Design and analysis of ChIP-seq experiments for DNA-binding proteins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-12

AUTHORS

Peter V. Kharchenko, Michael Y. Tolstorukov, Peter J. Park

ABSTRACT

Recent progress in massively parallel sequencing platforms has enabled genome-wide characterization of DNA-associated proteins using the combination of chromatin immunoprecipitation and sequencing (ChIP-seq). Although a variety of methods exist for analysis of the established alternative ChIP microarray (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein-binding positions with high accuracy. Using previously reported data sets for three transcription factors, we illustrate methods for improving tag alignment and correcting for background signals. We compare the sensitivity and spatial precision of three peak detection algorithms with published methods, demonstrating gains in spatial precision when an asymmetric distribution of tags on positive and negative strands is considered. We also analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites. More... »

PAGES

1351-1359

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nbt.1508

DOI

http://dx.doi.org/10.1038/nbt.1508

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028515757

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19029915


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chromatin Immunoprecipitation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA-Binding Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Transcription Factors", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA", 
            "Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA", 
            "Harvard-MIT Health Sciences and Technology Informatics Program at Children\u2019s Hospital, 300 Longwood Ave., Boston, MA 02115 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kharchenko", 
        "givenName": "Peter V.", 
        "id": "sg:person.01050662451.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050662451.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA", 
            "Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tolstorukov", 
        "givenName": "Michael Y.", 
        "id": "sg:person.011724267107.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724267107.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA", 
            "Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA", 
            "Harvard-MIT Health Sciences and Technology Informatics Program at Children\u2019s Hospital, 300 Longwood Ave., Boston, MA 02115 USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Peter J.", 
        "id": "sg:person.01024612701.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cell.2007.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002139821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2006.12.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005126670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.229202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006260064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2006.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007381556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1272505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007710897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4997306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011915877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkl198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013590568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0601180103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013675034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014231758", 
          "https://doi.org/10.1038/ng1909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014231758", 
          "https://doi.org/10.1038/ng1909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1141319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018702276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5574907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025211698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-9-128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029892891", 
          "https://doi.org/10.1186/1471-2105-9-128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-9473(99)00100-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033111119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036304799", 
          "https://doi.org/10.1038/nmeth1068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2105-8-219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038111013", 
          "https://doi.org/10.1186/1471-2105-8-219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.genom.7.080505.115634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042225069"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042444027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5560806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043445116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2004.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046638430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049382107", 
          "https://doi.org/10.1038/nbt1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1233", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049382107", 
          "https://doi.org/10.1038/nbt1233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(04)01159-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054615100"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-12", 
    "datePublishedReg": "2008-12-01", 
    "description": "Recent progress in massively parallel sequencing platforms has enabled genome-wide characterization of DNA-associated proteins using the combination of chromatin immunoprecipitation and sequencing (ChIP-seq). Although a variety of methods exist for analysis of the established alternative ChIP microarray (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein-binding positions with high accuracy. Using previously reported data sets for three transcription factors, we illustrate methods for improving tag alignment and correcting for background signals. We compare the sensitivity and spatial precision of three peak detection algorithms with published methods, demonstrating gains in spatial precision when an asymmetric distribution of tags on positive and negative strands is considered. We also analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nbt.1508", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2705128", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691234", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2519756", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1115214", 
        "issn": [
          "1087-0156", 
          "1546-1696"
        ], 
        "name": "Nature Biotechnology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Design and analysis of ChIP-seq experiments for DNA-binding proteins", 
    "pagination": "1351-1359", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "87d732d162680de0c650f39c41fc806925a7e90f132eee6133c582867b621cd5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19029915"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9604648"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nbt.1508"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028515757"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nbt.1508", 
      "https://app.dimensions.ai/details/publication/pub.1028515757"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.nature.com/nbt/journal/v26/n12/full/nbt.1508.html"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.1508'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      60 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nbt.1508 schema:about N0b54f0e0da114aa89301f171998cdc79
2 N1a5dd8ef3c724af494221b4e369027d9
3 N302530ed551c45d8ad2ac29aadca351a
4 N31f38b7716014e2baf7eba4059a51411
5 N37fbb96cda5f4259a8228e87bd7726ee
6 N94f1b2faabb8453ba0b6ffefdab9cd74
7 Nac4b617b19694bc8bdc15846012b68fb
8 Nbebaeed0f83c4fbba6e253e44ac36dfd
9 Ncbdea9f10290409ba73bdf43d7e6981f
10 Ndff2895a80ea4b9ba84e68db56352d5f
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author Ne826b4d15c1f46c291df339feb9e1413
14 schema:citation sg:pub.10.1038/nbt1233
15 sg:pub.10.1038/ng1909
16 sg:pub.10.1038/nmeth1068
17 sg:pub.10.1186/1471-2105-8-219
18 sg:pub.10.1186/1471-2105-9-128
19 https://doi.org/10.1016/j.cell.2004.10.032
20 https://doi.org/10.1016/j.cell.2006.12.048
21 https://doi.org/10.1016/j.cell.2007.05.009
22 https://doi.org/10.1016/j.gde.2006.10.009
23 https://doi.org/10.1016/s0092-8674(04)01159-6
24 https://doi.org/10.1016/s0167-9473(99)00100-0
25 https://doi.org/10.1073/pnas.0601180103
26 https://doi.org/10.1093/nar/gkg108
27 https://doi.org/10.1093/nar/gkl198
28 https://doi.org/10.1101/gad.1272505
29 https://doi.org/10.1101/gr.229202
30 https://doi.org/10.1101/gr.4997306
31 https://doi.org/10.1101/gr.5560806
32 https://doi.org/10.1101/gr.5574907
33 https://doi.org/10.1126/science.1141319
34 https://doi.org/10.1146/annurev.genom.7.080505.115634
35 schema:datePublished 2008-12
36 schema:datePublishedReg 2008-12-01
37 schema:description Recent progress in massively parallel sequencing platforms has enabled genome-wide characterization of DNA-associated proteins using the combination of chromatin immunoprecipitation and sequencing (ChIP-seq). Although a variety of methods exist for analysis of the established alternative ChIP microarray (ChIP-chip), few approaches have been described for processing ChIP-seq data. To fill this gap, we propose an analysis pipeline specifically designed to detect protein-binding positions with high accuracy. Using previously reported data sets for three transcription factors, we illustrate methods for improving tag alignment and correcting for background signals. We compare the sensitivity and spatial precision of three peak detection algorithms with published methods, demonstrating gains in spatial precision when an asymmetric distribution of tags on positive and negative strands is considered. We also analyze the relationship between the depth of sequencing and characteristics of the detected binding positions, and provide a method for estimating the sequencing depth necessary for a desired coverage of protein binding sites.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree true
41 schema:isPartOf N3514ff4783eb40159763919f0ae91881
42 N7b5a1381a45b4677a76950971e860da8
43 sg:journal.1115214
44 schema:name Design and analysis of ChIP-seq experiments for DNA-binding proteins
45 schema:pagination 1351-1359
46 schema:productId N286bea9e92634ace9b95267554f787ce
47 N8fa60d56d94b4815a0332caefd9f96e5
48 Nbc99c3eac7b04ad4b4ed1625e0bf5bf6
49 Nd475cb312ec74bffb5d888e97c3b14a5
50 Ndd77940875964bf29a7109acf0b199f1
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028515757
52 https://doi.org/10.1038/nbt.1508
53 schema:sdDatePublished 2019-04-10T21:24
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N1cdd6f4ef47f4314961b849a30b8f9b9
56 schema:url http://www.nature.com/nbt/journal/v26/n12/full/nbt.1508.html
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N0b54f0e0da114aa89301f171998cdc79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
61 schema:name DNA-Binding Proteins
62 rdf:type schema:DefinedTerm
63 N1a5dd8ef3c724af494221b4e369027d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Chromatin Immunoprecipitation
65 rdf:type schema:DefinedTerm
66 N1cdd6f4ef47f4314961b849a30b8f9b9 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N286bea9e92634ace9b95267554f787ce schema:name dimensions_id
69 schema:value pub.1028515757
70 rdf:type schema:PropertyValue
71 N302530ed551c45d8ad2ac29aadca351a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Software
73 rdf:type schema:DefinedTerm
74 N31f38b7716014e2baf7eba4059a51411 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Transcription Factors
76 rdf:type schema:DefinedTerm
77 N331979f9235a4b5185bf4e85f58e0838 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA
78 Harvard-MIT Health Sciences and Technology Informatics Program at Children’s Hospital, 300 Longwood Ave., Boston, MA 02115 USA
79 Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
80 rdf:type schema:Organization
81 N3514ff4783eb40159763919f0ae91881 schema:volumeNumber 26
82 rdf:type schema:PublicationVolume
83 N37fbb96cda5f4259a8228e87bd7726ee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Computational Biology
85 rdf:type schema:DefinedTerm
86 N7b5a1381a45b4677a76950971e860da8 schema:issueNumber 12
87 rdf:type schema:PublicationIssue
88 N8bf143170399462fbd2eb175af24f3c6 rdf:first sg:person.01024612701.33
89 rdf:rest rdf:nil
90 N8fa60d56d94b4815a0332caefd9f96e5 schema:name nlm_unique_id
91 schema:value 9604648
92 rdf:type schema:PropertyValue
93 N8fe8e2cb525f4057b574fb86828f0445 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA
94 Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
95 rdf:type schema:Organization
96 N94f1b2faabb8453ba0b6ffefdab9cd74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Sequence Analysis, DNA
98 rdf:type schema:DefinedTerm
99 N9eccd5e3e5c249c6ac1ec68260ba5166 rdf:first sg:person.011724267107.41
100 rdf:rest N8bf143170399462fbd2eb175af24f3c6
101 Nac4b617b19694bc8bdc15846012b68fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Algorithms
103 rdf:type schema:DefinedTerm
104 Naded7fba7ea64485ae9184be3148dc16 schema:name Center for Biomedical Informatics, Harvard Medical School, 10 Shattuck St, Boston, MA 02115 USA
105 Harvard-MIT Health Sciences and Technology Informatics Program at Children’s Hospital, 300 Longwood Ave., Boston, MA 02115 USA
106 Harvard-Partners Center for Genetics and Genomics, 77 Avenue Louis Pasteur, Boston, MA 02115 USA
107 rdf:type schema:Organization
108 Nbc99c3eac7b04ad4b4ed1625e0bf5bf6 schema:name readcube_id
109 schema:value 87d732d162680de0c650f39c41fc806925a7e90f132eee6133c582867b621cd5
110 rdf:type schema:PropertyValue
111 Nbebaeed0f83c4fbba6e253e44ac36dfd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Research Design
113 rdf:type schema:DefinedTerm
114 Ncbdea9f10290409ba73bdf43d7e6981f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Binding Sites
116 rdf:type schema:DefinedTerm
117 Nd475cb312ec74bffb5d888e97c3b14a5 schema:name pubmed_id
118 schema:value 19029915
119 rdf:type schema:PropertyValue
120 Ndd77940875964bf29a7109acf0b199f1 schema:name doi
121 schema:value 10.1038/nbt.1508
122 rdf:type schema:PropertyValue
123 Ndff2895a80ea4b9ba84e68db56352d5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Protein Binding
125 rdf:type schema:DefinedTerm
126 Ne826b4d15c1f46c291df339feb9e1413 rdf:first sg:person.01050662451.08
127 rdf:rest N9eccd5e3e5c249c6ac1ec68260ba5166
128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
129 schema:name Biological Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
132 schema:name Genetics
133 rdf:type schema:DefinedTerm
134 sg:grant.2519756 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1508
135 rdf:type schema:MonetaryGrant
136 sg:grant.2691234 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1508
137 rdf:type schema:MonetaryGrant
138 sg:grant.2705128 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1508
139 rdf:type schema:MonetaryGrant
140 sg:journal.1115214 schema:issn 1087-0156
141 1546-1696
142 schema:name Nature Biotechnology
143 rdf:type schema:Periodical
144 sg:person.01024612701.33 schema:affiliation Naded7fba7ea64485ae9184be3148dc16
145 schema:familyName Park
146 schema:givenName Peter J.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024612701.33
148 rdf:type schema:Person
149 sg:person.01050662451.08 schema:affiliation N331979f9235a4b5185bf4e85f58e0838
150 schema:familyName Kharchenko
151 schema:givenName Peter V.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01050662451.08
153 rdf:type schema:Person
154 sg:person.011724267107.41 schema:affiliation N8fe8e2cb525f4057b574fb86828f0445
155 schema:familyName Tolstorukov
156 schema:givenName Michael Y.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011724267107.41
158 rdf:type schema:Person
159 sg:pub.10.1038/nbt1233 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049382107
160 https://doi.org/10.1038/nbt1233
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/ng1909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014231758
163 https://doi.org/10.1038/ng1909
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nmeth1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036304799
166 https://doi.org/10.1038/nmeth1068
167 rdf:type schema:CreativeWork
168 sg:pub.10.1186/1471-2105-8-219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038111013
169 https://doi.org/10.1186/1471-2105-8-219
170 rdf:type schema:CreativeWork
171 sg:pub.10.1186/1471-2105-9-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029892891
172 https://doi.org/10.1186/1471-2105-9-128
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.cell.2004.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046638430
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.cell.2006.12.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005126670
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.cell.2007.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002139821
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.gde.2006.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007381556
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0092-8674(04)01159-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054615100
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0167-9473(99)00100-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033111119
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1073/pnas.0601180103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013675034
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/nar/gkg108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042444027
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/nar/gkl198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013590568
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1101/gad.1272505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007710897
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1101/gr.229202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006260064
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1101/gr.4997306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011915877
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1101/gr.5560806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043445116
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1101/gr.5574907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025211698
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.1141319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018702276
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1146/annurev.genom.7.080505.115634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042225069
205 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...