RNA-guided editing of bacterial genomes using CRISPR-Cas systems View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-03

AUTHORS

Wenyan Jiang, David Bikard, David Cox, Feng Zhang, Luciano A Marraffini

ABSTRACT

Here we use the clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 endonuclease complexed with dual-RNAs to introduce precise mutations in the genomes of Streptococcus pneumoniae and Escherichia coli. The approach relies on dual-RNA:Cas9-directed cleavage at the targeted genomic site to kill unmutated cells and circumvents the need for selectable markers or counter-selection systems. We reprogram dual-RNA:Cas9 specificity by changing the sequence of short CRISPR RNA (crRNA) to make single- and multinucleotide changes carried on editing templates. Simultaneous use of two crRNAs enables multiplex mutagenesis. In S. pneumoniae, nearly 100% of cells that were recovered using our approach contained the desired mutation, and in E. coli, 65% that were recovered contained the mutation, when the approach was used in combination with recombineering. We exhaustively analyze dual-RNA:Cas9 target requirements to define the range of targetable sequences and show strategies for editing sites that do not meet these requirements, suggesting the versatility of this technique for bacterial genome engineering. More... »

PAGES

233

Journal

TITLE

Nature Biotechnology

ISSUE

3

VOLUME

31

Related Patents

  • Methods For Generating Barcoded Combinatorial Libraries
  • Full Interrogation Of Nuclease Dsbs And Sequencing (Find-Seq)
  • E. Coli Separatome-Based Protein Expression And Purification Platform
  • Methods For Genomic Integration
  • Compositions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Delivery System For Functional Nucleases
  • Targeted In Situ Protein Diversification By Site Directed Dna Cleavage And Repair
  • Antibodies, Compounds And Screens For Identifying And Treating Cachexia Or Pre-Cachexia
  • Engineered Crispr-Cas9 Nucleases
  • Targeted Mutations
  • Methods For Correcting Presenilin Point Mutations
  • Compositions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Evolved Cas9 Proteins For Gene Editing
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Compositions And Methods Of Use Of Crispr-Cas Systems In Nucleotide Repeat Disorders
  • Rna-Directed Dna Cleavage By The Cas9-Crrna Complex
  • Methods, Models, Systems, And Apparatus For Identifying Target Sequences For Cas Enzymes Or Crispr-Cas Systems For Target Sequences And Conveying Results Thereof
  • Engineering And Optimization Of Improved Systems, Methods And Enzyme Compositions For Sequence Manipulation
  • Using Truncated Guide Rnas (Tru-Grnas) To Increase Specificity For Rna-Guided Genome Editing
  • Use Of Cationic Lipids To Deliver Cas9
  • Cell Sorting
  • Crispr Mediated Recording Of Cellular Events
  • Multiplex Rna-Guided Genome Engineering
  • Crispr-Cas Component Systems, Methods And Compositions For Sequence Manipulation
  • Mrna-Sensing Switchable Grnas
  • Methods And Kits For Isolation And Analysis Of A Chromatin Region
  • Ref Nuclease For Site Specific Ref-Mediated Dna Cleavage
  • Methods For Identifying And Modulating Co-Occurant Cellular Phenotypes
  • Compositions And Methods For Evaluating And Modulating Immune Responses By Use Of Immune Cell Gene Signatures
  • Tuning Microbial Populations With Programmable Nucleases
  • Methods For Nucleic Acid Editing
  • E. Coli Separatome-Based Protein Expression And Purification Platform
  • Method Of Making A Deletion In A Target Sequence In Isolated Primary Cells Using Cas9 And Two Guide Rnas
  • Evaluation And Improvement Of Nuclease Cleavage Specificity
  • Cas9-Foki Fusion Proteins And Uses Thereof
  • Nuclease-Mediated Targeting With Large Targeting Vectors
  • Death Receptor Based Selection Marker
  • Switchable Cas9 Nucleases And Uses Thereof
  • Cas9 Proteins Including Ligand-Dependent Inteins
  • Engineered Crispr-Cas9 Nucleases With Altered Pam Specificity
  • Crispr Enabled Multiplexed Genome Engineering
  • Crispr-Cas9 Genome Editing With Multiple Guide Rnas In Filamentous Fungi
  • Adenosine Nucleobase Editors And Uses Thereof
  • Compositions And Methods For Enhancing Homologous Recombination
  • Methods And Compositions For Producing Double Allele Knock Outs
  • Cas9-Recombinase Fusion Proteins And Uses Thereof
  • Modulation Of Novel Immune Checkpoint Targets
  • Systems, Methods And Compositions For Sequence Manipulation With Optimized Functional Crispr-Cas Systems
  • Engineered Crispr-Cas9 Nucleases With Altered Pam Specificity
  • Nucleic Acid-Guided Nucleases
  • Crispr-Cas Component Systems, Methods And Compositions For Sequence Manipulation
  • Methods And Compositions For The Production Of Guide Rna
  • Genome Editing In Bacillus Host Cells
  • Engineered Nucleic-Acid Targeting Nucleic Acids
  • Lymphocyte Antigen Cd5-Like (Cd5l)-Interleukin 12b (P40) Heterodimers In Immunity
  • Comprehensive In Vitro Reporting Of Cleavage Events By Sequencing (Circle-Seq)
  • Therapeutic Uses Of Genome Editing With Crispr/Cas Systems
  • Delivery, Engineering And Optimization Of Systems, Methods And Compositions For Targeting And Modeling Diseases And Disorders Of Post Mitotic Cells
  • T Cell Balance Gene Expression, Compositions Of Matters And Methods Of Use Thereof
  • Crispr-Cas Component Systems, Methods And Compositions For Sequence Manipulation
  • Mutant Microorganisms Resistant To Lactose Killing
  • Using Truncated Guide Rnas (Tru-Grnas) To Increase Specificity For Rna-Guided Genome Editing
  • Crispr/Cas Systems For Genomic Modification And Gene Modulation
  • Compositions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Methods For Identifying And Modulating Immune Phenotypes
  • Delivery, Use And Therapeutic Applications Of The Crispr-Cas Systems And Compositions For Targeting Disorders And Diseases Using Particle Delivery Components
  • Delivery, Use And Therapeutic Applications Of The Crispr-Cas Systems And Compositions For Hbv And Viral Diseases And Disorders
  • Arrdc1-Mediated Microvesicles (Armms) And Uses Thereof
  • Crispr Enabled Multiplexed Genome Engineering
  • Delivery Of Cas9 Via Arrdc1-Mediated Microvesicles (Armms)
  • Switchable Grnas Comprising Aptamers
  • Methods, Systems, And Apparatus For Identifying Target Sequences For Cas Enzymes Or Crispr-Cas Systems For Target Sequences And Conveying Results Thereof
  • Engineered Crispr-Cas9 Nucleases With Altered Pam Specificity
  • Crispr-Cas Component Systems, Methods And Compositions For Sequence Manipulation
  • Crispr Oligonucleotides And Gene Editing
  • Type Vi Crispr Orthologs And Systems
  • Programmable Cas9-Recombinase Fusion Proteins And Uses Thereof
  • Methods And Kits For Isolation And Analysis Of A Chromatin Region
  • Compositions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Delivery Of Negatively Charged Proteins Using Cationic Lipids
  • Improving A Microorganism By Crispr-Inhibition
  • Dynamic Genome Engineering
  • Extended Dna-Sensing Grnas
  • Using Rna-Guided Foki Nucleases (Rfns) To Increase Specificity For Rna-Guided Genome Editing
  • Gene Editing Reagents With Reduced Toxicity
  • Methods And Kits For Isolation And Analysis Of A Chromatin Region
  • Increasing Specificity For Rna-Guided Genome Editing
  • Crispr-Related Methods And Compositions With Governing Grnas
  • Engineering And Optimization Of Improved Systems, Methods And Enzyme Compositions For Sequence Manipulation
  • Compositions And Methods Of Use Of Crispr-Cas Systems In Nucleotide Repeat Disorders
  • Methods For Identifying And Treating Hemoglobinopathies
  • Engineered Nucleic Acid-Targeting Nucleic Acids
  • Compositions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Genome Editing
  • Crispr Having Or Associated With Destabilization Domains
  • Nuclease Profiling System
  • Engineered Nucleic Acid-Targeting Nucleic Acids
  • Methods For Increasing Cas9-Mediated Engineering Efficiency
  • Separatome-Based Protein Expression And Purification Platform
  • Nucleic Acid-Guided Nucleases
  • Crispr Enabled Multiplexed Genome Engineering
  • Delivery Of Negatively Charged Proteins Using Cationic Lipids
  • Crispr/Cas-Related Methods And Compositions For Treating Leber's Congenital Amaurosis 10 (Lca10)
  • Modulation Of Novel Immune Checkpoint Targets
  • Methods And Compositions For Attenuating Anti-Viral Transfer Vector Immune Responses
  • Ref Nuclease For Site-Specific Ref-Mediated Dna Cleavage
  • Engineered Crispr-Cas9 Nucleases
  • Selective Treatment Of Prmt5 Dependent Cancer
  • Methods For Identifying A Target Site Of A Cas9 Nuclease
  • Delivery System For Functional Nucleases
  • Separatome-Based Protein Expression And Purification Platform
  • Nucleobase Editors And Uses Thereof
  • Compostions And Methods Of Nucleic Acid-Targeting Nucleic Acids
  • Crispr-Cas Component Systems, Methods And Compositions For Sequence Manipulation
  • Compositions And Methods Directed To Crispr/Cas Genomic Engineering Systems
  • Crispr-Cas Component Systems, Methods And Compositions For Sequence Manipulation
  • Compositions And Methods For Efficient Gene Editing In E. Coli Using Guide Rna/Cas Endonuclease Systems In Combination With Circular Polynucleotide Modification Templates
  • Genomewide Unbiased Identification Of Dsbs Evaluated By Sequencing (Guide-Seq)
  • Modified Cascade Ribonucleoproteins And Uses Thereof
  • Death Receptor Based Selection Marker
  • Methods For Genomic Integration
  • Functional Genomics Using Crispr-Cas Systems, Compositions, Methods, Knock Out Libraries And Applications Thereof
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt.2508

    DOI

    http://dx.doi.org/10.1038/nbt.2508

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019888616

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/23360965


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Cleavage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Endonucleases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Molecular Sequence Data", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutagenesis, Site-Directed", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Guide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Streptococcus pneumoniae", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Rockefeller University", 
              "id": "https://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Wenyan", 
            "id": "sg:person.01001011566.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001011566.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rockefeller University", 
              "id": "https://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bikard", 
            "givenName": "David", 
            "id": "sg:person.0615410735.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615410735.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
                "McGovern Institute for Brain Research, Department of Brain and Cognitive Science and Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cox", 
            "givenName": "David", 
            "id": "sg:person.011620245725.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011620245725.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
                "McGovern Institute for Brain Research, Department of Brain and Cognitive Science and Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Feng", 
            "id": "sg:person.0703626237.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703626237.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rockefeller University", 
              "id": "https://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marraffini", 
            "givenName": "Luciano A", 
            "id": "sg:person.0670424266.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670424266.33"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0378-1119(96)84178-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001262350"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mib.2011.03.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001559405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-004-0982-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003096546", 
              "https://doi.org/10.1007/s00438-004-0982-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-004-0982-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003096546", 
              "https://doi.org/10.1007/s00438-004-0982-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.00644-10", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004716890"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.micro.112408.134123", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005066090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.plasmid.2005.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007921366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.182.20.5919-5921.2000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008798062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.01412-07", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010412115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1104144108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011358757"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1159689", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011436615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1208507109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011954581"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2357", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014043446", 
              "https://doi.org/10.1038/nbt.2357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2008.227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015284867", 
              "https://doi.org/10.1038/nprot.2008.227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018939216", 
              "https://doi.org/10.1038/nrg2842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018939216", 
              "https://doi.org/10.1038/nrg2842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1231143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019873131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m112.377002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021497227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1179555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022007081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1179555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022007081"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1232033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022072971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/jb.183.19.5709-5717.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023887460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.chom.2012.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025013559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mmbr.70.1.192-221.2006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026474208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.92.24.11140", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027843462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1365-2958.2010.07452.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028316487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.13.21.2889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028736399"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029569656", 
              "https://doi.org/10.1038/nature08703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08703", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029569656", 
              "https://doi.org/10.1038/nature08703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030591890", 
              "https://doi.org/10.1038/nature09886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1192272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030675682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/aem.67.11.5190-5196.2001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031906494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tibs.2009.05.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032505928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1102716108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034397462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1745-6150-6-38", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036092892", 
              "https://doi.org/10.1186/1745-6150-6-38"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1385/0-89603-244-2:251", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037450308", 
              "https://doi.org/10.1385/0-89603-244-2:251"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040405189", 
              "https://doi.org/10.1038/nmeth.1318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040405189", 
              "https://doi.org/10.1038/nmeth.1318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1225829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041850060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.2434959100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042779710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/mt.2012.171", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043601212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1971", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043926621", 
              "https://doi.org/10.1038/nmeth.1971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.1742908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046484537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1112832108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050956906"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkr606", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052438070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/s0033583505004063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1054006523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1204094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062464614"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1227253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062467018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082061289", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082516164", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-03", 
        "datePublishedReg": "2013-03-01", 
        "description": "Here we use the clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 endonuclease complexed with dual-RNAs to introduce precise mutations in the genomes of Streptococcus pneumoniae and Escherichia coli. The approach relies on dual-RNA:Cas9-directed cleavage at the targeted genomic site to kill unmutated cells and circumvents the need for selectable markers or counter-selection systems. We reprogram dual-RNA:Cas9 specificity by changing the sequence of short CRISPR RNA (crRNA) to make single- and multinucleotide changes carried on editing templates. Simultaneous use of two crRNAs enables multiplex mutagenesis. In S. pneumoniae, nearly 100% of cells that were recovered using our approach contained the desired mutation, and in E. coli, 65% that were recovered contained the mutation, when the approach was used in combination with recombineering. We exhaustively analyze dual-RNA:Cas9 target requirements to define the range of targetable sequences and show strategies for editing sites that do not meet these requirements, suggesting the versatility of this technique for bacterial genome engineering.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt.2508", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2683815", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2355012", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2355135", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "RNA-guided editing of bacterial genomes using CRISPR-Cas systems", 
        "pagination": "233", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5ec26284e38731d7df832cb87d95f8097fdf3580f3675df94fe426e7f4aaf41c"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "23360965"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt.2508"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019888616"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt.2508", 
          "https://app.dimensions.ai/details/publication/pub.1019888616"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000435.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt.2508"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.2508'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.2508'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.2508'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.2508'


     

    This table displays all metadata directly associated to this object as RDF triples.

    290 TRIPLES      21 PREDICATES      84 URIs      31 LITERALS      19 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt.2508 schema:about N440452df21b042c195d3f1eebc54b15a
    2 N5833387f37b14905b5a43007b3686a54
    3 N8d6d4cb50ed247f08665e6a7ced225bf
    4 N8d9575be238c4654ab24e16d6b1f4330
    5 Nbc78847fe91a4e1bb095438afa461d93
    6 Nd50fb79be7b947528a65c666af91d0b9
    7 Nd716a9e911984c09bcbdf90468ef96e4
    8 Nf655b7bd47c44cc4bf9ecf866077ca8a
    9 Nf6e1ce2d190f4599ad5955a134f49fef
    10 Nfe3df44628054d278e777fd84128d2c0
    11 anzsrc-for:06
    12 anzsrc-for:0604
    13 schema:author N3386e799acbc4eee9dbb00bc58659f64
    14 schema:citation sg:pub.10.1007/s00438-004-0982-z
    15 sg:pub.10.1038/nature08703
    16 sg:pub.10.1038/nature09886
    17 sg:pub.10.1038/nbt.2357
    18 sg:pub.10.1038/nmeth.1318
    19 sg:pub.10.1038/nmeth.1971
    20 sg:pub.10.1038/nprot.2008.227
    21 sg:pub.10.1038/nrg2842
    22 sg:pub.10.1186/1745-6150-6-38
    23 sg:pub.10.1385/0-89603-244-2:251
    24 https://app.dimensions.ai/details/publication/pub.1082061289
    25 https://app.dimensions.ai/details/publication/pub.1082516164
    26 https://doi.org/10.1016/0378-1119(96)84178-3
    27 https://doi.org/10.1016/j.chom.2012.06.003
    28 https://doi.org/10.1016/j.mib.2011.03.005
    29 https://doi.org/10.1016/j.plasmid.2005.05.005
    30 https://doi.org/10.1016/j.tibs.2009.05.002
    31 https://doi.org/10.1017/s0033583505004063
    32 https://doi.org/10.1038/mt.2012.171
    33 https://doi.org/10.1073/pnas.1102716108
    34 https://doi.org/10.1073/pnas.1104144108
    35 https://doi.org/10.1073/pnas.1112832108
    36 https://doi.org/10.1073/pnas.1208507109
    37 https://doi.org/10.1073/pnas.2434959100
    38 https://doi.org/10.1073/pnas.92.24.11140
    39 https://doi.org/10.1074/jbc.m112.377002
    40 https://doi.org/10.1093/nar/gkr606
    41 https://doi.org/10.1101/gad.13.21.2889
    42 https://doi.org/10.1101/gad.1742908
    43 https://doi.org/10.1111/j.1365-2958.2010.07452.x
    44 https://doi.org/10.1126/science.1159689
    45 https://doi.org/10.1126/science.1179555
    46 https://doi.org/10.1126/science.1192272
    47 https://doi.org/10.1126/science.1204094
    48 https://doi.org/10.1126/science.1225829
    49 https://doi.org/10.1126/science.1227253
    50 https://doi.org/10.1126/science.1231143
    51 https://doi.org/10.1126/science.1232033
    52 https://doi.org/10.1128/aem.67.11.5190-5196.2001
    53 https://doi.org/10.1128/jb.00644-10
    54 https://doi.org/10.1128/jb.01412-07
    55 https://doi.org/10.1128/jb.182.20.5919-5921.2000
    56 https://doi.org/10.1128/jb.183.19.5709-5717.2001
    57 https://doi.org/10.1128/mmbr.70.1.192-221.2006
    58 https://doi.org/10.1146/annurev.micro.112408.134123
    59 schema:datePublished 2013-03
    60 schema:datePublishedReg 2013-03-01
    61 schema:description Here we use the clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated Cas9 endonuclease complexed with dual-RNAs to introduce precise mutations in the genomes of Streptococcus pneumoniae and Escherichia coli. The approach relies on dual-RNA:Cas9-directed cleavage at the targeted genomic site to kill unmutated cells and circumvents the need for selectable markers or counter-selection systems. We reprogram dual-RNA:Cas9 specificity by changing the sequence of short CRISPR RNA (crRNA) to make single- and multinucleotide changes carried on editing templates. Simultaneous use of two crRNAs enables multiplex mutagenesis. In S. pneumoniae, nearly 100% of cells that were recovered using our approach contained the desired mutation, and in E. coli, 65% that were recovered contained the mutation, when the approach was used in combination with recombineering. We exhaustively analyze dual-RNA:Cas9 target requirements to define the range of targetable sequences and show strategies for editing sites that do not meet these requirements, suggesting the versatility of this technique for bacterial genome engineering.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree true
    65 schema:isPartOf N9727b9c952484265b7340bfddf77cf68
    66 Nad70d9d6a3a84d6482930bd0f1e306b1
    67 sg:journal.1115214
    68 schema:name RNA-guided editing of bacterial genomes using CRISPR-Cas systems
    69 schema:pagination 233
    70 schema:productId N468d873330da454ea6d6d77ff87d9afb
    71 N4eb834f0dd0947338c0cb81f13ded8cd
    72 N805428c3853c41e9b42c7a291933f835
    73 N8490df132af341e5bfc42cd46e99200d
    74 N89e3e13723af4b20aee12d466972a028
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019888616
    76 https://doi.org/10.1038/nbt.2508
    77 schema:sdDatePublished 2019-04-10T16:30
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher Ne7ccbbd5a6d640409b6af4632f8071d0
    80 schema:url https://www.nature.com/articles/nbt.2508
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N3386e799acbc4eee9dbb00bc58659f64 rdf:first sg:person.01001011566.15
    85 rdf:rest Nd45d849390fe4f55b532804da0800134
    86 N440452df21b042c195d3f1eebc54b15a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Endonucleases
    88 rdf:type schema:DefinedTerm
    89 N468d873330da454ea6d6d77ff87d9afb schema:name doi
    90 schema:value 10.1038/nbt.2508
    91 rdf:type schema:PropertyValue
    92 N4eb834f0dd0947338c0cb81f13ded8cd schema:name pubmed_id
    93 schema:value 23360965
    94 rdf:type schema:PropertyValue
    95 N5833387f37b14905b5a43007b3686a54 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    96 schema:name Base Sequence
    97 rdf:type schema:DefinedTerm
    98 N805428c3853c41e9b42c7a291933f835 schema:name dimensions_id
    99 schema:value pub.1019888616
    100 rdf:type schema:PropertyValue
    101 N833a4c71feda4a96ae12876770160add rdf:first sg:person.0703626237.20
    102 rdf:rest Ndd96fa40704f48e781f9f9d03911fd83
    103 N8490df132af341e5bfc42cd46e99200d schema:name readcube_id
    104 schema:value 5ec26284e38731d7df832cb87d95f8097fdf3580f3675df94fe426e7f4aaf41c
    105 rdf:type schema:PropertyValue
    106 N89e3e13723af4b20aee12d466972a028 schema:name nlm_unique_id
    107 schema:value 9604648
    108 rdf:type schema:PropertyValue
    109 N8d6d4cb50ed247f08665e6a7ced225bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name RNA, Guide
    111 rdf:type schema:DefinedTerm
    112 N8d9575be238c4654ab24e16d6b1f4330 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    113 schema:name Genetic Engineering
    114 rdf:type schema:DefinedTerm
    115 N9727b9c952484265b7340bfddf77cf68 schema:volumeNumber 31
    116 rdf:type schema:PublicationVolume
    117 N9be4fa087a1748489631375e6d16a86a rdf:first sg:person.011620245725.03
    118 rdf:rest N833a4c71feda4a96ae12876770160add
    119 Nad70d9d6a3a84d6482930bd0f1e306b1 schema:issueNumber 3
    120 rdf:type schema:PublicationIssue
    121 Nbc78847fe91a4e1bb095438afa461d93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name Streptococcus pneumoniae
    123 rdf:type schema:DefinedTerm
    124 Nd45d849390fe4f55b532804da0800134 rdf:first sg:person.0615410735.31
    125 rdf:rest N9be4fa087a1748489631375e6d16a86a
    126 Nd50fb79be7b947528a65c666af91d0b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Escherichia coli
    128 rdf:type schema:DefinedTerm
    129 Nd716a9e911984c09bcbdf90468ef96e4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    130 schema:name DNA Cleavage
    131 rdf:type schema:DefinedTerm
    132 Ndd96fa40704f48e781f9f9d03911fd83 rdf:first sg:person.0670424266.33
    133 rdf:rest rdf:nil
    134 Ne7ccbbd5a6d640409b6af4632f8071d0 schema:name Springer Nature - SN SciGraph project
    135 rdf:type schema:Organization
    136 Nf655b7bd47c44cc4bf9ecf866077ca8a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Genome, Bacterial
    138 rdf:type schema:DefinedTerm
    139 Nf6e1ce2d190f4599ad5955a134f49fef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Molecular Sequence Data
    141 rdf:type schema:DefinedTerm
    142 Nfe3df44628054d278e777fd84128d2c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Mutagenesis, Site-Directed
    144 rdf:type schema:DefinedTerm
    145 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    146 schema:name Biological Sciences
    147 rdf:type schema:DefinedTerm
    148 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Genetics
    150 rdf:type schema:DefinedTerm
    151 sg:grant.2355012 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.2508
    152 rdf:type schema:MonetaryGrant
    153 sg:grant.2355135 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.2508
    154 rdf:type schema:MonetaryGrant
    155 sg:grant.2683815 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.2508
    156 rdf:type schema:MonetaryGrant
    157 sg:journal.1115214 schema:issn 1087-0156
    158 1546-1696
    159 schema:name Nature Biotechnology
    160 rdf:type schema:Periodical
    161 sg:person.01001011566.15 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
    162 schema:familyName Jiang
    163 schema:givenName Wenyan
    164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001011566.15
    165 rdf:type schema:Person
    166 sg:person.011620245725.03 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    167 schema:familyName Cox
    168 schema:givenName David
    169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011620245725.03
    170 rdf:type schema:Person
    171 sg:person.0615410735.31 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
    172 schema:familyName Bikard
    173 schema:givenName David
    174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615410735.31
    175 rdf:type schema:Person
    176 sg:person.0670424266.33 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
    177 schema:familyName Marraffini
    178 schema:givenName Luciano A
    179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670424266.33
    180 rdf:type schema:Person
    181 sg:person.0703626237.20 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    182 schema:familyName Zhang
    183 schema:givenName Feng
    184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703626237.20
    185 rdf:type schema:Person
    186 sg:pub.10.1007/s00438-004-0982-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1003096546
    187 https://doi.org/10.1007/s00438-004-0982-z
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature08703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029569656
    190 https://doi.org/10.1038/nature08703
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature09886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030591890
    193 https://doi.org/10.1038/nature09886
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nbt.2357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014043446
    196 https://doi.org/10.1038/nbt.2357
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nmeth.1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040405189
    199 https://doi.org/10.1038/nmeth.1318
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nmeth.1971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043926621
    202 https://doi.org/10.1038/nmeth.1971
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nprot.2008.227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015284867
    205 https://doi.org/10.1038/nprot.2008.227
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nrg2842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018939216
    208 https://doi.org/10.1038/nrg2842
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1186/1745-6150-6-38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036092892
    211 https://doi.org/10.1186/1745-6150-6-38
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1385/0-89603-244-2:251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037450308
    214 https://doi.org/10.1385/0-89603-244-2:251
    215 rdf:type schema:CreativeWork
    216 https://app.dimensions.ai/details/publication/pub.1082061289 schema:CreativeWork
    217 https://app.dimensions.ai/details/publication/pub.1082516164 schema:CreativeWork
    218 https://doi.org/10.1016/0378-1119(96)84178-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001262350
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1016/j.chom.2012.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025013559
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1016/j.mib.2011.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001559405
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1016/j.plasmid.2005.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007921366
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.tibs.2009.05.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032505928
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1017/s0033583505004063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054006523
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1038/mt.2012.171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043601212
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1073/pnas.1102716108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034397462
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1073/pnas.1104144108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011358757
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1073/pnas.1112832108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050956906
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1073/pnas.1208507109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011954581
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1073/pnas.2434959100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042779710
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1073/pnas.92.24.11140 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027843462
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1074/jbc.m112.377002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021497227
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1093/nar/gkr606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052438070
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1101/gad.13.21.2889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028736399
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1101/gad.1742908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046484537
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1111/j.1365-2958.2010.07452.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028316487
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1126/science.1159689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011436615
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1126/science.1179555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022007081
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1126/science.1192272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030675682
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1126/science.1204094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464614
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1126/science.1225829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850060
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1126/science.1227253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467018
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1126/science.1231143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019873131
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1126/science.1232033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022072971
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1128/aem.67.11.5190-5196.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031906494
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1128/jb.00644-10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004716890
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1128/jb.01412-07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010412115
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1128/jb.182.20.5919-5921.2000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008798062
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1128/jb.183.19.5709-5717.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023887460
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1128/mmbr.70.1.192-221.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026474208
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1146/annurev.micro.112408.134123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005066090
    283 rdf:type schema:CreativeWork
    284 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    285 schema:name Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
    286 McGovern Institute for Brain Research, Department of Brain and Cognitive Science and Department of Biological Engineering, MIT, Cambridge, Massachusetts, USA.
    287 rdf:type schema:Organization
    288 https://www.grid.ac/institutes/grid.134907.8 schema:alternateName Rockefeller University
    289 schema:name Laboratory of Bacteriology, The Rockefeller University, New York, New York, USA.
    290 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...