Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-05-11

AUTHORS

Junwei Shi, Eric Wang, Joseph P. Milazzo, Zhihua Wang, Justin B. Kinney, Christopher R. Vakoc

ABSTRACT

CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting. More... »

PAGES

661-667

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nbt.3235

DOI

http://dx.doi.org/10.1038/nbt.3235

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034465100

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25961408


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CRISPR-Cas Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Discovery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Exons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leukemia, Myeloid, Acute", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Targeted Therapy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutagenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Structure, Tertiary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA Editing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA", 
          "id": "http://www.grid.ac/institutes/grid.36425.36", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
            "Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Junwei", 
        "id": "sg:person.01225536052.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225536052.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
          "id": "http://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Eric", 
        "id": "sg:person.01065166141.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065166141.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
          "id": "http://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milazzo", 
        "givenName": "Joseph P.", 
        "id": "sg:person.0625157710.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625157710.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
          "id": "http://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Zhihua", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
          "id": "http://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kinney", 
        "givenName": "Justin B.", 
        "id": "sg:person.01070345415.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070345415.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA", 
          "id": "http://www.grid.ac/institutes/grid.225279.9", 
          "name": [
            "Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vakoc", 
        "givenName": "Christopher R.", 
        "id": "sg:person.01115150552.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115150552.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt.2800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041802825", 
          "https://doi.org/10.1038/nbt.2800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033528408", 
          "https://doi.org/10.1038/nbt.3026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030076294", 
          "https://doi.org/10.1038/nature10334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1720", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005914891", 
          "https://doi.org/10.1038/nbt.1720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026728956", 
          "https://doi.org/10.1038/nature10509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027499136", 
          "https://doi.org/10.1038/nature13166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2013.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016534425", 
          "https://doi.org/10.1038/nprot.2013.143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.gt.3301206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032864882", 
          "https://doi.org/10.1038/sj.gt.3301206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/onc.2012.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022455288", 
          "https://doi.org/10.1038/onc.2012.110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012543463", 
          "https://doi.org/10.1038/nbt.2647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022202677", 
          "https://doi.org/10.1038/nature13695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.1331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051468312", 
          "https://doi.org/10.1038/nchembio.1331"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05-11", 
    "datePublishedReg": "2015-05-11", 
    "description": "CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting. ", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nbt.3235", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2438853", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2482292", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "keywords": [
      "protein domains", 
      "CRISPR-Cas9-induced mutations", 
      "drug targets", 
      "functional protein domains", 
      "individual protein domains", 
      "genome editing technology", 
      "negative selection", 
      "cancer drug target", 
      "regulatory domain", 
      "genetic dependencies", 
      "editing technology", 
      "null mutation", 
      "candidate genes", 
      "functional importance", 
      "comprehensive identification", 
      "CRISPR", 
      "cancer cells", 
      "exons", 
      "therapeutic target", 
      "mutations", 
      "frame variants", 
      "domain", 
      "mutagenesis", 
      "target", 
      "genes", 
      "selection", 
      "identifies six", 
      "drug targeting", 
      "screening strategy", 
      "targeting", 
      "great promise", 
      "higher proportion", 
      "cells", 
      "broad applications", 
      "discovery", 
      "screen", 
      "variants", 
      "identification", 
      "potency", 
      "cancer", 
      "screening", 
      "importance", 
      "proportion", 
      "disease", 
      "strategies", 
      "promise", 
      "six", 
      "functionality", 
      "approach", 
      "additional dependencies", 
      "limitations", 
      "interest", 
      "dependency", 
      "magnitude", 
      "technology", 
      "applications", 
      "current screening strategies", 
      "strong genetic dependencies", 
      "chromatin regulatory domains", 
      "murine acute myeloid leukemia cells identifies six", 
      "acute myeloid leukemia cells identifies six", 
      "myeloid leukemia cells identifies six", 
      "leukemia cells identifies six", 
      "cells identifies six", 
      "sustain cancer cells"
    ], 
    "name": "Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains", 
    "pagination": "661-667", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034465100"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nbt.3235"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25961408"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nbt.3235", 
      "https://app.dimensions.ai/details/publication/pub.1034465100"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_665.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nbt.3235"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.3235'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.3235'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.3235'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.3235'


 

This table displays all metadata directly associated to this object as RDF triples.

269 TRIPLES      22 PREDICATES      116 URIs      96 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nbt.3235 schema:about N1e722217ca814a31a85d8f013b501898
2 N29bad71d04e945c29b7cbdb37a81deb4
3 N4a5a72fba2674b7f9852d6814198eaa3
4 N7c6b5eae73894192b4289d831a3538d1
5 N9e4e7a50fbf542a08658208cbb0e31c6
6 Na5f0884aa98c4c7f9549b5c275d941ac
7 Nabc6c27688264083a4f845ed7faf7934
8 Nbcdba021f34e4378a50e6c05fb7dcf56
9 Nbde6ec5c547e456692bf4f539d25b689
10 Nd7c74ac405494b4eaf62888c2e235012
11 Nd98aa7427f434de3b00e3228c417c436
12 Nde32bd9f5bb2456782cda3492ef26c1f
13 Ne3deb7b1b95d4555a23c6ee5203e4d22
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author Ncfa23f2c0c9a492886bc83b0bea89c7b
17 schema:citation sg:pub.10.1038/nature10334
18 sg:pub.10.1038/nature10509
19 sg:pub.10.1038/nature13166
20 sg:pub.10.1038/nature13695
21 sg:pub.10.1038/nbt.1720
22 sg:pub.10.1038/nbt.2647
23 sg:pub.10.1038/nbt.2800
24 sg:pub.10.1038/nbt.3026
25 sg:pub.10.1038/nchembio.1331
26 sg:pub.10.1038/nprot.2013.143
27 sg:pub.10.1038/onc.2012.110
28 sg:pub.10.1038/sj.gt.3301206
29 schema:datePublished 2015-05-11
30 schema:datePublishedReg 2015-05-11
31 schema:description CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-Cas9-induced mutations to the 5' exons of candidate genes, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR-Cas9 mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We also show that the magnitude of negative selection can be used to infer the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting.
32 schema:genre article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N9f84e38a7d724d49906aec0cf2cd33cf
36 Nf8ebd09cb492419c8263febb4ed18cdf
37 sg:journal.1115214
38 schema:keywords CRISPR
39 CRISPR-Cas9-induced mutations
40 acute myeloid leukemia cells identifies six
41 additional dependencies
42 applications
43 approach
44 broad applications
45 cancer
46 cancer cells
47 cancer drug target
48 candidate genes
49 cells
50 cells identifies six
51 chromatin regulatory domains
52 comprehensive identification
53 current screening strategies
54 dependency
55 discovery
56 disease
57 domain
58 drug targeting
59 drug targets
60 editing technology
61 exons
62 frame variants
63 functional importance
64 functional protein domains
65 functionality
66 genes
67 genetic dependencies
68 genome editing technology
69 great promise
70 higher proportion
71 identification
72 identifies six
73 importance
74 individual protein domains
75 interest
76 leukemia cells identifies six
77 limitations
78 magnitude
79 murine acute myeloid leukemia cells identifies six
80 mutagenesis
81 mutations
82 myeloid leukemia cells identifies six
83 negative selection
84 null mutation
85 potency
86 promise
87 proportion
88 protein domains
89 regulatory domain
90 screen
91 screening
92 screening strategy
93 selection
94 six
95 strategies
96 strong genetic dependencies
97 sustain cancer cells
98 target
99 targeting
100 technology
101 therapeutic target
102 variants
103 schema:name Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains
104 schema:pagination 661-667
105 schema:productId N2c85eb517c4f428a9883b1e4074de0ad
106 N5ff22c8dab194051a6993829a7be1433
107 Ndfced394a3d645738fd8a50e577c61b6
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034465100
109 https://doi.org/10.1038/nbt.3235
110 schema:sdDatePublished 2021-12-01T19:34
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N732e0b1db078450cba70b29385285bcb
113 schema:url https://doi.org/10.1038/nbt.3235
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N0ad084ba707245f987a6eb326c7c3a65 rdf:first sg:person.01115150552.09
118 rdf:rest rdf:nil
119 N1e722217ca814a31a85d8f013b501898 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Cell Line, Tumor
121 rdf:type schema:DefinedTerm
122 N29bad71d04e945c29b7cbdb37a81deb4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Exons
124 rdf:type schema:DefinedTerm
125 N2c85eb517c4f428a9883b1e4074de0ad schema:name dimensions_id
126 schema:value pub.1034465100
127 rdf:type schema:PropertyValue
128 N44418c89112f4a4da51a9038c9bd9c24 rdf:first N7c5e6e7aa688400b9b8d0cf1d046c480
129 rdf:rest Nbbbdfd8c09b84641b811fc5c725bee7f
130 N4a5a72fba2674b7f9852d6814198eaa3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Leukemia, Myeloid, Acute
132 rdf:type schema:DefinedTerm
133 N5ff22c8dab194051a6993829a7be1433 schema:name pubmed_id
134 schema:value 25961408
135 rdf:type schema:PropertyValue
136 N732e0b1db078450cba70b29385285bcb schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 N7c5e6e7aa688400b9b8d0cf1d046c480 schema:affiliation grid-institutes:grid.225279.9
139 schema:familyName Wang
140 schema:givenName Zhihua
141 rdf:type schema:Person
142 N7c6b5eae73894192b4289d831a3538d1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Molecular Targeted Therapy
144 rdf:type schema:DefinedTerm
145 N9e4e7a50fbf542a08658208cbb0e31c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Mice
147 rdf:type schema:DefinedTerm
148 N9f84e38a7d724d49906aec0cf2cd33cf schema:volumeNumber 33
149 rdf:type schema:PublicationVolume
150 Na5f0884aa98c4c7f9549b5c275d941ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Mutagenesis
152 rdf:type schema:DefinedTerm
153 Nabc6c27688264083a4f845ed7faf7934 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Animals
155 rdf:type schema:DefinedTerm
156 Nb8c2aa13259b4e8c9c7ed3c2c9238b8e rdf:first sg:person.01065166141.50
157 rdf:rest Nc33821b0d90c44c39aeabb9b0da557d6
158 Nbbbdfd8c09b84641b811fc5c725bee7f rdf:first sg:person.01070345415.05
159 rdf:rest N0ad084ba707245f987a6eb326c7c3a65
160 Nbcdba021f34e4378a50e6c05fb7dcf56 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name RNA Editing
162 rdf:type schema:DefinedTerm
163 Nbde6ec5c547e456692bf4f539d25b689 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name CRISPR-Cas Systems
165 rdf:type schema:DefinedTerm
166 Nc33821b0d90c44c39aeabb9b0da557d6 rdf:first sg:person.0625157710.81
167 rdf:rest N44418c89112f4a4da51a9038c9bd9c24
168 Ncfa23f2c0c9a492886bc83b0bea89c7b rdf:first sg:person.01225536052.48
169 rdf:rest Nb8c2aa13259b4e8c9c7ed3c2c9238b8e
170 Nd7c74ac405494b4eaf62888c2e235012 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
171 schema:name Humans
172 rdf:type schema:DefinedTerm
173 Nd98aa7427f434de3b00e3228c417c436 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Protein Structure, Tertiary
175 rdf:type schema:DefinedTerm
176 Nde32bd9f5bb2456782cda3492ef26c1f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Neoplasm Proteins
178 rdf:type schema:DefinedTerm
179 Ndfced394a3d645738fd8a50e577c61b6 schema:name doi
180 schema:value 10.1038/nbt.3235
181 rdf:type schema:PropertyValue
182 Ne3deb7b1b95d4555a23c6ee5203e4d22 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Drug Discovery
184 rdf:type schema:DefinedTerm
185 Nf8ebd09cb492419c8263febb4ed18cdf schema:issueNumber 6
186 rdf:type schema:PublicationIssue
187 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
188 schema:name Biological Sciences
189 rdf:type schema:DefinedTerm
190 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
191 schema:name Biochemistry and Cell Biology
192 rdf:type schema:DefinedTerm
193 sg:grant.2438853 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.3235
194 rdf:type schema:MonetaryGrant
195 sg:grant.2482292 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.3235
196 rdf:type schema:MonetaryGrant
197 sg:journal.1115214 schema:issn 1087-0156
198 1546-1696
199 schema:name Nature Biotechnology
200 schema:publisher Springer Nature
201 rdf:type schema:Periodical
202 sg:person.01065166141.50 schema:affiliation grid-institutes:grid.225279.9
203 schema:familyName Wang
204 schema:givenName Eric
205 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01065166141.50
206 rdf:type schema:Person
207 sg:person.01070345415.05 schema:affiliation grid-institutes:grid.225279.9
208 schema:familyName Kinney
209 schema:givenName Justin B.
210 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070345415.05
211 rdf:type schema:Person
212 sg:person.01115150552.09 schema:affiliation grid-institutes:grid.225279.9
213 schema:familyName Vakoc
214 schema:givenName Christopher R.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115150552.09
216 rdf:type schema:Person
217 sg:person.01225536052.48 schema:affiliation grid-institutes:grid.36425.36
218 schema:familyName Shi
219 schema:givenName Junwei
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01225536052.48
221 rdf:type schema:Person
222 sg:person.0625157710.81 schema:affiliation grid-institutes:grid.225279.9
223 schema:familyName Milazzo
224 schema:givenName Joseph P.
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625157710.81
226 rdf:type schema:Person
227 sg:pub.10.1038/nature10334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030076294
228 https://doi.org/10.1038/nature10334
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nature10509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026728956
231 https://doi.org/10.1038/nature10509
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nature13166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027499136
234 https://doi.org/10.1038/nature13166
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nature13695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022202677
237 https://doi.org/10.1038/nature13695
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nbt.1720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005914891
240 https://doi.org/10.1038/nbt.1720
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nbt.2647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012543463
243 https://doi.org/10.1038/nbt.2647
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/nbt.2800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041802825
246 https://doi.org/10.1038/nbt.2800
247 rdf:type schema:CreativeWork
248 sg:pub.10.1038/nbt.3026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033528408
249 https://doi.org/10.1038/nbt.3026
250 rdf:type schema:CreativeWork
251 sg:pub.10.1038/nchembio.1331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051468312
252 https://doi.org/10.1038/nchembio.1331
253 rdf:type schema:CreativeWork
254 sg:pub.10.1038/nprot.2013.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016534425
255 https://doi.org/10.1038/nprot.2013.143
256 rdf:type schema:CreativeWork
257 sg:pub.10.1038/onc.2012.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022455288
258 https://doi.org/10.1038/onc.2012.110
259 rdf:type schema:CreativeWork
260 sg:pub.10.1038/sj.gt.3301206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032864882
261 https://doi.org/10.1038/sj.gt.3301206
262 rdf:type schema:CreativeWork
263 grid-institutes:grid.225279.9 schema:alternateName Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
264 schema:name Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
265 rdf:type schema:Organization
266 grid-institutes:grid.36425.36 schema:alternateName Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
267 schema:name Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
268 Molecular and Cellular Biology Program, Stony Brook University, Stony Brook, NY 11794, USA
269 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...