Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-05

AUTHORS

Mitchell Guttman, Manuel Garber, Joshua Z Levin, Julie Donaghey, James Robinson, Xian Adiconis, Lin Fan, Magdalena J Koziol, Andreas Gnirke, Chad Nusbaum, John L Rinn, Eric S Lander, Aviv Regev

ABSTRACT

Massively parallel cDNA sequencing (RNA-Seq) provides an unbiased way to study a transcriptome, including both coding and noncoding genes. Until now, most RNA-Seq studies have depended crucially on existing annotations and thus focused on expression levels and variation in known transcripts. Here, we present Scripture, a method to reconstruct the transcriptome of a mammalian cell using only RNA-Seq reads and the genome sequence. We applied it to mouse embryonic stem cells, neuronal precursor cells and lung fibroblasts to accurately reconstruct the full-length gene structures for most known expressed genes. We identified substantial variation in protein coding genes, including thousands of novel 5' start sites, 3' ends and internal coding exons. We then determined the gene structures of more than a thousand large intergenic noncoding RNA (lincRNA) and antisense loci. Our results open the way to direct experimental manipulation of thousands of noncoding RNAs and demonstrate the power of ab initio reconstruction to render a comprehensive picture of mammalian transcriptomes. More... »

PAGES

503

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nbt.1633

DOI

http://dx.doi.org/10.1038/nbt.1633

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025339324

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20436462


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Intergenic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Embryonic Stem Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Library", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Messenger", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, RNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription, Genetic", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
            "Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guttman", 
        "givenName": "Mitchell", 
        "id": "sg:person.013620551417.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013620551417.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garber", 
        "givenName": "Manuel", 
        "id": "sg:person.01213005106.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213005106.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levin", 
        "givenName": "Joshua Z", 
        "id": "sg:person.01222432021.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222432021.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Donaghey", 
        "givenName": "Julie", 
        "id": "sg:person.01333761720.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333761720.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robinson", 
        "givenName": "James", 
        "id": "sg:person.01277446770.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277446770.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Adiconis", 
        "givenName": "Xian", 
        "id": "sg:person.01000014215.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000014215.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Lin", 
        "id": "sg:person.0650451313.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650451313.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beth Israel Deaconess Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239395.7", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
            "Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koziol", 
        "givenName": "Magdalena J", 
        "id": "sg:person.0640342011.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640342011.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gnirke", 
        "givenName": "Andreas", 
        "id": "sg:person.0645200471.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645200471.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nusbaum", 
        "givenName": "Chad", 
        "id": "sg:person.01170225154.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170225154.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Beth Israel Deaconess Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.239395.7", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
            "Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rinn", 
        "givenName": "John L", 
        "id": "sg:person.015653074047.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015653074047.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
            "Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.", 
            "Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lander", 
        "givenName": "Eric S", 
        "id": "sg:person.01260666165.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260666165.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.", 
            "Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.", 
            "Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Regev", 
        "givenName": "Aviv", 
        "id": "sg:person.01311753732.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311753732.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1138341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002326113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005301630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008035809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009442631", 
          "https://doi.org/10.1038/nature07638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012425816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015468380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2008-9-12-r175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016469219", 
          "https://doi.org/10.1186/gb-2008-9-12-r175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2008.03.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020929996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0904715106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022579887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1115901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024645561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029002744", 
          "https://doi.org/10.1038/nature07509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0914114107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033167226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036216819", 
          "https://doi.org/10.1038/nature06008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1163045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038655698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041785738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1103388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042123507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.6679507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043091736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0030283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045076866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0030283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045076866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0812841106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045146500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045381177", 
          "https://doi.org/10.1038/nmeth.1226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047797581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1112009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048209390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048586936", 
          "https://doi.org/10.1038/nmeth.1223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.103697.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049494483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/gb-2009-10-3-r25", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049583368", 
          "https://doi.org/10.1186/gb-2009-10-3-r25"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.259", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050283464", 
          "https://doi.org/10.1038/ng.259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07672", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051133532", 
          "https://doi.org/10.1038/nature07672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2007.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051644950"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1112014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052847323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/349038a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053275082", 
          "https://doi.org/10.1038/349038a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05", 
    "datePublishedReg": "2010-05-01", 
    "description": "Massively parallel cDNA sequencing (RNA-Seq) provides an unbiased way to study a transcriptome, including both coding and noncoding genes. Until now, most RNA-Seq studies have depended crucially on existing annotations and thus focused on expression levels and variation in known transcripts. Here, we present Scripture, a method to reconstruct the transcriptome of a mammalian cell using only RNA-Seq reads and the genome sequence. We applied it to mouse embryonic stem cells, neuronal precursor cells and lung fibroblasts to accurately reconstruct the full-length gene structures for most known expressed genes. We identified substantial variation in protein coding genes, including thousands of novel 5' start sites, 3' ends and internal coding exons. We then determined the gene structures of more than a thousand large intergenic noncoding RNA (lincRNA) and antisense loci. Our results open the way to direct experimental manipulation of thousands of noncoding RNAs and demonstrate the power of ab initio reconstruction to render a comprehensive picture of mammalian transcriptomes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nbt.1633", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2529375", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2355082", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2699326", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Ab initio reconstruction of cell type\u2013specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs", 
    "pagination": "503", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "78b7b20b215e850fe1b7177b984a3f9d73346005191658830267ed449e881706"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20436462"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9604648"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nbt.1633"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025339324"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nbt.1633", 
      "https://app.dimensions.ai/details/publication/pub.1025339324"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nbt.1633"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.1633'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.1633'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.1633'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.1633'


 

This table displays all metadata directly associated to this object as RDF triples.

321 TRIPLES      21 PREDICATES      71 URIs      33 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nbt.1633 schema:about N29179eba31c549e7a8eb144a4cdca84c
2 N3a00062cbee84cd19e15659d80fc6061
3 N47ed4dee63ea40619a900297b88e88d4
4 N513634693ccf445e8e52de8951ac9e14
5 N537e2094728d48fdaeef12ca2d592872
6 N6591ea9ddabb4110a34fb7ce772898d2
7 N6bd6a2ad46364b59a0c0155859e98619
8 N6c0165c85a874620a3c43b3c08819686
9 N786fd859cd374e5ab1008874e3e4770c
10 Nbfe41fc5ba604d859473048bd7c4c9ef
11 Nc9600eb3fbdc42998f786ddf9c89bee3
12 Nef79019729ac42118a800237c2566b2c
13 anzsrc-for:06
14 anzsrc-for:0604
15 schema:author Ndafe8cfe32ab441ebebc9fd4972a0cee
16 schema:citation sg:pub.10.1038/349038a0
17 sg:pub.10.1038/nature06008
18 sg:pub.10.1038/nature07509
19 sg:pub.10.1038/nature07638
20 sg:pub.10.1038/nature07672
21 sg:pub.10.1038/ng.259
22 sg:pub.10.1038/nmeth.1223
23 sg:pub.10.1038/nmeth.1226
24 sg:pub.10.1186/gb-2008-9-12-r175
25 sg:pub.10.1186/gb-2009-10-3-r25
26 https://doi.org/10.1016/j.cell.2007.05.022
27 https://doi.org/10.1016/j.cell.2008.03.029
28 https://doi.org/10.1073/pnas.0812841106
29 https://doi.org/10.1073/pnas.0904715106
30 https://doi.org/10.1073/pnas.0914114107
31 https://doi.org/10.1093/bioinformatics/btp120
32 https://doi.org/10.1093/bioinformatics/btp190
33 https://doi.org/10.1093/bioinformatics/btp367
34 https://doi.org/10.1093/nar/gkl842
35 https://doi.org/10.1101/gr.103697.109
36 https://doi.org/10.1101/gr.6679507
37 https://doi.org/10.1126/science.1103388
38 https://doi.org/10.1126/science.1112009
39 https://doi.org/10.1126/science.1112014
40 https://doi.org/10.1126/science.1115901
41 https://doi.org/10.1126/science.1138341
42 https://doi.org/10.1126/science.1163045
43 https://doi.org/10.1371/journal.pbio.0030283
44 https://doi.org/10.1371/journal.pcbi.1000067
45 https://doi.org/10.1371/journal.pcbi.1000598
46 schema:datePublished 2010-05
47 schema:datePublishedReg 2010-05-01
48 schema:description Massively parallel cDNA sequencing (RNA-Seq) provides an unbiased way to study a transcriptome, including both coding and noncoding genes. Until now, most RNA-Seq studies have depended crucially on existing annotations and thus focused on expression levels and variation in known transcripts. Here, we present Scripture, a method to reconstruct the transcriptome of a mammalian cell using only RNA-Seq reads and the genome sequence. We applied it to mouse embryonic stem cells, neuronal precursor cells and lung fibroblasts to accurately reconstruct the full-length gene structures for most known expressed genes. We identified substantial variation in protein coding genes, including thousands of novel 5' start sites, 3' ends and internal coding exons. We then determined the gene structures of more than a thousand large intergenic noncoding RNA (lincRNA) and antisense loci. Our results open the way to direct experimental manipulation of thousands of noncoding RNAs and demonstrate the power of ab initio reconstruction to render a comprehensive picture of mammalian transcriptomes.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree true
52 schema:isPartOf Nc46be2461ada4d738c877ea3b5dad8e3
53 Nf7b9fbcd07fc4010bc54a782dbafd75d
54 sg:journal.1115214
55 schema:name Ab initio reconstruction of cell type–specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs
56 schema:pagination 503
57 schema:productId N04cec0f0e12642a8af4be2868a8df3ab
58 Na4a0b31bce154a858a3a2b89877d7e90
59 Nb07b0818d70e406cbd9665e849befe92
60 Nde84e87e406f4b4b88eea2d523c9e29e
61 Ne87e4dd3a0d64b318d2feba0f30b5945
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025339324
63 https://doi.org/10.1038/nbt.1633
64 schema:sdDatePublished 2019-04-11T00:56
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher Nef26d00766c248cfbebf1bb674682a40
67 schema:url https://www.nature.com/articles/nbt.1633
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N04cec0f0e12642a8af4be2868a8df3ab schema:name nlm_unique_id
72 schema:value 9604648
73 rdf:type schema:PropertyValue
74 N125a1bbc61824103990d294009689110 rdf:first sg:person.01000014215.36
75 rdf:rest Nece3a6fa04a04554aa227ea1ee724e73
76 N29179eba31c549e7a8eb144a4cdca84c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Transcription, Genetic
78 rdf:type schema:DefinedTerm
79 N3a00062cbee84cd19e15659d80fc6061 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Cell Line
81 rdf:type schema:DefinedTerm
82 N438f0c77b77b458583b75735a096eb36 rdf:first sg:person.01222432021.01
83 rdf:rest Ne59f4a9163844971bef0fa471ac0d6b3
84 N47ed4dee63ea40619a900297b88e88d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Gene Expression Profiling
86 rdf:type schema:DefinedTerm
87 N4fb687e22fdc45308a9c402055cee937 rdf:first sg:person.01277446770.81
88 rdf:rest N125a1bbc61824103990d294009689110
89 N513634693ccf445e8e52de8951ac9e14 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Mice
91 rdf:type schema:DefinedTerm
92 N537e2094728d48fdaeef12ca2d592872 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Animals
94 rdf:type schema:DefinedTerm
95 N6591ea9ddabb4110a34fb7ce772898d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Sequence Analysis, RNA
97 rdf:type schema:DefinedTerm
98 N6bd6a2ad46364b59a0c0155859e98619 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Gene Library
100 rdf:type schema:DefinedTerm
101 N6c0165c85a874620a3c43b3c08819686 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name DNA, Intergenic
103 rdf:type schema:DefinedTerm
104 N7376bafb3cd44c0fad0248d2a5f88222 rdf:first sg:person.0640342011.25
105 rdf:rest Nac32511ed75a4dbbabc2ca3a9b07137b
106 N77f9bf233d6c426da97d86cbd8a81ed8 rdf:first sg:person.01311753732.26
107 rdf:rest rdf:nil
108 N786fd859cd374e5ab1008874e3e4770c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name RNA, Messenger
110 rdf:type schema:DefinedTerm
111 N917df01802f544589738030a2615b7a4 rdf:first sg:person.01213005106.80
112 rdf:rest N438f0c77b77b458583b75735a096eb36
113 N9968c08941db42e19d67a0ce7b632a64 rdf:first sg:person.015653074047.50
114 rdf:rest Nf15c7f98c1ce4370b1d88ab0a9f3bc2f
115 Na4a0b31bce154a858a3a2b89877d7e90 schema:name readcube_id
116 schema:value 78b7b20b215e850fe1b7177b984a3f9d73346005191658830267ed449e881706
117 rdf:type schema:PropertyValue
118 Nac32511ed75a4dbbabc2ca3a9b07137b rdf:first sg:person.0645200471.91
119 rdf:rest Nad6907b4165a45008e6dc44ccf633c04
120 Nad6907b4165a45008e6dc44ccf633c04 rdf:first sg:person.01170225154.35
121 rdf:rest N9968c08941db42e19d67a0ce7b632a64
122 Nb07b0818d70e406cbd9665e849befe92 schema:name dimensions_id
123 schema:value pub.1025339324
124 rdf:type schema:PropertyValue
125 Nbfe41fc5ba604d859473048bd7c4c9ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Models, Genetic
127 rdf:type schema:DefinedTerm
128 Nc46be2461ada4d738c877ea3b5dad8e3 schema:issueNumber 5
129 rdf:type schema:PublicationIssue
130 Nc9600eb3fbdc42998f786ddf9c89bee3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Computational Biology
132 rdf:type schema:DefinedTerm
133 Ndafe8cfe32ab441ebebc9fd4972a0cee rdf:first sg:person.013620551417.54
134 rdf:rest N917df01802f544589738030a2615b7a4
135 Nde84e87e406f4b4b88eea2d523c9e29e schema:name pubmed_id
136 schema:value 20436462
137 rdf:type schema:PropertyValue
138 Ne59f4a9163844971bef0fa471ac0d6b3 rdf:first sg:person.01333761720.00
139 rdf:rest N4fb687e22fdc45308a9c402055cee937
140 Ne87e4dd3a0d64b318d2feba0f30b5945 schema:name doi
141 schema:value 10.1038/nbt.1633
142 rdf:type schema:PropertyValue
143 Nece3a6fa04a04554aa227ea1ee724e73 rdf:first sg:person.0650451313.47
144 rdf:rest N7376bafb3cd44c0fad0248d2a5f88222
145 Nef26d00766c248cfbebf1bb674682a40 schema:name Springer Nature - SN SciGraph project
146 rdf:type schema:Organization
147 Nef79019729ac42118a800237c2566b2c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Embryonic Stem Cells
149 rdf:type schema:DefinedTerm
150 Nf15c7f98c1ce4370b1d88ab0a9f3bc2f rdf:first sg:person.01260666165.62
151 rdf:rest N77f9bf233d6c426da97d86cbd8a81ed8
152 Nf7b9fbcd07fc4010bc54a782dbafd75d schema:volumeNumber 28
153 rdf:type schema:PublicationVolume
154 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
155 schema:name Biological Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
158 schema:name Genetics
159 rdf:type schema:DefinedTerm
160 sg:grant.2355082 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1633
161 rdf:type schema:MonetaryGrant
162 sg:grant.2529375 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1633
163 rdf:type schema:MonetaryGrant
164 sg:grant.2699326 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1633
165 rdf:type schema:MonetaryGrant
166 sg:journal.1115214 schema:issn 1087-0156
167 1546-1696
168 schema:name Nature Biotechnology
169 rdf:type schema:Periodical
170 sg:person.01000014215.36 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
171 schema:familyName Adiconis
172 schema:givenName Xian
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000014215.36
174 rdf:type schema:Person
175 sg:person.01170225154.35 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
176 schema:familyName Nusbaum
177 schema:givenName Chad
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01170225154.35
179 rdf:type schema:Person
180 sg:person.01213005106.80 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
181 schema:familyName Garber
182 schema:givenName Manuel
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213005106.80
184 rdf:type schema:Person
185 sg:person.01222432021.01 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
186 schema:familyName Levin
187 schema:givenName Joshua Z
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01222432021.01
189 rdf:type schema:Person
190 sg:person.01260666165.62 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
191 schema:familyName Lander
192 schema:givenName Eric S
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260666165.62
194 rdf:type schema:Person
195 sg:person.01277446770.81 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
196 schema:familyName Robinson
197 schema:givenName James
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277446770.81
199 rdf:type schema:Person
200 sg:person.01311753732.26 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
201 schema:familyName Regev
202 schema:givenName Aviv
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01311753732.26
204 rdf:type schema:Person
205 sg:person.01333761720.00 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
206 schema:familyName Donaghey
207 schema:givenName Julie
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333761720.00
209 rdf:type schema:Person
210 sg:person.013620551417.54 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
211 schema:familyName Guttman
212 schema:givenName Mitchell
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013620551417.54
214 rdf:type schema:Person
215 sg:person.015653074047.50 schema:affiliation https://www.grid.ac/institutes/grid.239395.7
216 schema:familyName Rinn
217 schema:givenName John L
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015653074047.50
219 rdf:type schema:Person
220 sg:person.0640342011.25 schema:affiliation https://www.grid.ac/institutes/grid.239395.7
221 schema:familyName Koziol
222 schema:givenName Magdalena J
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640342011.25
224 rdf:type schema:Person
225 sg:person.0645200471.91 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
226 schema:familyName Gnirke
227 schema:givenName Andreas
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645200471.91
229 rdf:type schema:Person
230 sg:person.0650451313.47 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
231 schema:familyName Fan
232 schema:givenName Lin
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0650451313.47
234 rdf:type schema:Person
235 sg:pub.10.1038/349038a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053275082
236 https://doi.org/10.1038/349038a0
237 rdf:type schema:CreativeWork
238 sg:pub.10.1038/nature06008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036216819
239 https://doi.org/10.1038/nature06008
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/nature07509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029002744
242 https://doi.org/10.1038/nature07509
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nature07638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009442631
245 https://doi.org/10.1038/nature07638
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nature07672 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051133532
248 https://doi.org/10.1038/nature07672
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/ng.259 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283464
251 https://doi.org/10.1038/ng.259
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nmeth.1223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048586936
254 https://doi.org/10.1038/nmeth.1223
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/nmeth.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045381177
257 https://doi.org/10.1038/nmeth.1226
258 rdf:type schema:CreativeWork
259 sg:pub.10.1186/gb-2008-9-12-r175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016469219
260 https://doi.org/10.1186/gb-2008-9-12-r175
261 rdf:type schema:CreativeWork
262 sg:pub.10.1186/gb-2009-10-3-r25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049583368
263 https://doi.org/10.1186/gb-2009-10-3-r25
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1016/j.cell.2007.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051644950
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1016/j.cell.2008.03.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020929996
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1073/pnas.0812841106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045146500
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1073/pnas.0904715106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022579887
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1073/pnas.0914114107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033167226
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1093/bioinformatics/btp120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012425816
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1093/bioinformatics/btp190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041785738
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1093/bioinformatics/btp367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015468380
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1093/nar/gkl842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008035809
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1101/gr.103697.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049494483
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1101/gr.6679507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043091736
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1126/science.1103388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042123507
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1126/science.1112009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048209390
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1126/science.1112014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052847323
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1126/science.1115901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024645561
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1126/science.1138341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002326113
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1126/science.1163045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038655698
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1371/journal.pbio.0030283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045076866
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1371/journal.pcbi.1000067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047797581
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1371/journal.pcbi.1000598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005301630
304 rdf:type schema:CreativeWork
305 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
306 schema:name Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
307 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
308 Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
309 rdf:type schema:Organization
310 https://www.grid.ac/institutes/grid.239395.7 schema:alternateName Beth Israel Deaconess Medical Center
311 schema:name Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
312 Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA.
313 rdf:type schema:Organization
314 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
315 schema:name Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
316 Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
317 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA.
318 rdf:type schema:Organization
319 https://www.grid.ac/institutes/grid.66859.34 schema:alternateName Broad Institute
320 schema:name Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
321 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...