Design and analysis of ChIP-seq experiments for DNA-binding proteins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Peter V. Kharchenko, Michael Y. Tolstorukov, Peter J. Park

ABSTRACT

Recent progress in massively parallel sequencing platforms has enabled genome-wide characterization of DNA-associated proteins using the combination of chromatin immunoprecipitation and sequencing (ChIP-seq). Although a variety of methods exist for analysis of the established alternative ChIP microarray (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein-binding positions with high accuracy. Using previously reported data sets for three transcription factors, we illustrate methods for improving tag alignment and correcting for background signals. We compare the sensitivity and spatial precision of three peak detection algorithms with published methods, demonstrating gains in spatial precision when an asymmetric distribution of tags on positive and negative strands is considered. We also analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites. More... »

PAGES

1351-1359

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nbt.1508

DOI

http://dx.doi.org/10.1038/nbt.1508

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028515757

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19029915


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA-Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA", 
            "Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA", 
            "Harvard-MIT Health Sciences and Technology Informatics Program at Children\u2019s Hospital, 300 Longwood Ave., Boston, MA 02115 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kharchenko", 
        "givenName": "Peter V.", 
        "id": "sg:person.01050662451.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050662451.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA", 
            "Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tolstorukov", 
        "givenName": "Michael Y.", 
        "id": "sg:person.011724267107.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724267107.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA", 
            "Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA", 
            "Harvard-MIT Health Sciences and Technology Informatics Program at Children\u2019s Hospital, 300 Longwood Ave., Boston, MA 02115 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Peter J.", 
        "id": "sg:person.01024612701.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005126670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.229202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006260064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2006.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007381556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1272505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007710897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4997306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013590568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601180103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013675034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014231758", 
          "https://doi.org/10.1038/ng1909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014231758", 
          "https://doi.org/10.1038/ng1909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1141319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018702276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5574907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025211698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029892891", 
          "https://doi.org/10.1186/1471-2105-9-128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(99)00100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033111119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304799", 
          "https://doi.org/10.1038/nmeth1068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038111013", 
          "https://doi.org/10.1186/1471-2105-8-219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.7.080505.115634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042225069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042444027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5560806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043445116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2004.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046638430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049382107", 
          "https://doi.org/10.1038/nbt1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049382107", 
          "https://doi.org/10.1038/nbt1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(04)01159-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054615100"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "Recent progress in massively parallel sequencing platforms has enabled genome-wide characterization of DNA-associated proteins using the combination of chromatin immunoprecipitation and sequencing (ChIP-seq). Although a variety of methods exist for analysis of the established alternative ChIP microarray (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein-binding positions with high accuracy. Using previously reported data sets for three transcription factors, we illustrate methods for improving tag alignment and correcting for background signals. We compare the sensitivity and spatial precision of three peak detection algorithms with published methods, demonstrating gains in spatial precision when an asymmetric distribution of tags on positive and negative strands is considered. We also analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nbt.1508", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2705128", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691234", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2519756", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Design and analysis of ChIP-seq experiments for DNA-binding proteins", 
    "pagination": "1351-1359", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "87d732d162680de0c650f39c41fc806925a7e90f132eee6133c582867b621cd5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19029915"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9604648"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nbt.1508"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028515757"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nbt.1508", 
      "https://app.dimensions.ai/details/publication/pub.1028515757"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nbt/journal/v26/n12/full/nbt.1508.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      60 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nbt.1508 schema:about N08fd5b02914344afa825493c59b9490d
2 N3927e0dc26ab4879add44f40bd3af6a1
3 N44c7783a49f34ebcaf0fcc9525ad72ef
4 N609a19f67a364edcbea1f4dcfcd58c7f
5 N928fc605eb6442699a8f11d4a266e63e
6 Nb360560b85e148998e00637a55675c6a
7 Nbe2e7c1b6f5c4984bac57b4fc6d045e1
8 Nc195aa67068c435f9bf467c22e8a41fa
9 Nd7827c55ea7044c8b206f6b18688980c
10 Nf8d4dae989d0453db2eeb59bba81757e
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N3ea75ddb0c13405cb9c5a0f04eeea122
14 schema:citation sg:pub.10.1038/nbt1233
15 sg:pub.10.1038/ng1909
16 sg:pub.10.1038/nmeth1068
17 sg:pub.10.1186/1471-2105-8-219
18 sg:pub.10.1186/1471-2105-9-128
19 https://doi.org/10.1016/j.cell.2004.10.032
20 https://doi.org/10.1016/j.cell.2006.12.048
21 https://doi.org/10.1016/j.cell.2007.05.009
22 https://doi.org/10.1016/j.gde.2006.10.009
23 https://doi.org/10.1016/s0092-8674(04)01159-6
24 https://doi.org/10.1016/s0167-9473(99)00100-0
25 https://doi.org/10.1073/pnas.0601180103
26 https://doi.org/10.1093/nar/gkg108
27 https://doi.org/10.1093/nar/gkl198
28 https://doi.org/10.1101/gad.1272505
29 https://doi.org/10.1101/gr.229202
30 https://doi.org/10.1101/gr.4997306
31 https://doi.org/10.1101/gr.5560806
32 https://doi.org/10.1101/gr.5574907
33 https://doi.org/10.1126/science.1141319
34 https://doi.org/10.1146/annurev.genom.7.080505.115634
35 schema:datePublished 2008-12
36 schema:datePublishedReg 2008-12-01
37 schema:description Recent progress in massively parallel sequencing platforms has enabled genome-wide characterization of DNA-associated proteins using the combination of chromatin immunoprecipitation and sequencing (ChIP-seq). Although a variety of methods exist for analysis of the established alternative ChIP microarray (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein-binding positions with high accuracy. Using previously reported data sets for three transcription factors, we illustrate methods for improving tag alignment and correcting for background signals. We compare the sensitivity and spatial precision of three peak detection algorithms with published methods, demonstrating gains in spatial precision when an asymmetric distribution of tags on positive and negative strands is considered. We also analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf Na2603a3a75394e61b68e7fb48be8eeb2
42 Nabe138c1044d47288254c9f92b7f38e5
43 sg:journal.1115214
44 schema:name Design and analysis of ChIP-seq experiments for DNA-binding proteins
45 schema:pagination 1351-1359
46 schema:productId N0397808db23c4a24bd4bd7aac14f543a
47 N38d6ffc262c24491a1800ee7ace04a95
48 N5590c78dbfa74a9c9e069df8368aa05c
49 Nb4de8e6810064c03b280bef000533ee6
50 Nb77acf442d6846c59b0c22bf149c207d
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028515757
52 https://doi.org/10.1038/nbt.1508
53 schema:sdDatePublished 2019-04-10T21:24
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N61938b524e44472f9d9e5beedb27918f
56 schema:url http://www.nature.com/nbt/journal/v26/n12/full/nbt.1508.html
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0397808db23c4a24bd4bd7aac14f543a schema:name pubmed_id
61 schema:value 19029915
62 rdf:type schema:PropertyValue
63 N043b21b4251a48589a97635f87abbff5 rdf:first sg:person.011724267107.41
64 rdf:rest N9c958b315e4f4938a1e06c56c4400fdb
65 N08fd5b02914344afa825493c59b9490d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
66 schema:name Binding Sites
67 rdf:type schema:DefinedTerm
68 N38d6ffc262c24491a1800ee7ace04a95 schema:name doi
69 schema:value 10.1038/nbt.1508
70 rdf:type schema:PropertyValue
71 N3927e0dc26ab4879add44f40bd3af6a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Software
73 rdf:type schema:DefinedTerm
74 N3ea75ddb0c13405cb9c5a0f04eeea122 rdf:first sg:person.01050662451.08
75 rdf:rest N043b21b4251a48589a97635f87abbff5
76 N44c7783a49f34ebcaf0fcc9525ad72ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Protein Binding
78 rdf:type schema:DefinedTerm
79 N5590c78dbfa74a9c9e069df8368aa05c schema:name readcube_id
80 schema:value 87d732d162680de0c650f39c41fc806925a7e90f132eee6133c582867b621cd5
81 rdf:type schema:PropertyValue
82 N609a19f67a364edcbea1f4dcfcd58c7f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Chromatin Immunoprecipitation
84 rdf:type schema:DefinedTerm
85 N61938b524e44472f9d9e5beedb27918f schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N8c781defaef84ee69a108efe92f674b6 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA
88 Harvard-MIT Health Sciences and Technology Informatics Program at Children’s Hospital, 300 Longwood Ave., Boston, MA 02115 USA
89 Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
90 rdf:type schema:Organization
91 N9115fe40361f432fb7703f6ca3764498 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA
92 Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
93 rdf:type schema:Organization
94 N928fc605eb6442699a8f11d4a266e63e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Computational Biology
96 rdf:type schema:DefinedTerm
97 N9c958b315e4f4938a1e06c56c4400fdb rdf:first sg:person.01024612701.33
98 rdf:rest rdf:nil
99 Na2603a3a75394e61b68e7fb48be8eeb2 schema:volumeNumber 26
100 rdf:type schema:PublicationVolume
101 Nabe138c1044d47288254c9f92b7f38e5 schema:issueNumber 12
102 rdf:type schema:PublicationIssue
103 Nb360560b85e148998e00637a55675c6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name DNA-Binding Proteins
105 rdf:type schema:DefinedTerm
106 Nb4de8e6810064c03b280bef000533ee6 schema:name dimensions_id
107 schema:value pub.1028515757
108 rdf:type schema:PropertyValue
109 Nb77acf442d6846c59b0c22bf149c207d schema:name nlm_unique_id
110 schema:value 9604648
111 rdf:type schema:PropertyValue
112 Nbe2e7c1b6f5c4984bac57b4fc6d045e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Research Design
114 rdf:type schema:DefinedTerm
115 Nc195aa67068c435f9bf467c22e8a41fa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Sequence Analysis, DNA
117 rdf:type schema:DefinedTerm
118 Nd7827c55ea7044c8b206f6b18688980c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Transcription Factors
120 rdf:type schema:DefinedTerm
121 Nefddc5134d74435fa2ce62829ce6adc4 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA
122 Harvard-MIT Health Sciences and Technology Informatics Program at Children’s Hospital, 300 Longwood Ave., Boston, MA 02115 USA
123 Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
124 rdf:type schema:Organization
125 Nf8d4dae989d0453db2eeb59bba81757e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Algorithms
127 rdf:type schema:DefinedTerm
128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
129 schema:name Biological Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
132 schema:name Genetics
133 rdf:type schema:DefinedTerm
134 sg:grant.2519756 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1508
135 rdf:type schema:MonetaryGrant
136 sg:grant.2691234 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1508
137 rdf:type schema:MonetaryGrant
138 sg:grant.2705128 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1508
139 rdf:type schema:MonetaryGrant
140 sg:journal.1115214 schema:issn 1087-0156
141 1546-1696
142 schema:name Nature Biotechnology
143 rdf:type schema:Periodical
144 sg:person.01024612701.33 schema:affiliation N8c781defaef84ee69a108efe92f674b6
145 schema:familyName Park
146 schema:givenName Peter J.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33
148 rdf:type schema:Person
149 sg:person.01050662451.08 schema:affiliation Nefddc5134d74435fa2ce62829ce6adc4
150 schema:familyName Kharchenko
151 schema:givenName Peter V.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050662451.08
153 rdf:type schema:Person
154 sg:person.011724267107.41 schema:affiliation N9115fe40361f432fb7703f6ca3764498
155 schema:familyName Tolstorukov
156 schema:givenName Michael Y.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724267107.41
158 rdf:type schema:Person
159 sg:pub.10.1038/nbt1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049382107
160 https://doi.org/10.1038/nbt1233
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/ng1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014231758
163 https://doi.org/10.1038/ng1909
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304799
166 https://doi.org/10.1038/nmeth1068
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/1471-2105-8-219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038111013
169 https://doi.org/10.1186/1471-2105-8-219
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1471-2105-9-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029892891
172 https://doi.org/10.1186/1471-2105-9-128
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.cell.2004.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046638430
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.cell.2006.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005126670
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.gde.2006.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007381556
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0092-8674(04)01159-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054615100
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0167-9473(99)00100-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033111119
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.0601180103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013675034
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/nar/gkg108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042444027
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/nar/gkl198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013590568
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1101/gad.1272505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007710897
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1101/gr.229202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006260064
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1101/gr.4997306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011915877
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1101/gr.5560806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043445116
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1101/gr.5574907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025211698
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.1141319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018702276
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1146/annurev.genom.7.080505.115634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042225069
205 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...