Design and analysis of ChIP-seq experiments for DNA-binding proteins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Peter V. Kharchenko, Michael Y. Tolstorukov, Peter J. Park

ABSTRACT

Recent progress in massively parallel sequencing platforms has enabled genome-wide characterization of DNA-associated proteins using the combination of chromatin immunoprecipitation and sequencing (ChIP-seq). Although a variety of methods exist for analysis of the established alternative ChIP microarray (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein-binding positions with high accuracy. Using previously reported data sets for three transcription factors, we illustrate methods for improving tag alignment and correcting for background signals. We compare the sensitivity and spatial precision of three peak detection algorithms with published methods, demonstrating gains in spatial precision when an asymmetric distribution of tags on positive and negative strands is considered. We also analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites. More... »

PAGES

1351-1359

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nbt.1508

DOI

http://dx.doi.org/10.1038/nbt.1508

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028515757

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19029915


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA-Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA", 
            "Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA", 
            "Harvard-MIT Health Sciences and Technology Informatics Program at Children\u2019s Hospital, 300 Longwood Ave., Boston, MA 02115 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kharchenko", 
        "givenName": "Peter V.", 
        "id": "sg:person.01050662451.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050662451.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA", 
            "Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tolstorukov", 
        "givenName": "Michael Y.", 
        "id": "sg:person.011724267107.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724267107.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA", 
            "Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA", 
            "Harvard-MIT Health Sciences and Technology Informatics Program at Children\u2019s Hospital, 300 Longwood Ave., Boston, MA 02115 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Peter J.", 
        "id": "sg:person.01024612701.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005126670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.229202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006260064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2006.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007381556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1272505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007710897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4997306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013590568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601180103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013675034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014231758", 
          "https://doi.org/10.1038/ng1909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014231758", 
          "https://doi.org/10.1038/ng1909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1141319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018702276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5574907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025211698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029892891", 
          "https://doi.org/10.1186/1471-2105-9-128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(99)00100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033111119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304799", 
          "https://doi.org/10.1038/nmeth1068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038111013", 
          "https://doi.org/10.1186/1471-2105-8-219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.7.080505.115634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042225069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042444027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5560806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043445116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2004.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046638430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049382107", 
          "https://doi.org/10.1038/nbt1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049382107", 
          "https://doi.org/10.1038/nbt1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(04)01159-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054615100"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "Recent progress in massively parallel sequencing platforms has enabled genome-wide characterization of DNA-associated proteins using the combination of chromatin immunoprecipitation and sequencing (ChIP-seq). Although a variety of methods exist for analysis of the established alternative ChIP microarray (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein-binding positions with high accuracy. Using previously reported data sets for three transcription factors, we illustrate methods for improving tag alignment and correcting for background signals. We compare the sensitivity and spatial precision of three peak detection algorithms with published methods, demonstrating gains in spatial precision when an asymmetric distribution of tags on positive and negative strands is considered. We also analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nbt.1508", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2705128", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691234", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2519756", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Design and analysis of ChIP-seq experiments for DNA-binding proteins", 
    "pagination": "1351-1359", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "87d732d162680de0c650f39c41fc806925a7e90f132eee6133c582867b621cd5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19029915"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9604648"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nbt.1508"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028515757"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nbt.1508", 
      "https://app.dimensions.ai/details/publication/pub.1028515757"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nbt/journal/v26/n12/full/nbt.1508.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      60 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nbt.1508 schema:about N044a7881f515412b9c23975ef9560d83
2 N2f00f1661c0245f4964170b8cb847233
3 N33546e1daa094d9c94af75c4de5ddfe6
4 N476671bf21d6433ab8f3de9fbc2c61f6
5 N61dee90c962446c492cf61bdba241af4
6 N6a3c8479166240079833818791b73787
7 N770b4db97b694e92b36430b1acd3f687
8 Nc6960366de9a4397bd5149e919ce32b2
9 Ne602b097b0b040b3a06ee75e0a22e8a7
10 Nfce5b23097c64578938f1247be1db193
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N96e780e15d38483993cbdd216cbfee27
14 schema:citation sg:pub.10.1038/nbt1233
15 sg:pub.10.1038/ng1909
16 sg:pub.10.1038/nmeth1068
17 sg:pub.10.1186/1471-2105-8-219
18 sg:pub.10.1186/1471-2105-9-128
19 https://doi.org/10.1016/j.cell.2004.10.032
20 https://doi.org/10.1016/j.cell.2006.12.048
21 https://doi.org/10.1016/j.cell.2007.05.009
22 https://doi.org/10.1016/j.gde.2006.10.009
23 https://doi.org/10.1016/s0092-8674(04)01159-6
24 https://doi.org/10.1016/s0167-9473(99)00100-0
25 https://doi.org/10.1073/pnas.0601180103
26 https://doi.org/10.1093/nar/gkg108
27 https://doi.org/10.1093/nar/gkl198
28 https://doi.org/10.1101/gad.1272505
29 https://doi.org/10.1101/gr.229202
30 https://doi.org/10.1101/gr.4997306
31 https://doi.org/10.1101/gr.5560806
32 https://doi.org/10.1101/gr.5574907
33 https://doi.org/10.1126/science.1141319
34 https://doi.org/10.1146/annurev.genom.7.080505.115634
35 schema:datePublished 2008-12
36 schema:datePublishedReg 2008-12-01
37 schema:description Recent progress in massively parallel sequencing platforms has enabled genome-wide characterization of DNA-associated proteins using the combination of chromatin immunoprecipitation and sequencing (ChIP-seq). Although a variety of methods exist for analysis of the established alternative ChIP microarray (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein-binding positions with high accuracy. Using previously reported data sets for three transcription factors, we illustrate methods for improving tag alignment and correcting for background signals. We compare the sensitivity and spatial precision of three peak detection algorithms with published methods, demonstrating gains in spatial precision when an asymmetric distribution of tags on positive and negative strands is considered. We also analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N1545b547132449608252de239b50a71f
42 Nd4ff0b74b93a4d33a55ad7b6bf167e98
43 sg:journal.1115214
44 schema:name Design and analysis of ChIP-seq experiments for DNA-binding proteins
45 schema:pagination 1351-1359
46 schema:productId N298b89ffea0c443a859e0d9e7eb7624a
47 N4dd33512530143acb79d5422705e8fb6
48 N55f262d0cdea4730872304f4069ce0ad
49 N5a188ffe0e76422e947eaf5475663172
50 N96c3ade15083495d8021d5b888a2e330
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028515757
52 https://doi.org/10.1038/nbt.1508
53 schema:sdDatePublished 2019-04-10T21:24
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N8b33b3a1b3454a708d2ef06333d71ba0
56 schema:url http://www.nature.com/nbt/journal/v26/n12/full/nbt.1508.html
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N044a7881f515412b9c23975ef9560d83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name Transcription Factors
62 rdf:type schema:DefinedTerm
63 N0456d529131349a48bdaea9765716382 rdf:first sg:person.011724267107.41
64 rdf:rest N5313a91b17d943a8a1d042ceddc72e1c
65 N1545b547132449608252de239b50a71f schema:issueNumber 12
66 rdf:type schema:PublicationIssue
67 N1a67ec6f10094c06b7ece9729cd6d5e1 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA
68 Harvard-MIT Health Sciences and Technology Informatics Program at Children’s Hospital, 300 Longwood Ave., Boston, MA 02115 USA
69 Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
70 rdf:type schema:Organization
71 N298b89ffea0c443a859e0d9e7eb7624a schema:name readcube_id
72 schema:value 87d732d162680de0c650f39c41fc806925a7e90f132eee6133c582867b621cd5
73 rdf:type schema:PropertyValue
74 N2f00f1661c0245f4964170b8cb847233 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Software
76 rdf:type schema:DefinedTerm
77 N33546e1daa094d9c94af75c4de5ddfe6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Chromatin Immunoprecipitation
79 rdf:type schema:DefinedTerm
80 N476671bf21d6433ab8f3de9fbc2c61f6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Sequence Analysis, DNA
82 rdf:type schema:DefinedTerm
83 N4dd33512530143acb79d5422705e8fb6 schema:name dimensions_id
84 schema:value pub.1028515757
85 rdf:type schema:PropertyValue
86 N5313a91b17d943a8a1d042ceddc72e1c rdf:first sg:person.01024612701.33
87 rdf:rest rdf:nil
88 N55f262d0cdea4730872304f4069ce0ad schema:name nlm_unique_id
89 schema:value 9604648
90 rdf:type schema:PropertyValue
91 N5a188ffe0e76422e947eaf5475663172 schema:name pubmed_id
92 schema:value 19029915
93 rdf:type schema:PropertyValue
94 N61dee90c962446c492cf61bdba241af4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name DNA-Binding Proteins
96 rdf:type schema:DefinedTerm
97 N6a3c8479166240079833818791b73787 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Protein Binding
99 rdf:type schema:DefinedTerm
100 N76c575007d494760b7a2e1a842d93ab8 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA
101 Harvard-MIT Health Sciences and Technology Informatics Program at Children’s Hospital, 300 Longwood Ave., Boston, MA 02115 USA
102 Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
103 rdf:type schema:Organization
104 N770b4db97b694e92b36430b1acd3f687 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Computational Biology
106 rdf:type schema:DefinedTerm
107 N8b33b3a1b3454a708d2ef06333d71ba0 schema:name Springer Nature - SN SciGraph project
108 rdf:type schema:Organization
109 N96c3ade15083495d8021d5b888a2e330 schema:name doi
110 schema:value 10.1038/nbt.1508
111 rdf:type schema:PropertyValue
112 N96e780e15d38483993cbdd216cbfee27 rdf:first sg:person.01050662451.08
113 rdf:rest N0456d529131349a48bdaea9765716382
114 Naab5151eadbd4de589bb29d8a9637fce schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA
115 Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
116 rdf:type schema:Organization
117 Nc6960366de9a4397bd5149e919ce32b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Research Design
119 rdf:type schema:DefinedTerm
120 Nd4ff0b74b93a4d33a55ad7b6bf167e98 schema:volumeNumber 26
121 rdf:type schema:PublicationVolume
122 Ne602b097b0b040b3a06ee75e0a22e8a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Binding Sites
124 rdf:type schema:DefinedTerm
125 Nfce5b23097c64578938f1247be1db193 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Algorithms
127 rdf:type schema:DefinedTerm
128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
129 schema:name Biological Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
132 schema:name Genetics
133 rdf:type schema:DefinedTerm
134 sg:grant.2519756 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1508
135 rdf:type schema:MonetaryGrant
136 sg:grant.2691234 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1508
137 rdf:type schema:MonetaryGrant
138 sg:grant.2705128 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1508
139 rdf:type schema:MonetaryGrant
140 sg:journal.1115214 schema:issn 1087-0156
141 1546-1696
142 schema:name Nature Biotechnology
143 rdf:type schema:Periodical
144 sg:person.01024612701.33 schema:affiliation N76c575007d494760b7a2e1a842d93ab8
145 schema:familyName Park
146 schema:givenName Peter J.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33
148 rdf:type schema:Person
149 sg:person.01050662451.08 schema:affiliation N1a67ec6f10094c06b7ece9729cd6d5e1
150 schema:familyName Kharchenko
151 schema:givenName Peter V.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050662451.08
153 rdf:type schema:Person
154 sg:person.011724267107.41 schema:affiliation Naab5151eadbd4de589bb29d8a9637fce
155 schema:familyName Tolstorukov
156 schema:givenName Michael Y.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724267107.41
158 rdf:type schema:Person
159 sg:pub.10.1038/nbt1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049382107
160 https://doi.org/10.1038/nbt1233
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/ng1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014231758
163 https://doi.org/10.1038/ng1909
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304799
166 https://doi.org/10.1038/nmeth1068
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/1471-2105-8-219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038111013
169 https://doi.org/10.1186/1471-2105-8-219
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1471-2105-9-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029892891
172 https://doi.org/10.1186/1471-2105-9-128
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.cell.2004.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046638430
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.cell.2006.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005126670
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.gde.2006.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007381556
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0092-8674(04)01159-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054615100
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0167-9473(99)00100-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033111119
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.0601180103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013675034
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/nar/gkg108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042444027
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/nar/gkl198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013590568
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1101/gad.1272505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007710897
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1101/gr.229202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006260064
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1101/gr.4997306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011915877
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1101/gr.5560806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043445116
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1101/gr.5574907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025211698
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.1141319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018702276
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1146/annurev.genom.7.080505.115634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042225069
205 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...