CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-09

AUTHORS

Prashant Mali, John Aach, P Benjamin Stranges, Kevin M Esvelt, Mark Moosburner, Sriram Kosuri, Luhan Yang, George M Church

ABSTRACT

Prokaryotic type II CRISPR-Cas systems can be adapted to enable targeted genome modifications across a range of eukaryotes. Here we engineer this system to enable RNA-guided genome regulation in human cells by tethering transcriptional activation domains either directly to a nuclease-null Cas9 protein or to an aptamer-modified single guide RNA (sgRNA). Using this functionality we developed a transcriptional activation-based assay to determine the landscape of off-target binding of sgRNA:Cas9 complexes and compared it with the off-target activity of transcription activator-like (TALs) effectors. Our results reveal that specificity profiles are sgRNA dependent, and that sgRNA:Cas9 complexes and 18-mer TAL effectors can potentially tolerate 1-3 and 1-2 target mismatches, respectively. By engineering a requirement for cooperativity through offset nicking for genome editing or through multiple synergistic sgRNAs for robust transcriptional activation, we suggest methods to mitigate off-target phenomena. Our results expand the versatility of the sgRNA:Cas9 tool and highlight the critical need to engineer improved specificity. More... »

PAGES

833

References to SciGraph publications

  • 2013-03. Synergistic and tunable human gene activation by combinations of synthetic transcription factors in NATURE METHODS
  • 2011-09. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection in NATURE METHODS
  • 2013-03. Robust, synergistic regulation of human gene expression using TALE activators in NATURE METHODS
  • 2013-03. RNA-guided editing of bacterial genomes using CRISPR-Cas systems in NATURE BIOTECHNOLOGY
  • 2012-07. TAL effector RVD specificities and efficiencies in NATURE BIOTECHNOLOGY
  • 2012-05. FLASH assembly of TALENs for high-throughput genome editing in NATURE BIOTECHNOLOGY
  • 2012-01. A transcription activator-like effector toolbox for genome engineering in NATURE PROTOCOLS
  • 2005-08. Gene targeting using zinc finger nucleases in NATURE BIOTECHNOLOGY
  • 2011-03. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III in NATURE
  • 2012-03. Massively parallel functional dissection of mammalian enhancers in vivo in NATURE BIOTECHNOLOGY
  • 2011-02. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription in NATURE BIOTECHNOLOGY
  • 2013-03. Efficient genome editing in zebrafish using a CRISPR-Cas system in NATURE BIOTECHNOLOGY
  • 2011-09. An unbiased genome-wide analysis of zinc-finger nuclease specificity in NATURE BIOTECHNOLOGY
  • 2013-03. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease in NATURE BIOTECHNOLOGY
  • 2011-08. Tracking genome engineering outcome at individual DNA breakpoints in NATURE METHODS
  • Journal

    TITLE

    Nature Biotechnology

    ISSUE

    9

    VOLUME

    31

    Author Affiliations

    Related Patents

  • A Method For Directing Proteins To Specific Loci In The Genome And Uses Thereof
  • Full Interrogation Of Nuclease Dsbs And Sequencing (Find-Seq)
  • Methods For Producing A Mouse Xy Embryonic (Es) Cell Line Capable Of Producing A Fertile Xy Female Mouse In An F0 Generation
  • Compositions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Methods To Design And Use Gene Drives
  • Compositions And Methods For Detecting Nucleic Acid Regions
  • Engineered Crispr-Cas9 Nucleases
  • Crispr/Cas Global Regulator Screening Platform
  • Methods And Compositions For Multiplex Rna Guided Genome Editing And Other Rna Technologies
  • Methods For Correcting Presenilin Point Mutations
  • Compositions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Evolved Cas9 Proteins For Gene Editing
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Delivery, Use And Therapeutic Applications Of The Crispr-Cas Systems And Compositions For Genome Editing
  • Methods And Compositions For The Targeted Modification Of A Mouse Genome
  • Use Of Cationic Lipids To Deliver Cas9
  • Methods For Improving Crispr/Cas-Mediated Genome-Editing
  • Crispr/Cas-Mediated Gene Conversion
  • Functional Screening With Optimized Functional Crispr-Cas Systems
  • A Three-Component Crispr/Cas Complex System And Uses Thereof
  • Cas9 Proteins Including Ligand-Dependent Inteins
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Adenosine Nucleobase Editors And Uses Thereof
  • Engineered Crispr-Cas9 Nucleases With Altered Pam Specificity
  • Mrna-Sensing Switchable Grnas
  • Genome Modification Using Guide Polynucleotide/Cas Endonuclease Systems And Methods Of Use
  • Evaluation And Improvement Of Nuclease Cleavage Specificity
  • Cas9-Foki Fusion Proteins And Uses Thereof
  • Nuclease-Mediated Targeting With Large Targeting Vectors
  • Increasing Specificity For Rna-Guided Genome Editing
  • Compositions And Methods For Evaluating And Modulating Immune Responses By Detecting And Targeting Gata3
  • Functional Genomics Using Crispr-Cas Systems For Saturating Mutagenesis Of Non-Coding Elements, Compositions, Methods, Libraries And Applications Thereof
  • Methods For Nucleic Acid Editing
  • Dead Guides For Crispr Transcription Factors
  • Protected Guide Rnas (Pgrnas)
  • Crispr-Based Genome Modification And Regulation
  • Crispr-Based Genome Modification And Regulation
  • Cas9-Recombinase Fusion Proteins And Uses Thereof
  • Genome Editing Using Cas9 Nickases
  • Tracking And Manipulating Cellular Rna Via Nuclear Delivery Of Crispr/Cas9
  • Cas9 Crystals And Methods Of Use Thereof
  • Methods And Compositions For Targeted Gene Modification
  • Cis-Blocked Guide Rna
  • Engineered Crispr-Cas9 Nucleases With Altered Pam Specificity
  • Methods And Compositions For The Production Of Guide Rna
  • Comprehensive In Vitro Reporting Of Cleavage Events By Sequencing (Circle-Seq)
  • Crispr-Related Methods And Compositions With Governing Grnas
  • Using Truncated Guide Rnas (Tru-Grnas) To Increase Specificity For Rna-Guided Genome Editing
  • Crispr/Cas Systems For Genomic Modification And Gene Modulation
  • Systems, Methods And Compositions For Sequence Manipulation With Optimized Functional Crispr-Cas Systems
  • Compositions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Methods For Identifying A Target Site Of A Cas9 Nuclease
  • Switchable Grnas Comprising Aptamers
  • Engineered Crispr-Cas9 Nucleases With Altered Pam Specificity
  • Rna-Targeting System
  • Type Vi Crispr Orthologs And Systems
  • Compositions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Escorted And Functionalized Guides For Crispr-Cas Systems
  • Extended Dna-Sensing Grnas
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Genetic Correction Of Mutated Genes
  • Switchable Cas9 Nucleases And Uses Thereof
  • Increasing Specificity For Rna-Guided Genome Editing
  • Crispr-Related Methods And Compositions With Governing Grnas
  • Cell Sorting
  • Crystal Structure Of A Crispr-Cas System, And Uses Thereof
  • Compositions And Methods For The Induction And Tuning Of Gene Expression
  • Compositions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Methods For Identifying A Target Site Of A Cas9 Nuclease
  • Nuclease Profiling System
  • Methods And Compositions For Targeted Genetic Modification Using Paired Guide Rnas
  • Delivery Of Negatively Charged Proteins Using Cationic Lipids
  • Crispr/Cas-Related Methods And Compositions For Treating Leber's Congenital Amaurosis 10 (Lca10)
  • Engineered Crispr-Cas9 Nucleases
  • Methods And Systems For Identifying Crispr/Cas Off-Target Sites
  • Genomewide Unbiased Identification Of Dsbs Evaluated By Sequencing (Guide-Seq)
  • Compositions And Methods Directed To Crispr/Cas Genomic Engineering Systems
  • Mutant Cas9 Proteins
  • Rna-Guided Transcriptional Regulation
  • Delivery System For Functional Nucleases
  • Nucleobase Editors And Uses Thereof
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt.2675

    DOI

    http://dx.doi.org/10.1038/nbt.2675

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1041659759

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23907171


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Associated Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Deoxyribonuclease I", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "HEK293 Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Guide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Trans-Activators", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mali", 
            "givenName": "Prashant", 
            "id": "sg:person.0667466715.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667466715.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Aach", 
            "givenName": "John", 
            "id": "sg:person.0735602115.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735602115.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Stranges", 
            "givenName": "P Benjamin", 
            "id": "sg:person.01247267530.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247267530.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Esvelt", 
            "givenName": "Kevin M", 
            "id": "sg:person.0730736702.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730736702.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moosburner", 
            "givenName": "Mark", 
            "id": "sg:person.01120143715.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120143715.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kosuri", 
            "givenName": "Sriram", 
            "id": "sg:person.01033672615.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033672615.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Luhan", 
            "id": "sg:person.0662623502.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662623502.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.", 
                "Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Church", 
            "givenName": "George M", 
            "id": "sg:person.01115626315.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cell.2013.02.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008291683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2361", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009286919", 
              "https://doi.org/10.1038/nmeth.2361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.11.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010904856"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1208507109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011954581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-genet-110410-132430", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013432136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1178811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014803320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1178811", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014803320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1231143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019873131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019888616", 
              "https://doi.org/10.1038/nbt.2508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2011.431", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020679703", 
              "https://doi.org/10.1038/nprot.2011.431"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1232033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022072971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-9822(02)01436-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022317223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-9822(02)01436-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022317223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.00471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023633935"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024455353", 
              "https://doi.org/10.1038/nbt1125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1125", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024455353", 
              "https://doi.org/10.1038/nbt1125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024988605", 
              "https://doi.org/10.1038/nbt.2501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030591890", 
              "https://doi.org/10.1038/nature09886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031104364", 
              "https://doi.org/10.1038/nbt.1775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1948", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033698278", 
              "https://doi.org/10.1038/nbt.1948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034768190", 
              "https://doi.org/10.1038/nbt.2304"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035945498", 
              "https://doi.org/10.1038/nmeth.1648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036014707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-genet-110410-132435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038189748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2170", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040026920", 
              "https://doi.org/10.1038/nbt.2170"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2366", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040994508", 
              "https://doi.org/10.1038/nmeth.2366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1225829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041850060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041881936", 
              "https://doi.org/10.1038/nbt.2507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt135", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042813151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043918422", 
              "https://doi.org/10.1038/nmeth.1670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044559969", 
              "https://doi.org/10.1038/nbt.2136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052438070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1178817", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062460524"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-09", 
        "datePublishedReg": "2013-09-01", 
        "description": "Prokaryotic type II CRISPR-Cas systems can be adapted to enable targeted genome modifications across a range of eukaryotes. Here we engineer this system to enable RNA-guided genome regulation in human cells by tethering transcriptional activation domains either directly to a nuclease-null Cas9 protein or to an aptamer-modified single guide RNA (sgRNA). Using this functionality we developed a transcriptional activation-based assay to determine the landscape of off-target binding of sgRNA:Cas9 complexes and compared it with the off-target activity of transcription activator-like (TALs) effectors. Our results reveal that specificity profiles are sgRNA dependent, and that sgRNA:Cas9 complexes and 18-mer TAL effectors can potentially tolerate 1-3 and 1-2 target mismatches, respectively. By engineering a requirement for cooperativity through offset nicking for genome editing or through multiple synergistic sgRNAs for robust transcriptional activation, we suggest methods to mitigate off-target phenomena. Our results expand the versatility of the sgRNA:Cas9 tool and highlight the critical need to engineer improved specificity. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt.2675", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2440618", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4320497", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering", 
        "pagination": "833", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "c6735d80f395c94f927077dc506cd2d176f5cd4b048256f056a0f00c999524e9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23907171"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt.2675"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1041659759"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt.2675", 
          "https://app.dimensions.ai/details/publication/pub.1041659759"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:49", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000551.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt.2675"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.2675'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.2675'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.2675'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.2675'


     

    This table displays all metadata directly associated to this object as RDF triples.

    269 TRIPLES      21 PREDICATES      69 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt.2675 schema:about N0919f2ea4c624dde9743caa41690b497
    2 N4c32bb8c9ce741ffa4636b31f0547133
    3 N590aa361e4f44caa959d4b1794daa8bb
    4 N60e5d1be34b14ba284f038d04328d762
    5 N76d5674dc427400cab0d4ebfa5e8862c
    6 N9986f50917004fac9576964f877e1bb2
    7 Na995285bb08e4f349a8976903ae10ac8
    8 Nb406564b059542a095788ad12179e1f0
    9 Nd38a98fe7a394381a40bb18ba4ab04a8
    10 Nf35cbe4de22540bcaee0d0ee866575a4
    11 anzsrc-for:06
    12 anzsrc-for:0604
    13 schema:author N9b5756fef8ef43ab99788a09e25f96b1
    14 schema:citation sg:pub.10.1038/nature09886
    15 sg:pub.10.1038/nbt.1775
    16 sg:pub.10.1038/nbt.1948
    17 sg:pub.10.1038/nbt.2136
    18 sg:pub.10.1038/nbt.2170
    19 sg:pub.10.1038/nbt.2304
    20 sg:pub.10.1038/nbt.2501
    21 sg:pub.10.1038/nbt.2507
    22 sg:pub.10.1038/nbt.2508
    23 sg:pub.10.1038/nbt1125
    24 sg:pub.10.1038/nmeth.1648
    25 sg:pub.10.1038/nmeth.1670
    26 sg:pub.10.1038/nmeth.2361
    27 sg:pub.10.1038/nmeth.2366
    28 sg:pub.10.1038/nprot.2011.431
    29 https://doi.org/10.1016/j.cell.2007.11.019
    30 https://doi.org/10.1016/j.cell.2013.02.022
    31 https://doi.org/10.1016/s0960-9822(02)01436-7
    32 https://doi.org/10.1073/pnas.1208507109
    33 https://doi.org/10.1093/nar/gkr606
    34 https://doi.org/10.1093/nar/gkt085
    35 https://doi.org/10.1093/nar/gkt135
    36 https://doi.org/10.1126/science.1178811
    37 https://doi.org/10.1126/science.1178817
    38 https://doi.org/10.1126/science.1225829
    39 https://doi.org/10.1126/science.1231143
    40 https://doi.org/10.1126/science.1232033
    41 https://doi.org/10.1146/annurev-genet-110410-132430
    42 https://doi.org/10.1146/annurev-genet-110410-132435
    43 https://doi.org/10.7554/elife.00471
    44 schema:datePublished 2013-09
    45 schema:datePublishedReg 2013-09-01
    46 schema:description Prokaryotic type II CRISPR-Cas systems can be adapted to enable targeted genome modifications across a range of eukaryotes. Here we engineer this system to enable RNA-guided genome regulation in human cells by tethering transcriptional activation domains either directly to a nuclease-null Cas9 protein or to an aptamer-modified single guide RNA (sgRNA). Using this functionality we developed a transcriptional activation-based assay to determine the landscape of off-target binding of sgRNA:Cas9 complexes and compared it with the off-target activity of transcription activator-like (TALs) effectors. Our results reveal that specificity profiles are sgRNA dependent, and that sgRNA:Cas9 complexes and 18-mer TAL effectors can potentially tolerate 1-3 and 1-2 target mismatches, respectively. By engineering a requirement for cooperativity through offset nicking for genome editing or through multiple synergistic sgRNAs for robust transcriptional activation, we suggest methods to mitigate off-target phenomena. Our results expand the versatility of the sgRNA:Cas9 tool and highlight the critical need to engineer improved specificity.
    47 schema:genre research_article
    48 schema:inLanguage en
    49 schema:isAccessibleForFree true
    50 schema:isPartOf N25bd5009c28940d68a1cc2b9a8e6f646
    51 N72485d76b1f241669aebd51e0253fa20
    52 sg:journal.1115214
    53 schema:name CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering
    54 schema:pagination 833
    55 schema:productId N77e4f034bf834cdcb67607b35034cc1e
    56 N960f599e2cf6472bb47228c07c211e42
    57 Na0e9742f4aef40f3b8edb8eb6bf4b574
    58 Nab7c6d2d107348518535a13d43059985
    59 Nc7cce9803dab42328af28c7fb7b7dcc2
    60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041659759
    61 https://doi.org/10.1038/nbt.2675
    62 schema:sdDatePublished 2019-04-10T16:49
    63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    64 schema:sdPublisher Na487f1e7b4e048cb882888d8b8143b29
    65 schema:url https://www.nature.com/articles/nbt.2675
    66 sgo:license sg:explorer/license/
    67 sgo:sdDataset articles
    68 rdf:type schema:ScholarlyArticle
    69 N0919f2ea4c624dde9743caa41690b497 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Models, Genetic
    71 rdf:type schema:DefinedTerm
    72 N25bd5009c28940d68a1cc2b9a8e6f646 schema:issueNumber 9
    73 rdf:type schema:PublicationIssue
    74 N28c730a389e840a2a6bf822d756e5cb5 rdf:first sg:person.01115626315.03
    75 rdf:rest rdf:nil
    76 N32e0e593691d47f4bd313600013d9369 rdf:first sg:person.01033672615.51
    77 rdf:rest N6844ce6dfe8340d39acc2e1a03c3e7cc
    78 N438de8cfdc054a72b25a6f90d6584fd2 rdf:first sg:person.01120143715.24
    79 rdf:rest N32e0e593691d47f4bd313600013d9369
    80 N4c32bb8c9ce741ffa4636b31f0547133 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    81 schema:name Deoxyribonuclease I
    82 rdf:type schema:DefinedTerm
    83 N590aa361e4f44caa959d4b1794daa8bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Molecular Sequence Data
    85 rdf:type schema:DefinedTerm
    86 N60e5d1be34b14ba284f038d04328d762 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name HEK293 Cells
    88 rdf:type schema:DefinedTerm
    89 N6355df9c08e24155b311f545acf67694 rdf:first sg:person.0735602115.06
    90 rdf:rest N75c7091218504c23b0f53a3522a2fe41
    91 N6844ce6dfe8340d39acc2e1a03c3e7cc rdf:first sg:person.0662623502.63
    92 rdf:rest N28c730a389e840a2a6bf822d756e5cb5
    93 N72485d76b1f241669aebd51e0253fa20 schema:volumeNumber 31
    94 rdf:type schema:PublicationVolume
    95 N75c7091218504c23b0f53a3522a2fe41 rdf:first sg:person.01247267530.07
    96 rdf:rest Nbe3b9a79c1f74ccfa33dd7eb3ec542e0
    97 N76d5674dc427400cab0d4ebfa5e8862c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name RNA, Guide
    99 rdf:type schema:DefinedTerm
    100 N77e4f034bf834cdcb67607b35034cc1e schema:name pubmed_id
    101 schema:value 23907171
    102 rdf:type schema:PropertyValue
    103 N960f599e2cf6472bb47228c07c211e42 schema:name doi
    104 schema:value 10.1038/nbt.2675
    105 rdf:type schema:PropertyValue
    106 N9986f50917004fac9576964f877e1bb2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Humans
    108 rdf:type schema:DefinedTerm
    109 N9b5756fef8ef43ab99788a09e25f96b1 rdf:first sg:person.0667466715.32
    110 rdf:rest N6355df9c08e24155b311f545acf67694
    111 Na0e9742f4aef40f3b8edb8eb6bf4b574 schema:name nlm_unique_id
    112 schema:value 9604648
    113 rdf:type schema:PropertyValue
    114 Na487f1e7b4e048cb882888d8b8143b29 schema:name Springer Nature - SN SciGraph project
    115 rdf:type schema:Organization
    116 Na995285bb08e4f349a8976903ae10ac8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Genetic Engineering
    118 rdf:type schema:DefinedTerm
    119 Nab7c6d2d107348518535a13d43059985 schema:name dimensions_id
    120 schema:value pub.1041659759
    121 rdf:type schema:PropertyValue
    122 Nb406564b059542a095788ad12179e1f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Base Sequence
    124 rdf:type schema:DefinedTerm
    125 Nbe3b9a79c1f74ccfa33dd7eb3ec542e0 rdf:first sg:person.0730736702.33
    126 rdf:rest N438de8cfdc054a72b25a6f90d6584fd2
    127 Nc7cce9803dab42328af28c7fb7b7dcc2 schema:name readcube_id
    128 schema:value c6735d80f395c94f927077dc506cd2d176f5cd4b048256f056a0f00c999524e9
    129 rdf:type schema:PropertyValue
    130 Nd38a98fe7a394381a40bb18ba4ab04a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Trans-Activators
    132 rdf:type schema:DefinedTerm
    133 Nf35cbe4de22540bcaee0d0ee866575a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name CRISPR-Associated Proteins
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Biological Sciences
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Genetics
    141 rdf:type schema:DefinedTerm
    142 sg:grant.2440618 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.2675
    143 rdf:type schema:MonetaryGrant
    144 sg:grant.4320497 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.2675
    145 rdf:type schema:MonetaryGrant
    146 sg:journal.1115214 schema:issn 1087-0156
    147 1546-1696
    148 schema:name Nature Biotechnology
    149 rdf:type schema:Periodical
    150 sg:person.01033672615.51 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    151 schema:familyName Kosuri
    152 schema:givenName Sriram
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033672615.51
    154 rdf:type schema:Person
    155 sg:person.01115626315.03 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    156 schema:familyName Church
    157 schema:givenName George M
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03
    159 rdf:type schema:Person
    160 sg:person.01120143715.24 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    161 schema:familyName Moosburner
    162 schema:givenName Mark
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01120143715.24
    164 rdf:type schema:Person
    165 sg:person.01247267530.07 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    166 schema:familyName Stranges
    167 schema:givenName P Benjamin
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247267530.07
    169 rdf:type schema:Person
    170 sg:person.0662623502.63 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    171 schema:familyName Yang
    172 schema:givenName Luhan
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662623502.63
    174 rdf:type schema:Person
    175 sg:person.0667466715.32 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    176 schema:familyName Mali
    177 schema:givenName Prashant
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667466715.32
    179 rdf:type schema:Person
    180 sg:person.0730736702.33 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    181 schema:familyName Esvelt
    182 schema:givenName Kevin M
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730736702.33
    184 rdf:type schema:Person
    185 sg:person.0735602115.06 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    186 schema:familyName Aach
    187 schema:givenName John
    188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735602115.06
    189 rdf:type schema:Person
    190 sg:pub.10.1038/nature09886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030591890
    191 https://doi.org/10.1038/nature09886
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nbt.1775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031104364
    194 https://doi.org/10.1038/nbt.1775
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nbt.1948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033698278
    197 https://doi.org/10.1038/nbt.1948
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nbt.2136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044559969
    200 https://doi.org/10.1038/nbt.2136
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/nbt.2170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040026920
    203 https://doi.org/10.1038/nbt.2170
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/nbt.2304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034768190
    206 https://doi.org/10.1038/nbt.2304
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/nbt.2501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024988605
    209 https://doi.org/10.1038/nbt.2501
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/nbt.2507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041881936
    212 https://doi.org/10.1038/nbt.2507
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/nbt.2508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019888616
    215 https://doi.org/10.1038/nbt.2508
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nbt1125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024455353
    218 https://doi.org/10.1038/nbt1125
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nmeth.1648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035945498
    221 https://doi.org/10.1038/nmeth.1648
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1038/nmeth.1670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043918422
    224 https://doi.org/10.1038/nmeth.1670
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1038/nmeth.2361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009286919
    227 https://doi.org/10.1038/nmeth.2361
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1038/nmeth.2366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040994508
    230 https://doi.org/10.1038/nmeth.2366
    231 rdf:type schema:CreativeWork
    232 sg:pub.10.1038/nprot.2011.431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020679703
    233 https://doi.org/10.1038/nprot.2011.431
    234 rdf:type schema:CreativeWork
    235 https://doi.org/10.1016/j.cell.2007.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010904856
    236 rdf:type schema:CreativeWork
    237 https://doi.org/10.1016/j.cell.2013.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008291683
    238 rdf:type schema:CreativeWork
    239 https://doi.org/10.1016/s0960-9822(02)01436-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022317223
    240 rdf:type schema:CreativeWork
    241 https://doi.org/10.1073/pnas.1208507109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011954581
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1093/nar/gkr606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052438070
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1093/nar/gkt085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036014707
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1093/nar/gkt135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042813151
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1126/science.1178811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014803320
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1126/science.1178817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460524
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1126/science.1225829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850060
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1126/science.1231143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019873131
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1126/science.1232033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022072971
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1146/annurev-genet-110410-132430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013432136
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1146/annurev-genet-110410-132435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038189748
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.7554/elife.00471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023633935
    264 rdf:type schema:CreativeWork
    265 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    266 schema:name Biological and Biomedical Sciences Program, Harvard Medical School, Boston, Massachusetts, USA.
    267 Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
    268 Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, Massachusetts, USA.
    269 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...