Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05-11

AUTHORS

Junwei Shi, Eric Wang, Joseph P. Milazzo, Zhihua Wang, Justin B. Kinney, Christopher R. Vakoc

ABSTRACT

CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting. More... »

PAGES

661-667

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nbt.3235

DOI

http://dx.doi.org/10.1038/nbt.3235

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034465100

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25961408


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CRISPR-Cas Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Discovery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leukemia, Myeloid, Acute", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Targeted Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA Editing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
            "Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Junwei", 
        "id": "sg:person.01225536052.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225536052.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
          "id": "http://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Eric", 
        "id": "sg:person.01065166141.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065166141.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
          "id": "http://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milazzo", 
        "givenName": "Joseph P.", 
        "id": "sg:person.0625157710.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625157710.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
          "id": "http://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhihua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
          "id": "http://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kinney", 
        "givenName": "Justin B.", 
        "id": "sg:person.01070345415.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070345415.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
          "id": "http://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vakoc", 
        "givenName": "Christopher R.", 
        "id": "sg:person.01115150552.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115150552.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt.2800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041802825", 
          "https://doi.org/10.1038/nbt.2800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033528408", 
          "https://doi.org/10.1038/nbt.3026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030076294", 
          "https://doi.org/10.1038/nature10334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005914891", 
          "https://doi.org/10.1038/nbt.1720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026728956", 
          "https://doi.org/10.1038/nature10509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027499136", 
          "https://doi.org/10.1038/nature13166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2013.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016534425", 
          "https://doi.org/10.1038/nprot.2013.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3301206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032864882", 
          "https://doi.org/10.1038/sj.gt.3301206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2012.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022455288", 
          "https://doi.org/10.1038/onc.2012.110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012543463", 
          "https://doi.org/10.1038/nbt.2647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022202677", 
          "https://doi.org/10.1038/nature13695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.1331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051468312", 
          "https://doi.org/10.1038/nchembio.1331"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05-11", 
    "datePublishedReg": "2015-05-11", 
    "description": "CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting. ", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nbt.3235", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438853", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2482292", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "keywords": [
      "protein domains", 
      "CRISPR-Cas9-induced mutations", 
      "drug targets", 
      "functional protein domains", 
      "individual protein domains", 
      "genome editing technology", 
      "negative selection", 
      "cancer drug target", 
      "regulatory domain", 
      "genetic dependencies", 
      "editing technology", 
      "null mutation", 
      "candidate genes", 
      "functional importance", 
      "comprehensive identification", 
      "CRISPR", 
      "cancer cells", 
      "exons", 
      "therapeutic target", 
      "mutations", 
      "frame variants", 
      "domain", 
      "mutagenesis", 
      "target", 
      "genes", 
      "selection", 
      "identifies six", 
      "drug targeting", 
      "screening strategy", 
      "targeting", 
      "great promise", 
      "higher proportion", 
      "cells", 
      "broad applications", 
      "discovery", 
      "screen", 
      "variants", 
      "identification", 
      "potency", 
      "cancer", 
      "screening", 
      "importance", 
      "proportion", 
      "disease", 
      "strategies", 
      "promise", 
      "six", 
      "functionality", 
      "approach", 
      "additional dependencies", 
      "limitations", 
      "interest", 
      "dependency", 
      "magnitude", 
      "technology", 
      "applications", 
      "current screening strategies", 
      "strong genetic dependencies", 
      "chromatin regulatory domains", 
      "murine acute myeloid leukemia cells identifies six", 
      "acute myeloid leukemia cells identifies six", 
      "myeloid leukemia cells identifies six", 
      "leukemia cells identifies six", 
      "cells identifies six", 
      "sustain cancer cells"
    ], 
    "name": "Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains", 
    "pagination": "661-667", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034465100"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nbt.3235"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25961408"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nbt.3235", 
      "https://app.dimensions.ai/details/publication/pub.1034465100"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_665.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nbt.3235"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.3235'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.3235'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.3235'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.3235'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      22 PREDICATES      116 URIs      96 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nbt.3235 schema:about N048f4e38f7184e31a9d98fac3aa63a63
2 N093429e4a85c45ab8de3d1b040fd15d3
3 N0fe939c9b54741909ae5cfc6ee53c7b4
4 N136c3e3d62ee4103998611f54fa0c717
5 N283ef9e8bf6d4b08a795352d5a21ac6d
6 N3d4109ac2ec64a60a8afcfc254a7d0e1
7 N4e6731e1dfd949978719ef2159518680
8 N5461d2c42f9d4ced8934d756f79b22b6
9 N5715f467573044a7804b69a0330f9a79
10 Naf4286856e454d7fb15a030a719339ec
11 Ne018dc51a7b4484da0a4068528bd05b3
12 Ne41129dda3be4204a357002fe17ca3cd
13 Ne60a1204507e430eb998a44cc6136ac1
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author N43cb5095b9954d67926262cdb0acfdf4
17 schema:citation sg:pub.10.1038/nature10334
18 sg:pub.10.1038/nature10509
19 sg:pub.10.1038/nature13166
20 sg:pub.10.1038/nature13695
21 sg:pub.10.1038/nbt.1720
22 sg:pub.10.1038/nbt.2647
23 sg:pub.10.1038/nbt.2800
24 sg:pub.10.1038/nbt.3026
25 sg:pub.10.1038/nchembio.1331
26 sg:pub.10.1038/nprot.2013.143
27 sg:pub.10.1038/onc.2012.110
28 sg:pub.10.1038/sj.gt.3301206
29 schema:datePublished 2015-05-11
30 schema:datePublishedReg 2015-05-11
31 schema:description CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.
32 schema:genre article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N019a26adf97944eea3bec599a1f9b026
36 Nd59adbb4d53a4e9bbc67bf4381b180d6
37 sg:journal.1115214
38 schema:keywords CRISPR
39 CRISPR-Cas9-induced mutations
40 acute myeloid leukemia cells identifies six
41 additional dependencies
42 applications
43 approach
44 broad applications
45 cancer
46 cancer cells
47 cancer drug target
48 candidate genes
49 cells
50 cells identifies six
51 chromatin regulatory domains
52 comprehensive identification
53 current screening strategies
54 dependency
55 discovery
56 disease
57 domain
58 drug targeting
59 drug targets
60 editing technology
61 exons
62 frame variants
63 functional importance
64 functional protein domains
65 functionality
66 genes
67 genetic dependencies
68 genome editing technology
69 great promise
70 higher proportion
71 identification
72 identifies six
73 importance
74 individual protein domains
75 interest
76 leukemia cells identifies six
77 limitations
78 magnitude
79 murine acute myeloid leukemia cells identifies six
80 mutagenesis
81 mutations
82 myeloid leukemia cells identifies six
83 negative selection
84 null mutation
85 potency
86 promise
87 proportion
88 protein domains
89 regulatory domain
90 screen
91 screening
92 screening strategy
93 selection
94 six
95 strategies
96 strong genetic dependencies
97 sustain cancer cells
98 target
99 targeting
100 technology
101 therapeutic target
102 variants
103 schema:name Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains
104 schema:pagination 661-667
105 schema:productId N84a196b0a35e462e98d8475e623328d3
106 Na1e2f8af060f4c469652715c0486e953
107 Ne453611b748d40e99c11c85b9d579395
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034465100
109 https://doi.org/10.1038/nbt.3235
110 schema:sdDatePublished 2021-12-01T19:34
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N37963b203697442bbf4461e9075b6f02
113 schema:url https://doi.org/10.1038/nbt.3235
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N019a26adf97944eea3bec599a1f9b026 schema:issueNumber 6
118 rdf:type schema:PublicationIssue
119 N047a77ce66ff4cf4a8dab06132ae86aa rdf:first sg:person.0625157710.81
120 rdf:rest N0cee2563753545209e6530d613c06678
121 N048f4e38f7184e31a9d98fac3aa63a63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Cell Line, Tumor
123 rdf:type schema:DefinedTerm
124 N093429e4a85c45ab8de3d1b040fd15d3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name CRISPR-Cas Systems
126 rdf:type schema:DefinedTerm
127 N0cee2563753545209e6530d613c06678 rdf:first N2884c2987d624a34a2f0536541e1f5bd
128 rdf:rest N8dbc3c44fa294502ab9cfb7c32970054
129 N0f0bd98424db4fe1a633b872cf490ab8 rdf:first sg:person.01115150552.09
130 rdf:rest rdf:nil
131 N0fe939c9b54741909ae5cfc6ee53c7b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Mutagenesis
133 rdf:type schema:DefinedTerm
134 N136c3e3d62ee4103998611f54fa0c717 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Exons
136 rdf:type schema:DefinedTerm
137 N283ef9e8bf6d4b08a795352d5a21ac6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Leukemia, Myeloid, Acute
139 rdf:type schema:DefinedTerm
140 N2884c2987d624a34a2f0536541e1f5bd schema:affiliation grid-institutes:grid.225279.9
141 schema:familyName Wang
142 schema:givenName Zhihua
143 rdf:type schema:Person
144 N37963b203697442bbf4461e9075b6f02 schema:name Springer Nature - SN SciGraph project
145 rdf:type schema:Organization
146 N3d4109ac2ec64a60a8afcfc254a7d0e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
147 schema:name Molecular Targeted Therapy
148 rdf:type schema:DefinedTerm
149 N43cb5095b9954d67926262cdb0acfdf4 rdf:first sg:person.01225536052.48
150 rdf:rest N5b25910f4c754e9eaa8d2c4d10dbc1d5
151 N4e6731e1dfd949978719ef2159518680 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Animals
153 rdf:type schema:DefinedTerm
154 N5461d2c42f9d4ced8934d756f79b22b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name RNA Editing
156 rdf:type schema:DefinedTerm
157 N5715f467573044a7804b69a0330f9a79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Drug Discovery
159 rdf:type schema:DefinedTerm
160 N5b25910f4c754e9eaa8d2c4d10dbc1d5 rdf:first sg:person.01065166141.50
161 rdf:rest N047a77ce66ff4cf4a8dab06132ae86aa
162 N84a196b0a35e462e98d8475e623328d3 schema:name dimensions_id
163 schema:value pub.1034465100
164 rdf:type schema:PropertyValue
165 N8dbc3c44fa294502ab9cfb7c32970054 rdf:first sg:person.01070345415.05
166 rdf:rest N0f0bd98424db4fe1a633b872cf490ab8
167 Na1e2f8af060f4c469652715c0486e953 schema:name doi
168 schema:value 10.1038/nbt.3235
169 rdf:type schema:PropertyValue
170 Naf4286856e454d7fb15a030a719339ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Humans
172 rdf:type schema:DefinedTerm
173 Nd59adbb4d53a4e9bbc67bf4381b180d6 schema:volumeNumber 33
174 rdf:type schema:PublicationVolume
175 Ne018dc51a7b4484da0a4068528bd05b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Neoplasm Proteins
177 rdf:type schema:DefinedTerm
178 Ne41129dda3be4204a357002fe17ca3cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Mice
180 rdf:type schema:DefinedTerm
181 Ne453611b748d40e99c11c85b9d579395 schema:name pubmed_id
182 schema:value 25961408
183 rdf:type schema:PropertyValue
184 Ne60a1204507e430eb998a44cc6136ac1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
185 schema:name Protein Structure, Tertiary
186 rdf:type schema:DefinedTerm
187 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
188 schema:name Biological Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
191 schema:name Biochemistry and Cell Biology
192 rdf:type schema:DefinedTerm
193 sg:grant.2438853 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.3235
194 rdf:type schema:MonetaryGrant
195 sg:grant.2482292 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.3235
196 rdf:type schema:MonetaryGrant
197 sg:journal.1115214 schema:issn 1087-0156
198 1546-1696
199 schema:name Nature Biotechnology
200 schema:publisher Springer Nature
201 rdf:type schema:Periodical
202 sg:person.01065166141.50 schema:affiliation grid-institutes:grid.225279.9
203 schema:familyName Wang
204 schema:givenName Eric
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065166141.50
206 rdf:type schema:Person
207 sg:person.01070345415.05 schema:affiliation grid-institutes:grid.225279.9
208 schema:familyName Kinney
209 schema:givenName Justin B.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070345415.05
211 rdf:type schema:Person
212 sg:person.01115150552.09 schema:affiliation grid-institutes:grid.225279.9
213 schema:familyName Vakoc
214 schema:givenName Christopher R.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115150552.09
216 rdf:type schema:Person
217 sg:person.01225536052.48 schema:affiliation grid-institutes:grid.36425.36
218 schema:familyName Shi
219 schema:givenName Junwei
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225536052.48
221 rdf:type schema:Person
222 sg:person.0625157710.81 schema:affiliation grid-institutes:grid.225279.9
223 schema:familyName Milazzo
224 schema:givenName Joseph P.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625157710.81
226 rdf:type schema:Person
227 sg:pub.10.1038/nature10334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030076294
228 https://doi.org/10.1038/nature10334
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nature10509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026728956
231 https://doi.org/10.1038/nature10509
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nature13166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027499136
234 https://doi.org/10.1038/nature13166
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nature13695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022202677
237 https://doi.org/10.1038/nature13695
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nbt.1720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005914891
240 https://doi.org/10.1038/nbt.1720
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nbt.2647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012543463
243 https://doi.org/10.1038/nbt.2647
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/nbt.2800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041802825
246 https://doi.org/10.1038/nbt.2800
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/nbt.3026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033528408
249 https://doi.org/10.1038/nbt.3026
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/nchembio.1331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051468312
252 https://doi.org/10.1038/nchembio.1331
253 rdf:type schema:CreativeWork
254 sg:pub.10.1038/nprot.2013.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016534425
255 https://doi.org/10.1038/nprot.2013.143
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/onc.2012.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022455288
258 https://doi.org/10.1038/onc.2012.110
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/sj.gt.3301206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032864882
261 https://doi.org/10.1038/sj.gt.3301206
262 rdf:type schema:CreativeWork
263 grid-institutes:grid.225279.9 schema:alternateName Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
264 schema:name Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
265 rdf:type schema:Organization
266 grid-institutes:grid.36425.36 schema:alternateName Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
267 schema:name Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
268 Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...