Discovery and characterization of chromatin states for systematic annotation of the human genome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-08

AUTHORS

Jason Ernst, Manolis Kellis

ABSTRACT

A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal 'chromatin states' in human T cells, based on recurrent and spatially coherent combinations of chromatin marks. We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, large-scale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function. More... »

PAGES

817

References to SciGraph publications

  • 2009-09. Chromatin organization marks exon-intron structure in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2009-09. Nucleosome positioning as a determinant of exon recognition in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 1998. A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants in LEARNING IN GRAPHICAL MODELS
  • 2007-10-18. A second generation human haplotype map of over 3.1 million SNPs in NATURE
  • 2008-06. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions in NATURE
  • 2006-06. Genome-wide analysis of mammalian promoter architecture and evolution in NATURE GENETICS
  • 2006-12. STEM: a tool for the analysis of short time series gene expression data in BMC BIOINFORMATICS
  • 2008-12. Prediction of regulatory elements in mammalian genomes using chromatin signatures in BMC BIOINFORMATICS
  • 2000-01. The language of covalent histone modifications in NATURE
  • 2008-07. Combinatorial patterns of histone acetylations and methylations in the human genome in NATURE GENETICS
  • 2007-03. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome in NATURE GENETICS
  • 2009-03. Differential chromatin marking of introns and expressed exons by H3K36me3 in NATURE GENETICS
  • 2009-03. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction in NATURE GENETICS
  • 2009-05. Histone modifications at human enhancers reflect global cell-type-specific gene expression in NATURE
  • 2009-03. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals in NATURE
  • 2009. Spatial Clustering of Multivariate Genomic and Epigenomic Information in RESEARCH IN COMPUTATIONAL MOLECULAR BIOLOGY
  • 2009-06. Unlocking the secrets of the genome in NATURE
  • 2007-07. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project in NATURE
  • 2008-12. Identifying Positioned Nucleosomes with Epigenetic Marks in Human from ChIP-Seq in BMC GENOMICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt.1662

    DOI

    http://dx.doi.org/10.1038/nbt.1662

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1050061238

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/20657582


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CapZ Actin Capping Protein", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Human, Pair 7", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epigenesis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Markov Chains", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Promoter Regions, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "T-Lymphocytes", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Broad Institute", 
              "id": "https://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, USA.", 
                "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ernst", 
            "givenName": "Jason", 
            "id": "sg:person.0720743120.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720743120.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute", 
              "id": "https://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, USA.", 
                "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kellis", 
            "givenName": "Manolis", 
            "id": "sg:person.0767056320.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767056320.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.cell.2007.12.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000099864"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001114789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001417778", 
              "https://doi.org/10.1038/ng1789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1789", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001417778", 
              "https://doi.org/10.1038/ng1789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002139821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0400782101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002732260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06947", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004427899", 
              "https://doi.org/10.1038/nature06947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05874", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005913886", 
              "https://doi.org/10.1038/nature05874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008035809"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-5014-9_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009494930", 
              "https://doi.org/10.1007/978-94-011-5014-9_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010017851", 
              "https://doi.org/10.1038/ng1966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6081407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010095362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.00487-06", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018064085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018442414", 
              "https://doi.org/10.1038/ng.154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-9-547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018796059", 
              "https://doi.org/10.1186/1471-2105-9-547"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm966", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019249723"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.7090407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019596690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6761107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020807644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkh045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022076148"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.229102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022792016"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.02.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022937373"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-7-191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023286996", 
              "https://doi.org/10.1186/1471-2105-7-191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023938796", 
              "https://doi.org/10.1038/nature07829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023938796", 
              "https://doi.org/10.1038/nature07829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddg113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024708004"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/47412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025852070", 
              "https://doi.org/10.1038/47412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/47412", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025852070", 
              "https://doi.org/10.1038/47412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0030089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029772750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btm096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030451186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031385080", 
              "https://doi.org/10.1038/nsmb.1659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031385080", 
              "https://doi.org/10.1038/nsmb.1659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033517629", 
              "https://doi.org/10.1038/nsmb.1658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.1658", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033517629", 
              "https://doi.org/10.1038/nsmb.1658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0092-8674(02)01196-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034737633"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.7080508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034914041"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02008-7_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036683792", 
              "https://doi.org/10.1007/978-3-642-02008-7_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-02008-7_12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036683792", 
              "https://doi.org/10.1007/978-3-642-02008-7_12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2007.01.033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040631859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp340", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041238764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-9-537", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041481993", 
              "https://doi.org/10.1186/1471-2164-9-537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.1000597", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041883716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.092353.109", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042159483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.081638.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043222237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/459927a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043448162", 
              "https://doi.org/10.1038/459927a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/459927a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043448162", 
              "https://doi.org/10.1038/459927a"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pbio.1000013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045483703"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2008.11.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047091683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047319287", 
              "https://doi.org/10.1038/ng.323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2008.02.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047426433"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.3715005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048048079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07672", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051133532", 
              "https://doi.org/10.1038/nature07672"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051134045", 
              "https://doi.org/10.1038/nature06258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051265360", 
              "https://doi.org/10.1038/ng.322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pcbi.1000566", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052813254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2009.06.049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053415203"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511790492", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098676015"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-08", 
        "datePublishedReg": "2010-08-01", 
        "description": "A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal 'chromatin states' in human T cells, based on recurrent and spatially coherent combinations of chromatin marks. We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, large-scale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt.1662", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2699342", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3100105", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2668772", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529276", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "28"
          }
        ], 
        "name": "Discovery and characterization of chromatin states for systematic annotation of the human genome", 
        "pagination": "817", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ee79ec890a85939081da981e4357a5d55a5d5911eecd29a2f03e252cf5f09f24"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "20657582"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt.1662"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1050061238"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt.1662", 
          "https://app.dimensions.ai/details/publication/pub.1050061238"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000434.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nbt.1662"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.1662'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.1662'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.1662'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.1662'


     

    This table displays all metadata directly associated to this object as RDF triples.

    295 TRIPLES      21 PREDICATES      89 URIs      32 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt.1662 schema:about N002d0bfd53c44301ba7158057de6820e
    2 N010eb145f5e045f3bf2291b3a05b8e90
    3 N0d9f804597144b5c842de8a25b1e714e
    4 N128ea3beba1d47c89ce497455aab0789
    5 N43a951e0e7de497c99059bde2543a41f
    6 N468dd7282c774f729dcf2374302d3f2e
    7 N6469771dbff048878d2e5fba423dd5bb
    8 Na44921a96f814b6aaad57716cb90b6c6
    9 Nbb3306f0ab994a5d95dc081e4935b553
    10 Nc2578e84be0943d78f3ae8a2aadf7760
    11 Nfc1f9094abe548b4ac5abd8aeb365ccb
    12 anzsrc-for:06
    13 anzsrc-for:0604
    14 schema:author N076c9a4a697541edad8cab86685cae21
    15 schema:citation sg:pub.10.1007/978-3-642-02008-7_12
    16 sg:pub.10.1007/978-94-011-5014-9_12
    17 sg:pub.10.1038/459927a
    18 sg:pub.10.1038/47412
    19 sg:pub.10.1038/nature05874
    20 sg:pub.10.1038/nature06258
    21 sg:pub.10.1038/nature06947
    22 sg:pub.10.1038/nature07672
    23 sg:pub.10.1038/nature07829
    24 sg:pub.10.1038/ng.154
    25 sg:pub.10.1038/ng.322
    26 sg:pub.10.1038/ng.323
    27 sg:pub.10.1038/ng1789
    28 sg:pub.10.1038/ng1966
    29 sg:pub.10.1038/nsmb.1658
    30 sg:pub.10.1038/nsmb.1659
    31 sg:pub.10.1186/1471-2105-7-191
    32 sg:pub.10.1186/1471-2105-9-547
    33 sg:pub.10.1186/1471-2164-9-537
    34 https://doi.org/10.1016/j.cell.2007.01.033
    35 https://doi.org/10.1016/j.cell.2007.02.005
    36 https://doi.org/10.1016/j.cell.2007.05.009
    37 https://doi.org/10.1016/j.cell.2007.12.014
    38 https://doi.org/10.1016/j.cell.2008.02.022
    39 https://doi.org/10.1016/j.cell.2009.06.049
    40 https://doi.org/10.1016/j.stem.2008.11.011
    41 https://doi.org/10.1016/s0092-8674(02)01196-0
    42 https://doi.org/10.1017/cbo9780511790492
    43 https://doi.org/10.1073/pnas.0400782101
    44 https://doi.org/10.1093/bioinformatics/btm096
    45 https://doi.org/10.1093/bioinformatics/btp340
    46 https://doi.org/10.1093/hmg/ddg113
    47 https://doi.org/10.1093/nar/gkh045
    48 https://doi.org/10.1093/nar/gkl842
    49 https://doi.org/10.1093/nar/gkm966
    50 https://doi.org/10.1101/gr.081638.108
    51 https://doi.org/10.1101/gr.092353.109
    52 https://doi.org/10.1101/gr.229102
    53 https://doi.org/10.1101/gr.3715005
    54 https://doi.org/10.1101/gr.6081407
    55 https://doi.org/10.1101/gr.6761107
    56 https://doi.org/10.1101/gr.7080508
    57 https://doi.org/10.1101/gr.7090407
    58 https://doi.org/10.1128/mcb.00487-06
    59 https://doi.org/10.1371/journal.pbio.1000013
    60 https://doi.org/10.1371/journal.pcbi.1000201
    61 https://doi.org/10.1371/journal.pcbi.1000566
    62 https://doi.org/10.1371/journal.pgen.0030089
    63 https://doi.org/10.1371/journal.pgen.1000597
    64 schema:datePublished 2010-08
    65 schema:datePublishedReg 2010-08-01
    66 schema:description A plethora of epigenetic modifications have been described in the human genome and shown to play diverse roles in gene regulation, cellular differentiation and the onset of disease. Although individual modifications have been linked to the activity levels of various genetic functional elements, their combinatorial patterns are still unresolved and their potential for systematic de novo genome annotation remains untapped. Here, we use a multivariate Hidden Markov Model to reveal 'chromatin states' in human T cells, based on recurrent and spatially coherent combinations of chromatin marks. We define 51 distinct chromatin states, including promoter-associated, transcription-associated, active intergenic, large-scale repressed and repeat-associated states. Each chromatin state shows specific enrichments in functional annotations, sequence motifs and specific experimentally observed characteristics, suggesting distinct biological roles. This approach provides a complementary functional annotation of the human genome that reveals the genome-wide locations of diverse classes of epigenetic function.
    67 schema:genre research_article
    68 schema:inLanguage en
    69 schema:isAccessibleForFree true
    70 schema:isPartOf N55d80c567cdd4c40b36b1523a5ccb8c0
    71 N9bc5b9ab922146848d62872c1ecd4f2b
    72 sg:journal.1115214
    73 schema:name Discovery and characterization of chromatin states for systematic annotation of the human genome
    74 schema:pagination 817
    75 schema:productId N373ac06af55e44b589f8a2d7762068fb
    76 N9bbf6e9ec30245f2a37eaceffa631e27
    77 Na604c8e4bb734190ad551b13a1a0eed9
    78 Ncfdd39567b554294b1a250123d95e92e
    79 Nfc5e6ec5ad1b4d80bdc80ae6e4087713
    80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050061238
    81 https://doi.org/10.1038/nbt.1662
    82 schema:sdDatePublished 2019-04-10T18:57
    83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    84 schema:sdPublisher N6abea82448784d8c9dde43199458f1a1
    85 schema:url https://www.nature.com/articles/nbt.1662
    86 sgo:license sg:explorer/license/
    87 sgo:sdDataset articles
    88 rdf:type schema:ScholarlyArticle
    89 N002d0bfd53c44301ba7158057de6820e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Gene Expression Regulation
    91 rdf:type schema:DefinedTerm
    92 N010eb145f5e045f3bf2291b3a05b8e90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    93 schema:name Genome, Human
    94 rdf:type schema:DefinedTerm
    95 N076c9a4a697541edad8cab86685cae21 rdf:first sg:person.0720743120.38
    96 rdf:rest N49eca0f710684ae3be2b6d82b872862e
    97 N0d9f804597144b5c842de8a25b1e714e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Markov Chains
    99 rdf:type schema:DefinedTerm
    100 N128ea3beba1d47c89ce497455aab0789 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Epigenesis, Genetic
    102 rdf:type schema:DefinedTerm
    103 N373ac06af55e44b589f8a2d7762068fb schema:name dimensions_id
    104 schema:value pub.1050061238
    105 rdf:type schema:PropertyValue
    106 N43a951e0e7de497c99059bde2543a41f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    107 schema:name Humans
    108 rdf:type schema:DefinedTerm
    109 N468dd7282c774f729dcf2374302d3f2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    110 schema:name CapZ Actin Capping Protein
    111 rdf:type schema:DefinedTerm
    112 N49eca0f710684ae3be2b6d82b872862e rdf:first sg:person.0767056320.07
    113 rdf:rest rdf:nil
    114 N55d80c567cdd4c40b36b1523a5ccb8c0 schema:issueNumber 8
    115 rdf:type schema:PublicationIssue
    116 N6469771dbff048878d2e5fba423dd5bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name T-Lymphocytes
    118 rdf:type schema:DefinedTerm
    119 N6abea82448784d8c9dde43199458f1a1 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 N9bbf6e9ec30245f2a37eaceffa631e27 schema:name pubmed_id
    122 schema:value 20657582
    123 rdf:type schema:PropertyValue
    124 N9bc5b9ab922146848d62872c1ecd4f2b schema:volumeNumber 28
    125 rdf:type schema:PublicationVolume
    126 Na44921a96f814b6aaad57716cb90b6c6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    127 schema:name Computational Biology
    128 rdf:type schema:DefinedTerm
    129 Na604c8e4bb734190ad551b13a1a0eed9 schema:name doi
    130 schema:value 10.1038/nbt.1662
    131 rdf:type schema:PropertyValue
    132 Nbb3306f0ab994a5d95dc081e4935b553 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    133 schema:name Promoter Regions, Genetic
    134 rdf:type schema:DefinedTerm
    135 Nc2578e84be0943d78f3ae8a2aadf7760 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    136 schema:name Chromatin
    137 rdf:type schema:DefinedTerm
    138 Ncfdd39567b554294b1a250123d95e92e schema:name readcube_id
    139 schema:value ee79ec890a85939081da981e4357a5d55a5d5911eecd29a2f03e252cf5f09f24
    140 rdf:type schema:PropertyValue
    141 Nfc1f9094abe548b4ac5abd8aeb365ccb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Chromosomes, Human, Pair 7
    143 rdf:type schema:DefinedTerm
    144 Nfc5e6ec5ad1b4d80bdc80ae6e4087713 schema:name nlm_unique_id
    145 schema:value 9604648
    146 rdf:type schema:PropertyValue
    147 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    148 schema:name Biological Sciences
    149 rdf:type schema:DefinedTerm
    150 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    151 schema:name Genetics
    152 rdf:type schema:DefinedTerm
    153 sg:grant.2529276 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1662
    154 rdf:type schema:MonetaryGrant
    155 sg:grant.2668772 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1662
    156 rdf:type schema:MonetaryGrant
    157 sg:grant.2699342 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1662
    158 rdf:type schema:MonetaryGrant
    159 sg:grant.3100105 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1662
    160 rdf:type schema:MonetaryGrant
    161 sg:journal.1115214 schema:issn 1087-0156
    162 1546-1696
    163 schema:name Nature Biotechnology
    164 rdf:type schema:Periodical
    165 sg:person.0720743120.38 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
    166 schema:familyName Ernst
    167 schema:givenName Jason
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0720743120.38
    169 rdf:type schema:Person
    170 sg:person.0767056320.07 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
    171 schema:familyName Kellis
    172 schema:givenName Manolis
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767056320.07
    174 rdf:type schema:Person
    175 sg:pub.10.1007/978-3-642-02008-7_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036683792
    176 https://doi.org/10.1007/978-3-642-02008-7_12
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-94-011-5014-9_12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009494930
    179 https://doi.org/10.1007/978-94-011-5014-9_12
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1038/459927a schema:sameAs https://app.dimensions.ai/details/publication/pub.1043448162
    182 https://doi.org/10.1038/459927a
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1038/47412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025852070
    185 https://doi.org/10.1038/47412
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1038/nature05874 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005913886
    188 https://doi.org/10.1038/nature05874
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1038/nature06258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051134045
    191 https://doi.org/10.1038/nature06258
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1038/nature06947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004427899
    194 https://doi.org/10.1038/nature06947
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1038/nature07672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051133532
    197 https://doi.org/10.1038/nature07672
    198 rdf:type schema:CreativeWork
    199 sg:pub.10.1038/nature07829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023938796
    200 https://doi.org/10.1038/nature07829
    201 rdf:type schema:CreativeWork
    202 sg:pub.10.1038/ng.154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018442414
    203 https://doi.org/10.1038/ng.154
    204 rdf:type schema:CreativeWork
    205 sg:pub.10.1038/ng.322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051265360
    206 https://doi.org/10.1038/ng.322
    207 rdf:type schema:CreativeWork
    208 sg:pub.10.1038/ng.323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047319287
    209 https://doi.org/10.1038/ng.323
    210 rdf:type schema:CreativeWork
    211 sg:pub.10.1038/ng1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001417778
    212 https://doi.org/10.1038/ng1789
    213 rdf:type schema:CreativeWork
    214 sg:pub.10.1038/ng1966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010017851
    215 https://doi.org/10.1038/ng1966
    216 rdf:type schema:CreativeWork
    217 sg:pub.10.1038/nsmb.1658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033517629
    218 https://doi.org/10.1038/nsmb.1658
    219 rdf:type schema:CreativeWork
    220 sg:pub.10.1038/nsmb.1659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031385080
    221 https://doi.org/10.1038/nsmb.1659
    222 rdf:type schema:CreativeWork
    223 sg:pub.10.1186/1471-2105-7-191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023286996
    224 https://doi.org/10.1186/1471-2105-7-191
    225 rdf:type schema:CreativeWork
    226 sg:pub.10.1186/1471-2105-9-547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018796059
    227 https://doi.org/10.1186/1471-2105-9-547
    228 rdf:type schema:CreativeWork
    229 sg:pub.10.1186/1471-2164-9-537 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041481993
    230 https://doi.org/10.1186/1471-2164-9-537
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.cell.2007.01.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040631859
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.cell.2007.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022937373
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.cell.2007.12.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000099864
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/j.cell.2008.02.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047426433
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.cell.2009.06.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053415203
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/j.stem.2008.11.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047091683
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/s0092-8674(02)01196-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034737633
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1017/cbo9780511790492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098676015
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1073/pnas.0400782101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002732260
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1093/bioinformatics/btm096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030451186
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1093/bioinformatics/btp340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041238764
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1093/hmg/ddg113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024708004
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/nar/gkh045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022076148
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1093/nar/gkl842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008035809
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1093/nar/gkm966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019249723
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1101/gr.081638.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043222237
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1101/gr.092353.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042159483
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1101/gr.229102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022792016
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1101/gr.3715005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048048079
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1101/gr.6081407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010095362
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1101/gr.6761107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020807644
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1101/gr.7080508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034914041
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1101/gr.7090407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019596690
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1128/mcb.00487-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018064085
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1371/journal.pbio.1000013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045483703
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1371/journal.pcbi.1000201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001114789
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.1371/journal.pcbi.1000566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052813254
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.1371/journal.pgen.0030089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029772750
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.1371/journal.pgen.1000597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041883716
    291 rdf:type schema:CreativeWork
    292 https://www.grid.ac/institutes/grid.66859.34 schema:alternateName Broad Institute
    293 schema:name Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
    294 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, Massachusetts, USA.
    295 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...