givenName Kristin
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216027777.07
    252 rdf:type schema:Person
    253 sg:person.01232233470.26 schema:affiliation grid-institutes:grid.64212.33
    254 schema:familyName Zhou
    255 schema:givenName Yong
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01232233470.26
    257 rdf:type schema:Person
    258 sg:person.01262420670.00 schema:affiliation grid-institutes:None
    259 schema:familyName Price
    260 schema:givenName Nathan D
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262420670.00
    262 rdf:type schema:Person
    263 sg:person.01324411177.44 schema:affiliation grid-institutes:grid.64212.33
    264 schema:familyName McDonald
    265 schema:givenName Daniel T
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01324411177.44
    267 rdf:type schema:Person
    268 sg:person.013417635337.41 schema:affiliation grid-institutes:grid.214458.e
    269 schema:familyName Omenn
    270 schema:givenName Gilbert S
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013417635337.41
    272 rdf:type schema:Person
    273 sg:person.016174641237.97 schema:affiliation grid-institutes:None
    274 schema:familyName Hood
    275 schema:givenName Leroy
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174641237.97
    277 rdf:type schema:Person
    278 sg:person.0607163467.44 schema:affiliation grid-institutes:None
    279 schema:familyName Lovejoy
    280 schema:givenName Jennifer C
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607163467.44
    282 rdf:type schema:Person
    283 sg:person.0614672543.24 schema:affiliation grid-institutes:None
    284 schema:familyName Magis
    285 schema:givenName Andrew T
    286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614672543.24
    287 rdf:type schema:Person
    288 sg:person.0727763527.91 schema:affiliation grid-institutes:grid.64212.33
    289 schema:familyName Moritz
    290 schema:givenName Robert L
    291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727763527.91
    292 rdf:type schema:Person
    293 sg:person.0763630470.06 schema:affiliation grid-institutes:None
    294 schema:familyName Earls
    295 schema:givenName John C
    296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763630470.06
    297 rdf:type schema:Person
    298 sg:pub.10.1007/bf00688180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004042226
    299 https://doi.org/10.1007/bf00688180
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/gim.2013.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017226766
    302 https://doi.org/10.1038/gim.2013.73
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/ismej.2009.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024882111
    305 https://doi.org/10.1038/ismej.2009.97
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/ismej.2010.133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042916034
    308 https://doi.org/10.1038/ismej.2010.133
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/ismej.2011.139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051863807
    311 https://doi.org/10.1038/ismej.2011.139
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/ismej.2012.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038992953
    314 https://doi.org/10.1038/ismej.2012.8
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nature11582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046541188
    317 https://doi.org/10.1038/nature11582
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/ng.687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004296205
    320 https://doi.org/10.1038/ng.687
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/nmeth.f.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009032055
    323 https://doi.org/10.1038/nmeth.f.303
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/nrclinonc.2010.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025739365
    326 https://doi.org/10.1038/nrclinonc.2010.227
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/srep29522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039256778
    329 https://doi.org/10.1038/srep29522
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1186/gb-2014-15-7-r89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022685985
    332 https://doi.org/10.1186/gb-2014-15-7-r89
    333 rdf:type schema:CreativeWork
    334 grid-institutes:None schema:alternateName Arivale, Seattle, Washington, USA.
    335 Providence St. Joseph Health, Seattle, Washington, USA.
    336 schema:name Arivale, Seattle, Washington, USA.
    337 Institute for Systems Biology, Seattle, Washington, USA.
    338 Providence St. Joseph Health, Seattle, Washington, USA.
    339 rdf:type schema:Organization
    340 grid-institutes:grid.214458.e schema:alternateName Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
    341 schema:name Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
    342 Institute for Systems Biology, Seattle, Washington, USA.
    343 rdf:type schema:Organization
    344 grid-institutes:grid.64212.33 schema:alternateName Institute for Systems Biology, Seattle, Washington, USA.
    345 schema:name Institute for Systems Biology, Seattle, Washington, USA.
    346 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...