Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06

AUTHORS

Shengdar Q Tsai, Nicolas Wyvekens, Cyd Khayter, Jennifer A Foden, Vishal Thapar, Deepak Reyon, Mathew J Goodwin, Martin J Aryee, J Keith Joung

ABSTRACT

Monomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies. Here we describe dimeric RNA-guided FokI nucleases (RFNs) that can recognize extended sequences and edit endogenous genes with high efficiencies in human cells. RFN cleavage activity depends strictly on the binding of two guide RNAs (gRNAs) to DNA with a defined spacing and orientation substantially reducing the likelihood that a suitable target site will occur more than once in the genome and therefore improving specificities relative to wild-type Cas9 monomers. RFNs guided by a single gRNA generally induce lower levels of unwanted mutations than matched monomeric Cas9 nickases. In addition, we describe a simple method for expressing multiple gRNAs bearing any 5' end nucleotide, which gives dimeric RFNs a broad targeting range. RFNs combine the ease of RNA-based targeting with the specificity enhancement inherent to dimerization and are likely to be useful in applications that require highly precise genome editing. More... »

PAGES

569

References to SciGraph publications

  • 2014-04. CRISPR-Cas systems for editing, regulating and targeting genomes in NATURE BIOTECHNOLOGY
  • 2013-09. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering in NATURE BIOTECHNOLOGY
  • 2013-09. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells in NATURE BIOTECHNOLOGY
  • 2013-09. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity in NATURE BIOTECHNOLOGY
  • 2013-01. TALENs: a widely applicable technology for targeted genome editing in NATURE REVIEWS MOLECULAR CELL BIOLOGY
  • 2013-10. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system in CELL RESEARCH
  • 2013-09. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers in NATURE GENETICS
  • 2013-02. APOBEC3B is an enzymatic source of mutation in breast cancer in NATURE
  • 2012-05. FLASH assembly of TALENs for high-throughput genome editing in NATURE BIOTECHNOLOGY
  • 2014-03. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9 in NATURE
  • 2013-03. Efficient genome editing in zebrafish using a CRISPR-Cas system in NATURE BIOTECHNOLOGY
  • 2014-03. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs in NATURE BIOTECHNOLOGY
  • 2010-09. Genome editing with engineered zinc finger nucleases in NATURE REVIEWS GENETICS
  • 2011-01. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures in NATURE METHODS
  • 2007-07. Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases in NATURE BIOTECHNOLOGY
  • 2013-10. CRISPR RNA–guided activation of endogenous human genes in NATURE METHODS
  • 2007-07. An improved zinc-finger nuclease architecture for highly specific genome editing in NATURE BIOTECHNOLOGY
  • 2013-09. DNA targeting specificity of RNA-guided Cas9 nucleases in NATURE BIOTECHNOLOGY
  • 2013-10. RNA-guided gene activation by CRISPR-Cas9–based transcription factors in NATURE METHODS
  • 2013-11. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing in NATURE METHODS
  • Journal

    TITLE

    Nature Biotechnology

    ISSUE

    6

    VOLUME

    32

    Related Patents

  • Full Interrogation Of Nuclease Dsbs And Sequencing (Find-Seq)
  • Compositions And Methods For Detecting Nucleic Acid Regions
  • Methods For Increasing Cas9-Mediated Engineering Efficiency
  • Hybrid Nucleic Acid Sequences For Genome Engineering
  • Engineered Crispr-Cas9 Nucleases
  • Methods And Compositions For Multiplex Rna Guided Genome Editing And Other Rna Technologies
  • Methods For Correcting Presenilin Point Mutations
  • De Novo Synthesized Gene Libraries
  • Compositions And Methods For Synthetic Gene Assembly
  • Evolved Cas9 Proteins For Gene Editing
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Novel Crispr Enzymes And Systems
  • Use Of Cationic Lipids To Deliver Cas9
  • A Crispr-Cas System For A Filamentous Fungal Host Cell
  • Crispr Mediated Recording Of Cellular Events
  • Functional Genomics Using Crispr-Cas Systems For Saturating Mutagenesis Of Non-Coding Elements, Compositions, Methods, Libraries And Applications Thereof
  • Dead Guides For Crispr Transcription Factors
  • Protected Guide Rnas (Pgrnas)
  • Mrna-Sensing Switchable Grnas
  • Cpf1 Complexes With Reduced Indel Activity
  • Methods For Identifying And Modulating Co-Occurant Cellular Phenotypes
  • Compositions And Methods For Targeting Cancer-Specific Sequence Variations
  • Compositions And Methods For Evaluating And Modulating Immune Responses By Detecting And Targeting Gata3
  • Compositions And Methods For Evaluating And Modulating Immune Responses By Use Of Immune Cell Gene Signatures
  • Methods For Nucleic Acid Editing
  • Evaluation And Improvement Of Nuclease Cleavage Specificity
  • Cas9-Foki Fusion Proteins And Uses Thereof
  • Cas9 Proteins Including Ligand-Dependent Inteins
  • Engineered Crispr-Cas9 Nucleases With Altered Pam Specificity
  • Method For Editing A Genetic Sequence
  • Cas9-Recombinase Fusion Proteins And Uses Thereof
  • Modulation Of Novel Immune Checkpoint Targets
  • Crispr Oligonucleotides And Gene Editing
  • Systems, Methods And Compositions For Sequence Manipulation With Optimized Functional Crispr-Cas Systems
  • Assays For Massively Combinatorial Perturbation Profiling And Cellular Circuit Reconstruction
  • De Novo Synthesized Gene Libraries
  • Use And Production Of Chd8+/- Transgenic Animals With Behavioral Phenotypes Characteristic Of Autism Spectrum Disorder
  • Functional Genomics Using Crispr-Cas Systems, Compositions, Methods, Screens And Applications Thereof
  • Rna-Guided Gene Editing System And Uses Thereof
  • Using Truncated Guide Rnas (Tru-Grnas) To Increase Specificity For Rna-Guided Genome Editing
  • Methods And Compositions For Nuclease Design
  • Engineered Crispr-Cas9 Nucleases With Altered Pam Specificity
  • Cis-Blocked Guide Rna
  • De Novo Synthesized Gene Libraries
  • De Novo Synthesized Gene Libraries
  • Comprehensive In Vitro Reporting Of Cleavage Events By Sequencing (Circle-Seq)
  • Crispr Mediated In Vivo Modeling And Genetic Screening Of Tumor Growth And Metastasis
  • Unbiased Identification Of Double-Strand Breaks And Genomic Rearrangement By Genome-Wide Insert Capture Sequencing
  • Delivery, Use And Therapeutic Applications Of The Crispr-Cas Systems And Compositions For Hbv And Viral Diseases And Disorders
  • A Crispr-Cas System For A Yeast Host Cell
  • Methods For Identifying And Modulating Immune Phenotypes
  • Novel Crispr Enzymes And Systems
  • Method Of Identifying And Treating A Person Having A Predisposition To Or Afflicted With A Cardiometabolic Disease
  • Switchable Grnas Comprising Aptamers
  • Methods For Increasing Cas9-Mediated Engineering Efficiency
  • Engineered Crispr-Cas9 Nucleases With Altered Pam Specificity
  • Rna-Targeting System
  • Delivery, Use And Therapeutic Applications Of The Crispr-Cas Systems And Compositions For Modeling Mutations In Leukocytes
  • Crispr Oligonucleotides And Gene Editing
  • Type Vi Crispr Orthologs And Systems
  • Product And Methods Useful For Modulating And Evaluating Immune Responses
  • Delivery, Use And Therapeutic Applications Of Crispr Systems And Compositions For Genome Editing As To Hematopoietic Stem Cells (Hscs)
  • Escorted And Functionalized Guides For Crispr-Cas Systems
  • Extended Dna-Sensing Grnas
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Gene Editing Reagents With Reduced Toxicity
  • Permanent Gene Correction By Means Of Nucleotide-Modified Messenger Rna
  • Increasing Specificity For Rna-Guided Genome Editing
  • Crispr-Related Methods And Compositions With Governing Grnas
  • A Crispr-Cas System For A Lipolytic Yeast Host Cell
  • Methods For Identifying And Treating Hemoglobinopathies
  • Methods For Identifying A Target Site Of A Cas9 Nuclease
  • Crispr Having Or Associated With Destabilization Domains
  • Methods For Sorting Nucleic Acids And Multiplexed Preparative In Vitro Cloning
  • De Novo Synthesized Nucleic Acid Libraries
  • Modulation Of Novel Immune Checkpoint Targets
  • Delivery Of Negatively Charged Proteins Using Cationic Lipids
  • Crispr/Cas-Related Methods And Compositions For Treating Leber's Congenital Amaurosis 10 (Lca10)
  • Compositions And Methods For Evaluating And Modulating Immune Responses
  • Devices And Methods For Oligonucleic Acid Library Synthesis
  • Engineered Crispr-Cas9 Nucleases
  • Methods For Increasing Cas9-Mediated Engineering Efficiency
  • Stabilized Reagents For Genome Modification
  • Novel Crispr Enzymes And Systems
  • Compositions, Methods And Use Of Synthetic Lethal Screening
  • Functionalized Surfaces And Preparation Thereof
  • Compositions And Methods For Evaluating And Modulating Immune Responses By Detecting And Targeting Pou2af1
  • Genomewide Unbiased Identification Of Dsbs Evaluated By Sequencing (Guide-Seq)
  • Cas Variants For Gene Editing
  • De Novo Synthesized Gene Libraries
  • Novel Crispr Enzymes And Systems
  • De Novo Synthesized Gene Libraries
  • Delivery System For Functional Nucleases
  • Nucleobase Editors And Uses Thereof
  • Type Vi-B Crispr Enzymes And Systems
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt.2908

    DOI

    http://dx.doi.org/10.1038/nbt.2908

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012868720

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24770325


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacterial Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Cas Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Deoxyribonucleases, Type II Site-Specific", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endonucleases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Editing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Protein Multimerization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Guide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Recombinant Fusion Proteins", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tsai", 
            "givenName": "Shengdar Q", 
            "id": "sg:person.0742101567.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742101567.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts General Hospital", 
              "id": "https://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wyvekens", 
            "givenName": "Nicolas", 
            "id": "sg:person.01315554401.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315554401.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts General Hospital", 
              "id": "https://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Khayter", 
            "givenName": "Cyd", 
            "id": "sg:person.0650177731.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650177731.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts General Hospital", 
              "id": "https://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Foden", 
            "givenName": "Jennifer A", 
            "id": "sg:person.01140133375.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140133375.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts General Hospital", 
              "id": "https://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thapar", 
            "givenName": "Vishal", 
            "id": "sg:person.01177723314.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177723314.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Reyon", 
            "givenName": "Deepak", 
            "id": "sg:person.0760565231.98", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760565231.98"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts General Hospital", 
              "id": "https://www.grid.ac/institutes/grid.32224.35", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Goodwin", 
            "givenName": "Mathew J", 
            "id": "sg:person.0720077755.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720077755.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aryee", 
            "givenName": "Martin J", 
            "id": "sg:person.0636535214.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636535214.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.", 
                "Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Joung", 
            "givenName": "J Keith", 
            "id": "sg:person.0667170477.75", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667170477.75"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nbt1319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002154526", 
              "https://doi.org/10.1038/nbt1319"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2013.08.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002481722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004290844"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2673", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007302590", 
              "https://doi.org/10.1038/nbt.2673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009511624", 
              "https://doi.org/10.1038/nbt.2623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010147854", 
              "https://doi.org/10.1038/nmeth.1539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1539", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010147854", 
              "https://doi.org/10.1038/nmeth.1539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.162339.113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010306401"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1247997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010970903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012543463", 
              "https://doi.org/10.1038/nbt.2647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.030882.111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015360819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018939216", 
              "https://doi.org/10.1038/nrg2842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018939216", 
              "https://doi.org/10.1038/nrg2842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2702", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020175364", 
              "https://doi.org/10.1038/ng.2702"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/jipb.12152", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021858851"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1232033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022072971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024354143", 
              "https://doi.org/10.1038/nmeth.2600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024844693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024844693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024988605", 
              "https://doi.org/10.1038/nbt.2501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028304735", 
              "https://doi.org/10.1038/nmeth.2681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1192272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030675682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032796931", 
              "https://doi.org/10.1038/nature11881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037342101", 
              "https://doi.org/10.1038/nature13011"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038266369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038520013", 
              "https://doi.org/10.1038/nbt.2842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040026920", 
              "https://doi.org/10.1038/nbt.2170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041659759", 
              "https://doi.org/10.1038/nbt.2675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1225829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041850060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045480104", 
              "https://doi.org/10.1038/nbt1317"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/cr.2013.122", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048353952", 
              "https://doi.org/10.1038/cr.2013.122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048637524", 
              "https://doi.org/10.1038/nbt.2808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049500416", 
              "https://doi.org/10.1038/nmeth.2598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrm3486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050461034", 
              "https://doi.org/10.1038/nrm3486"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-06", 
        "datePublishedReg": "2014-06-01", 
        "description": "Monomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies. Here we describe dimeric RNA-guided FokI nucleases (RFNs) that can recognize extended sequences and edit endogenous genes with high efficiencies in human cells. RFN cleavage activity depends strictly on the binding of two guide RNAs (gRNAs) to DNA with a defined spacing and orientation substantially reducing the likelihood that a suitable target site will occur more than once in the genome and therefore improving specificities relative to wild-type Cas9 monomers. RFNs guided by a single gRNA generally induce lower levels of unwanted mutations than matched monomeric Cas9 nickases. In addition, we describe a simple method for expressing multiple gRNAs bearing any 5' end nucleotide, which gives dimeric RFNs a broad targeting range. RFNs combine the ease of RNA-based targeting with the specificity enhancement inherent to dimerization and are likely to be useful in applications that require highly precise genome editing. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt.2908", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2465415", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2354980", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2520480", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2383486", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2440618", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "32"
          }
        ], 
        "name": "Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing", 
        "pagination": "569", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3d4e326c7b90925585c8f6cfb41e27bb35392d7dec06609452dfdd2b825fd1c3"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24770325"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt.2908"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012868720"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt.2908", 
          "https://app.dimensions.ai/details/publication/pub.1012868720"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000435.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt.2908"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.2908'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.2908'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.2908'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.2908'


     

    This table displays all metadata directly associated to this object as RDF triples.

    292 TRIPLES      21 PREDICATES      69 URIs      30 LITERALS      18 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt.2908 schema:about N07d70b3618de4effacab9e06c785cff4
    2 N1fc8f050b378444c94fe63a4d8f3b88d
    3 N64a908924a544ecdbf3edd9e82750f2e
    4 N685185b6aab1436ea0fdc47fd6ef9bc5
    5 N7025140e077f4f2c89ebbb4bf553bd2f
    6 N8d885d497e7849519c98591b9b3f6528
    7 N9fab338a6627424aa63921748bc2c2c2
    8 Na7b8284721984da38fc7392365b38fad
    9 Na985e2de70064ee6b24315f60a9df91a
    10 anzsrc-for:06
    11 anzsrc-for:0604
    12 schema:author N813ce819bb85487c856e17d78848c6c7
    13 schema:citation sg:pub.10.1038/cr.2013.122
    14 sg:pub.10.1038/nature11881
    15 sg:pub.10.1038/nature13011
    16 sg:pub.10.1038/nbt.2170
    17 sg:pub.10.1038/nbt.2501
    18 sg:pub.10.1038/nbt.2623
    19 sg:pub.10.1038/nbt.2647
    20 sg:pub.10.1038/nbt.2673
    21 sg:pub.10.1038/nbt.2675
    22 sg:pub.10.1038/nbt.2808
    23 sg:pub.10.1038/nbt.2842
    24 sg:pub.10.1038/nbt1317
    25 sg:pub.10.1038/nbt1319
    26 sg:pub.10.1038/ng.2702
    27 sg:pub.10.1038/nmeth.1539
    28 sg:pub.10.1038/nmeth.2598
    29 sg:pub.10.1038/nmeth.2600
    30 sg:pub.10.1038/nmeth.2681
    31 sg:pub.10.1038/nrg2842
    32 sg:pub.10.1038/nrm3486
    33 https://doi.org/10.1016/j.cell.2013.08.021
    34 https://doi.org/10.1016/j.cell.2014.02.001
    35 https://doi.org/10.1093/bioinformatics/btp324
    36 https://doi.org/10.1093/nar/gkq319
    37 https://doi.org/10.1101/gr.162339.113
    38 https://doi.org/10.1111/jipb.12152
    39 https://doi.org/10.1126/science.1192272
    40 https://doi.org/10.1126/science.1225829
    41 https://doi.org/10.1126/science.1232033
    42 https://doi.org/10.1126/science.1247997
    43 https://doi.org/10.1261/rna.030882.111
    44 schema:datePublished 2014-06
    45 schema:datePublishedReg 2014-06-01
    46 schema:description Monomeric CRISPR-Cas9 nucleases are widely used for targeted genome editing but can induce unwanted off-target mutations with high frequencies. Here we describe dimeric RNA-guided FokI nucleases (RFNs) that can recognize extended sequences and edit endogenous genes with high efficiencies in human cells. RFN cleavage activity depends strictly on the binding of two guide RNAs (gRNAs) to DNA with a defined spacing and orientation substantially reducing the likelihood that a suitable target site will occur more than once in the genome and therefore improving specificities relative to wild-type Cas9 monomers. RFNs guided by a single gRNA generally induce lower levels of unwanted mutations than matched monomeric Cas9 nickases. In addition, we describe a simple method for expressing multiple gRNAs bearing any 5' end nucleotide, which gives dimeric RFNs a broad targeting range. RFNs combine the ease of RNA-based targeting with the specificity enhancement inherent to dimerization and are likely to be useful in applications that require highly precise genome editing.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree true
    50 schema:isPartOf N7465444c13224112a0188b8f8472275b
    51 N9d2891321f834aaeb35a1b4acddf02e3
    52 sg:journal.1115214
    53 schema:name Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing
    54 schema:pagination 569
    55 schema:productId N032ed6a237214de58c53a7c66e8abf4e
    56 N0409d8051ee641c68f69f587cfb586a1
    57 N6b32e0c073c04d798a5836f7e9b306ff
    58 N8520fcbc913f41a9aba9fe856b23dbe8
    59 Nf755a1a453414010a11846ff5a15f1e2
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012868720
    61 https://doi.org/10.1038/nbt.2908
    62 schema:sdDatePublished 2019-04-10T18:09
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher N9577af8128164733ac104664489ca0a3
    65 schema:url https://www.nature.com/articles/nbt.2908
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N032ed6a237214de58c53a7c66e8abf4e schema:name doi
    70 schema:value 10.1038/nbt.2908
    71 rdf:type schema:PropertyValue
    72 N0409d8051ee641c68f69f587cfb586a1 schema:name pubmed_id
    73 schema:value 24770325
    74 rdf:type schema:PropertyValue
    75 N07d70b3618de4effacab9e06c785cff4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Endonucleases
    77 rdf:type schema:DefinedTerm
    78 N1fc8f050b378444c94fe63a4d8f3b88d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name RNA, Guide
    80 rdf:type schema:DefinedTerm
    81 N64a908924a544ecdbf3edd9e82750f2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Gene Editing
    83 rdf:type schema:DefinedTerm
    84 N67ec7648bcd342559b782323cfa628ae rdf:first sg:person.0760565231.98
    85 rdf:rest Ne96a1c084ae7403e85c225518e1379dd
    86 N685185b6aab1436ea0fdc47fd6ef9bc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Deoxyribonucleases, Type II Site-Specific
    88 rdf:type schema:DefinedTerm
    89 N6b32e0c073c04d798a5836f7e9b306ff schema:name readcube_id
    90 schema:value 3d4e326c7b90925585c8f6cfb41e27bb35392d7dec06609452dfdd2b825fd1c3
    91 rdf:type schema:PropertyValue
    92 N7025140e077f4f2c89ebbb4bf553bd2f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name CRISPR-Cas Systems
    94 rdf:type schema:DefinedTerm
    95 N7465444c13224112a0188b8f8472275b schema:volumeNumber 32
    96 rdf:type schema:PublicationVolume
    97 N813ce819bb85487c856e17d78848c6c7 rdf:first sg:person.0742101567.17
    98 rdf:rest Nae8fd0427c794a39b9b4c5e063bfd01c
    99 N8520fcbc913f41a9aba9fe856b23dbe8 schema:name dimensions_id
    100 schema:value pub.1012868720
    101 rdf:type schema:PropertyValue
    102 N85d209a4bb8e4321a17fbbe393eeabc2 rdf:first sg:person.0667170477.75
    103 rdf:rest rdf:nil
    104 N8bc5f4a6ddfb4eac94eb401473ec8590 rdf:first sg:person.01140133375.19
    105 rdf:rest Nbfb536dfbe814bb9832e5ef4c775f029
    106 N8d885d497e7849519c98591b9b3f6528 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Bacterial Proteins
    108 rdf:type schema:DefinedTerm
    109 N9577af8128164733ac104664489ca0a3 schema:name Springer Nature - SN SciGraph project
    110 rdf:type schema:Organization
    111 N9d2891321f834aaeb35a1b4acddf02e3 schema:issueNumber 6
    112 rdf:type schema:PublicationIssue
    113 N9fab338a6627424aa63921748bc2c2c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Humans
    115 rdf:type schema:DefinedTerm
    116 Na0460afb8c2e482f806e347b48106a74 rdf:first sg:person.0650177731.59
    117 rdf:rest N8bc5f4a6ddfb4eac94eb401473ec8590
    118 Na7b8284721984da38fc7392365b38fad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Protein Multimerization
    120 rdf:type schema:DefinedTerm
    121 Na985e2de70064ee6b24315f60a9df91a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Recombinant Fusion Proteins
    123 rdf:type schema:DefinedTerm
    124 Nae8fd0427c794a39b9b4c5e063bfd01c rdf:first sg:person.01315554401.67
    125 rdf:rest Na0460afb8c2e482f806e347b48106a74
    126 Nbfb536dfbe814bb9832e5ef4c775f029 rdf:first sg:person.01177723314.50
    127 rdf:rest N67ec7648bcd342559b782323cfa628ae
    128 Ncb1c4b346ab84ad3b318ef31bef61238 rdf:first sg:person.0636535214.09
    129 rdf:rest N85d209a4bb8e4321a17fbbe393eeabc2
    130 Ne96a1c084ae7403e85c225518e1379dd rdf:first sg:person.0720077755.84
    131 rdf:rest Ncb1c4b346ab84ad3b318ef31bef61238
    132 Nf755a1a453414010a11846ff5a15f1e2 schema:name nlm_unique_id
    133 schema:value 9604648
    134 rdf:type schema:PropertyValue
    135 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    136 schema:name Biological Sciences
    137 rdf:type schema:DefinedTerm
    138 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    139 schema:name Genetics
    140 rdf:type schema:DefinedTerm
    141 sg:grant.2354980 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.2908
    142 rdf:type schema:MonetaryGrant
    143 sg:grant.2383486 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.2908
    144 rdf:type schema:MonetaryGrant
    145 sg:grant.2440618 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.2908
    146 rdf:type schema:MonetaryGrant
    147 sg:grant.2465415 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.2908
    148 rdf:type schema:MonetaryGrant
    149 sg:grant.2520480 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.2908
    150 rdf:type schema:MonetaryGrant
    151 sg:journal.1115214 schema:issn 1087-0156
    152 1546-1696
    153 schema:name Nature Biotechnology
    154 rdf:type schema:Periodical
    155 sg:person.01140133375.19 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
    156 schema:familyName Foden
    157 schema:givenName Jennifer A
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140133375.19
    159 rdf:type schema:Person
    160 sg:person.01177723314.50 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
    161 schema:familyName Thapar
    162 schema:givenName Vishal
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177723314.50
    164 rdf:type schema:Person
    165 sg:person.01315554401.67 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
    166 schema:familyName Wyvekens
    167 schema:givenName Nicolas
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315554401.67
    169 rdf:type schema:Person
    170 sg:person.0636535214.09 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    171 schema:familyName Aryee
    172 schema:givenName Martin J
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636535214.09
    174 rdf:type schema:Person
    175 sg:person.0650177731.59 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
    176 schema:familyName Khayter
    177 schema:givenName Cyd
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650177731.59
    179 rdf:type schema:Person
    180 sg:person.0667170477.75 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    181 schema:familyName Joung
    182 schema:givenName J Keith
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667170477.75
    184 rdf:type schema:Person
    185 sg:person.0720077755.84 schema:affiliation https://www.grid.ac/institutes/grid.32224.35
    186 schema:familyName Goodwin
    187 schema:givenName Mathew J
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720077755.84
    189 rdf:type schema:Person
    190 sg:person.0742101567.17 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    191 schema:familyName Tsai
    192 schema:givenName Shengdar Q
    193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742101567.17
    194 rdf:type schema:Person
    195 sg:person.0760565231.98 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    196 schema:familyName Reyon
    197 schema:givenName Deepak
    198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0760565231.98
    199 rdf:type schema:Person
    200 sg:pub.10.1038/cr.2013.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048353952
    201 https://doi.org/10.1038/cr.2013.122
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/nature11881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032796931
    204 https://doi.org/10.1038/nature11881
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nature13011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037342101
    207 https://doi.org/10.1038/nature13011
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/nbt.2170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040026920
    210 https://doi.org/10.1038/nbt.2170
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nbt.2501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024988605
    213 https://doi.org/10.1038/nbt.2501
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nbt.2623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009511624
    216 https://doi.org/10.1038/nbt.2623
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nbt.2647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012543463
    219 https://doi.org/10.1038/nbt.2647
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nbt.2673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007302590
    222 https://doi.org/10.1038/nbt.2673
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nbt.2675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041659759
    225 https://doi.org/10.1038/nbt.2675
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nbt.2808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048637524
    228 https://doi.org/10.1038/nbt.2808
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nbt.2842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038520013
    231 https://doi.org/10.1038/nbt.2842
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nbt1317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045480104
    234 https://doi.org/10.1038/nbt1317
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nbt1319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002154526
    237 https://doi.org/10.1038/nbt1319
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/ng.2702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020175364
    240 https://doi.org/10.1038/ng.2702
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nmeth.1539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010147854
    243 https://doi.org/10.1038/nmeth.1539
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nmeth.2598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049500416
    246 https://doi.org/10.1038/nmeth.2598
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nmeth.2600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024354143
    249 https://doi.org/10.1038/nmeth.2600
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nmeth.2681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028304735
    252 https://doi.org/10.1038/nmeth.2681
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nrg2842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018939216
    255 https://doi.org/10.1038/nrg2842
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nrm3486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050461034
    258 https://doi.org/10.1038/nrm3486
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1016/j.cell.2013.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002481722
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1016/j.cell.2014.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004290844
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1093/nar/gkq319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024844693
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1101/gr.162339.113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010306401
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1111/jipb.12152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021858851
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1126/science.1192272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030675682
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1126/science.1225829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850060
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1126/science.1232033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022072971
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1126/science.1247997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010970903
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1261/rna.030882.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015360819
    281 rdf:type schema:CreativeWork
    282 https://www.grid.ac/institutes/grid.32224.35 schema:alternateName Massachusetts General Hospital
    283 schema:name Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    284 Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    285 Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    286 rdf:type schema:Organization
    287 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    288 schema:name Center for Cancer Research, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    289 Center for Computational and Integrative Biology, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    290 Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA.
    291 Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
    292 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...