Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-12

AUTHORS

Sriram Kosuri, Nikolai Eroshenko, Emily M LeProust, Michael Super, Jeffrey Way, Jin Billy Li, George M Church

ABSTRACT

Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts. More... »

PAGES

1295

Journal

TITLE

Nature Biotechnology

ISSUE

12

VOLUME

28

Related Patents

  • Gene Synthesis And Cell-Free Cloning Using Programmable Microfluidics
  • Method For Isolating Biochemical Molecules On Microarray Substrate
  • Methods For Generating Barcoded Combinatorial Libraries
  • Methods And Apparatus For Synthesizing Nucleic Acids
  • De Novo Synthesized Gene Libraries
  • Methods And Apparatus For Synthesizing Nucleic Acids
  • Compositions And Methods For Synthetic Gene Assembly
  • Methods For Preparative In Vitro Cloning
  • Methods Of Storing Information Using Nucleic Acids
  • Orthogonal Amplification And Assembly Of Nucleic Acid Sequences
  • Orthogonal Amplification And Assembly Of Nucleic Acid Sequences
  • High-Capacity Storage Of Digital Information In Dna
  • Crispr Enabled Multiplexed Genome Engineering
  • Templates, Libraries, Kits And Methods For Generating Molecules
  • Safe Sequencing System
  • Method Of Preparing Nucleic Acid Molecules
  • Rna-Mediated Gene Assembly From Dna Oligonucleotides
  • Method Of Preparing Nucleic Acid Molecules
  • Rna-Mediated Gene Assembly From Dna Oligonucleotides
  • Methods And Apparatus For Synthesizing Nucleic Acid
  • Methods For Retrieval Of Sequence-Verified Dna Constructs
  • Method For Synthesizing Gene Using High-Depth Oligonucleotide Tiling
  • Nucleic Acid-Guided Nucleases
  • De Novo Synthesized Gene Libraries
  • De Novo Synthesized Gene Libraries
  • De Novo Synthesized Gene Libraries
  • Transcription Activator-Like Effectors
  • Methods For Preparative In Vitro Cloning
  • Crispr-Related Methods And Compositions With Governing Grnas
  • Methods For Sorting Nucleic Acids And Multiplexed Preparative In Vitro Cloning
  • Crispr/Cas-Related Methods And Compositions For Treating Leber's Congenital Amaurosis 10 (Lca10)
  • Devices And Methods For Oligonucleic Acid Library Synthesis
  • Nucleic Acid-Guided Nucleases
  • Functionalized Surfaces And Preparation Thereof
  • Methods And Apparatus For Synthesizing Nucleic Acids
  • De Novo Synthesized Gene Libraries
  • De Novo Synthesized Gene Libraries
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt.1716

    DOI

    http://dx.doi.org/10.1038/nbt.1716

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039698904

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21113165


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cloning, Molecular", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Synthetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Amplification Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleic Acid Hybridization", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Oligonucleotide Array Sequence Analysis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Synthetic Biology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA.", 
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kosuri", 
            "givenName": "Sriram", 
            "id": "sg:person.01033672615.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033672615.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA.", 
                "Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eroshenko", 
            "givenName": "Nikolai", 
            "id": "sg:person.0642627104.82", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642627104.82"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Agilent Technologies (United States)", 
              "id": "https://www.grid.ac/institutes/grid.422638.9", 
              "name": [
                "Agilent Technologies, Santa Clara, California, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "LeProust", 
            "givenName": "Emily M", 
            "id": "sg:person.01320172170.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320172170.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Super", 
            "givenName": "Michael", 
            "id": "sg:person.01360363410.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360363410.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Way", 
            "givenName": "Jeffrey", 
            "id": "sg:person.0624617554.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624617554.29"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Jin Billy", 
            "id": "sg:person.01144150514.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144150514.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA.", 
                "Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Church", 
            "givenName": "George M", 
            "id": "sg:person.01115626315.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1093/nar/gkn991", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000290818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh879", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009500647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010374914", 
              "https://doi.org/10.1038/nbt.1589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010374914", 
              "https://doi.org/10.1038/nbt.1589"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010551629", 
              "https://doi.org/10.1186/1471-2105-6-31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-31", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010551629", 
              "https://doi.org/10.1186/1471-2105-6-31"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gnh160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013244373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015892204", 
              "https://doi.org/10.1038/nmeth1010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq092", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016512372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018312807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1136", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018484162", 
              "https://doi.org/10.1038/nmeth1136"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mee.2006.01.143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019220181"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.54.5.1378", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022910174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1190719", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024208323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.47.10.1588", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024781209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.092213.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033426485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0914803107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035620462"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037970273", 
              "https://doi.org/10.1038/nbt.1590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037970273", 
              "https://doi.org/10.1038/nbt.1590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b822268c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038526887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b822268c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038526887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0378-1119(95)00685-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041746269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkp687", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042460938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq163", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044488380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1170995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045528445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1170995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045528445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0812506106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045714378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045927978", 
              "https://doi.org/10.1038/nmeth1110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052700485", 
              "https://doi.org/10.1038/nature03151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052700485", 
              "https://doi.org/10.1038/nature03151"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3109/08830189309061696", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052911329"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-12", 
        "datePublishedReg": "2010-12-01", 
        "description": "Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of \u223c35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding \u223c2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt.1716", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2440618", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2440607", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4320497", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips", 
        "pagination": "1295", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "bd1b9c798c3c7dbf7c9ab18bfb8a296e832bee5b1f73d7a1ad13afa442166b73"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21113165"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt.1716"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039698904"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt.1716", 
          "https://app.dimensions.ai/details/publication/pub.1039698904"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T21:26", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000436.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt.1716"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.1716'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.1716'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.1716'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.1716'


     

    This table displays all metadata directly associated to this object as RDF triples.

    236 TRIPLES      21 PREDICATES      62 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt.1716 schema:about N0b7c3a7765084fecb097602395f51be8
    2 N38bfb5f51fcc4a68baff3309d5f40f9e
    3 N62b5eed567af4e508b0d96591feeeda9
    4 N6c3478a59e05471586a537011dff1dce
    5 N6eb5415be4644d869747d568b3768f55
    6 N909bf4db71974533ad09f5c3dba9cdda
    7 N9957da23d69e4627bdfca526e13fb0b8
    8 Nbdf7e8c1154f4e089c3b150c79ad18cd
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N9aea2e9ef40145dc99be2e1524b19940
    12 schema:citation sg:pub.10.1038/nature03151
    13 sg:pub.10.1038/nbt.1589
    14 sg:pub.10.1038/nbt.1590
    15 sg:pub.10.1038/nmeth1010
    16 sg:pub.10.1038/nmeth1110
    17 sg:pub.10.1038/nmeth1136
    18 sg:pub.10.1186/1471-2105-6-31
    19 https://doi.org/10.1016/0378-1119(95)00685-0
    20 https://doi.org/10.1016/j.mee.2006.01.143
    21 https://doi.org/10.1039/b822268c
    22 https://doi.org/10.1073/pnas.0812506106
    23 https://doi.org/10.1073/pnas.0914803107
    24 https://doi.org/10.1073/pnas.47.10.1588
    25 https://doi.org/10.1073/pnas.54.5.1378
    26 https://doi.org/10.1093/nar/gkh793
    27 https://doi.org/10.1093/nar/gkh879
    28 https://doi.org/10.1093/nar/gkn991
    29 https://doi.org/10.1093/nar/gkp687
    30 https://doi.org/10.1093/nar/gkq092
    31 https://doi.org/10.1093/nar/gkq163
    32 https://doi.org/10.1093/nar/gnh160
    33 https://doi.org/10.1101/gr.092213.109
    34 https://doi.org/10.1126/science.1170995
    35 https://doi.org/10.1126/science.1190719
    36 https://doi.org/10.3109/08830189309061696
    37 schema:datePublished 2010-12
    38 schema:datePublishedReg 2010-12-01
    39 schema:description Development of cheap, high-throughput and reliable gene synthesis methods will broadly stimulate progress in biology and biotechnology. Currently, the reliance on column-synthesized oligonucleotides as a source of DNA limits further cost reductions in gene synthesis. Oligonucleotides from DNA microchips can reduce costs by at least an order of magnitude, yet efforts to scale their use have been largely unsuccessful owing to the high error rates and complexity of the oligonucleotide mixtures. Here we use high-fidelity DNA microchips, selective oligonucleotide pool amplification, optimized gene assembly protocols and enzymatic error correction to develop a method for highly parallel gene synthesis. We tested our approach by assembling 47 genes, including 42 challenging therapeutic antibody sequences, encoding a total of ∼35 kilobase pairs of DNA. These assemblies were performed from a complex background containing 13,000 oligonucleotides encoding ∼2.5 megabases of DNA, which is at least 50 times larger than in previously published attempts.
    40 schema:genre research_article
    41 schema:inLanguage en
    42 schema:isAccessibleForFree true
    43 schema:isPartOf N7c0b33ba50bb43e3a1ff8f6e8bfc6192
    44 N844e5f5c295e4daa809e1c22f5c7ae22
    45 sg:journal.1115214
    46 schema:name Scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips
    47 schema:pagination 1295
    48 schema:productId N629252e72d2b4e2ebda8e9df2b6ef222
    49 N683fed2eb8944f1cbac4874460218e6f
    50 N6f50b30371714dcf94f80b6ef3d418d8
    51 Na2cfef0342404965bf9fd38c4b0a7546
    52 Nc2663cad0f0f4742ba626b26f0a756c7
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039698904
    54 https://doi.org/10.1038/nbt.1716
    55 schema:sdDatePublished 2019-04-10T21:26
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N4a600d209273491ca7e8ded95b7dde4e
    58 schema:url https://www.nature.com/articles/nbt.1716
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N02f0c2ff076947dbae35c2d78b582d78 rdf:first sg:person.01320172170.08
    63 rdf:rest N3fa5b3683430450fb416fedef1aeeba3
    64 N0b7c3a7765084fecb097602395f51be8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    65 schema:name Genes, Synthetic
    66 rdf:type schema:DefinedTerm
    67 N38bfb5f51fcc4a68baff3309d5f40f9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    68 schema:name DNA
    69 rdf:type schema:DefinedTerm
    70 N3fa5b3683430450fb416fedef1aeeba3 rdf:first sg:person.01360363410.12
    71 rdf:rest Ne0d9bef94d894cf7a660a677691f04af
    72 N4a600d209273491ca7e8ded95b7dde4e schema:name Springer Nature - SN SciGraph project
    73 rdf:type schema:Organization
    74 N629252e72d2b4e2ebda8e9df2b6ef222 schema:name readcube_id
    75 schema:value bd1b9c798c3c7dbf7c9ab18bfb8a296e832bee5b1f73d7a1ad13afa442166b73
    76 rdf:type schema:PropertyValue
    77 N62b5eed567af4e508b0d96591feeeda9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Nucleic Acid Amplification Techniques
    79 rdf:type schema:DefinedTerm
    80 N683fed2eb8944f1cbac4874460218e6f schema:name dimensions_id
    81 schema:value pub.1039698904
    82 rdf:type schema:PropertyValue
    83 N6c3478a59e05471586a537011dff1dce schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Oligonucleotide Array Sequence Analysis
    85 rdf:type schema:DefinedTerm
    86 N6eb5415be4644d869747d568b3768f55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Synthetic Biology
    88 rdf:type schema:DefinedTerm
    89 N6f3219033d404571a9db8a238e7050ba rdf:first sg:person.01144150514.10
    90 rdf:rest Na827ec8fcc5a4c4f84bd1328376bcd2b
    91 N6f50b30371714dcf94f80b6ef3d418d8 schema:name doi
    92 schema:value 10.1038/nbt.1716
    93 rdf:type schema:PropertyValue
    94 N7c0b33ba50bb43e3a1ff8f6e8bfc6192 schema:volumeNumber 28
    95 rdf:type schema:PublicationVolume
    96 N844e5f5c295e4daa809e1c22f5c7ae22 schema:issueNumber 12
    97 rdf:type schema:PublicationIssue
    98 N909bf4db71974533ad09f5c3dba9cdda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Humans
    100 rdf:type schema:DefinedTerm
    101 N977dc5d8376642388757cda96c2da9c6 rdf:first sg:person.0642627104.82
    102 rdf:rest N02f0c2ff076947dbae35c2d78b582d78
    103 N9957da23d69e4627bdfca526e13fb0b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    104 schema:name Nucleic Acid Hybridization
    105 rdf:type schema:DefinedTerm
    106 N9aea2e9ef40145dc99be2e1524b19940 rdf:first sg:person.01033672615.51
    107 rdf:rest N977dc5d8376642388757cda96c2da9c6
    108 Na2cfef0342404965bf9fd38c4b0a7546 schema:name pubmed_id
    109 schema:value 21113165
    110 rdf:type schema:PropertyValue
    111 Na827ec8fcc5a4c4f84bd1328376bcd2b rdf:first sg:person.01115626315.03
    112 rdf:rest rdf:nil
    113 Nbdf7e8c1154f4e089c3b150c79ad18cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Cloning, Molecular
    115 rdf:type schema:DefinedTerm
    116 Nc2663cad0f0f4742ba626b26f0a756c7 schema:name nlm_unique_id
    117 schema:value 9604648
    118 rdf:type schema:PropertyValue
    119 Ne0d9bef94d894cf7a660a677691f04af rdf:first sg:person.0624617554.29
    120 rdf:rest N6f3219033d404571a9db8a238e7050ba
    121 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    122 schema:name Biological Sciences
    123 rdf:type schema:DefinedTerm
    124 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    125 schema:name Genetics
    126 rdf:type schema:DefinedTerm
    127 sg:grant.2440607 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1716
    128 rdf:type schema:MonetaryGrant
    129 sg:grant.2440618 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1716
    130 rdf:type schema:MonetaryGrant
    131 sg:grant.4320497 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1716
    132 rdf:type schema:MonetaryGrant
    133 sg:journal.1115214 schema:issn 1087-0156
    134 1546-1696
    135 schema:name Nature Biotechnology
    136 rdf:type schema:Periodical
    137 sg:person.01033672615.51 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    138 schema:familyName Kosuri
    139 schema:givenName Sriram
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033672615.51
    141 rdf:type schema:Person
    142 sg:person.01115626315.03 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    143 schema:familyName Church
    144 schema:givenName George M
    145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01115626315.03
    146 rdf:type schema:Person
    147 sg:person.01144150514.10 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    148 schema:familyName Li
    149 schema:givenName Jin Billy
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144150514.10
    151 rdf:type schema:Person
    152 sg:person.01320172170.08 schema:affiliation https://www.grid.ac/institutes/grid.422638.9
    153 schema:familyName LeProust
    154 schema:givenName Emily M
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01320172170.08
    156 rdf:type schema:Person
    157 sg:person.01360363410.12 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    158 schema:familyName Super
    159 schema:givenName Michael
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360363410.12
    161 rdf:type schema:Person
    162 sg:person.0624617554.29 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    163 schema:familyName Way
    164 schema:givenName Jeffrey
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624617554.29
    166 rdf:type schema:Person
    167 sg:person.0642627104.82 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    168 schema:familyName Eroshenko
    169 schema:givenName Nikolai
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642627104.82
    171 rdf:type schema:Person
    172 sg:pub.10.1038/nature03151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052700485
    173 https://doi.org/10.1038/nature03151
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1038/nbt.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010374914
    176 https://doi.org/10.1038/nbt.1589
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1038/nbt.1590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037970273
    179 https://doi.org/10.1038/nbt.1590
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/nmeth1010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015892204
    182 https://doi.org/10.1038/nmeth1010
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/nmeth1110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045927978
    185 https://doi.org/10.1038/nmeth1110
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nmeth1136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018484162
    188 https://doi.org/10.1038/nmeth1136
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1186/1471-2105-6-31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010551629
    191 https://doi.org/10.1186/1471-2105-6-31
    192 rdf:type schema:CreativeWork
    193 https://doi.org/10.1016/0378-1119(95)00685-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041746269
    194 rdf:type schema:CreativeWork
    195 https://doi.org/10.1016/j.mee.2006.01.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019220181
    196 rdf:type schema:CreativeWork
    197 https://doi.org/10.1039/b822268c schema:sameAs https://app.dimensions.ai/details/publication/pub.1038526887
    198 rdf:type schema:CreativeWork
    199 https://doi.org/10.1073/pnas.0812506106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045714378
    200 rdf:type schema:CreativeWork
    201 https://doi.org/10.1073/pnas.0914803107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035620462
    202 rdf:type schema:CreativeWork
    203 https://doi.org/10.1073/pnas.47.10.1588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024781209
    204 rdf:type schema:CreativeWork
    205 https://doi.org/10.1073/pnas.54.5.1378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022910174
    206 rdf:type schema:CreativeWork
    207 https://doi.org/10.1093/nar/gkh793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018312807
    208 rdf:type schema:CreativeWork
    209 https://doi.org/10.1093/nar/gkh879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009500647
    210 rdf:type schema:CreativeWork
    211 https://doi.org/10.1093/nar/gkn991 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000290818
    212 rdf:type schema:CreativeWork
    213 https://doi.org/10.1093/nar/gkp687 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042460938
    214 rdf:type schema:CreativeWork
    215 https://doi.org/10.1093/nar/gkq092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016512372
    216 rdf:type schema:CreativeWork
    217 https://doi.org/10.1093/nar/gkq163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044488380
    218 rdf:type schema:CreativeWork
    219 https://doi.org/10.1093/nar/gnh160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013244373
    220 rdf:type schema:CreativeWork
    221 https://doi.org/10.1101/gr.092213.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033426485
    222 rdf:type schema:CreativeWork
    223 https://doi.org/10.1126/science.1170995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045528445
    224 rdf:type schema:CreativeWork
    225 https://doi.org/10.1126/science.1190719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024208323
    226 rdf:type schema:CreativeWork
    227 https://doi.org/10.3109/08830189309061696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052911329
    228 rdf:type schema:CreativeWork
    229 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    230 schema:name Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.
    231 Harvard School of Engineering and Applied Sciences, Cambridge, Massachusetts, USA.
    232 Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, USA.
    233 rdf:type schema:Organization
    234 https://www.grid.ac/institutes/grid.422638.9 schema:alternateName Agilent Technologies (United States)
    235 schema:name Agilent Technologies, Santa Clara, California, USA.
    236 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...