The potential and challenges of nanopore sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-10

AUTHORS

Daniel Branton, David W Deamer, Andre Marziali, Hagan Bayley, Steven A Benner, Thomas Butler, Massimiliano Di Ventra, Slaven Garaj, Andrew Hibbs, Xiaohua Huang, Stevan B Jovanovich, Predrag S Krstic, Stuart Lindsay, Xinsheng Sean Ling, Carlos H Mastrangelo, Amit Meller, John S Oliver, Yuriy V Pershin, J Michael Ramsey, Robert Riehn, Gautam V Soni, Vincent Tabard-Cossa, Meni Wanunu, Matthew Wiggin, Jeffery A Schloss

ABSTRACT

A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h. More... »

PAGES

1146-1153

Journal

TITLE

Nature Biotechnology

ISSUE

10

VOLUME

26

Related Patents

  • Bare Single-Layer Graphene Membrane Having A Nanopore Enabling High-Sensitivity Molecular Detection And Analysis
  • Adaptors For Nucleic Acid Constructs In Transmembrane Sequencing
  • Biochemical Analysis Instrument
  • High Throughput Nucleic Acid Sequencing By Expansion
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Structure With Nanopore And Apparatus For Determining Sequences Of Nucleic Acids Including The Same
  • Methods For Sequencing A Biomolecule By Detecting Relative Positions Of Hybridized Probes
  • Molecular Adaptors
  • Enzyme-Pore Constructs
  • Nanopore Device With Graphene Supported Artificial Lipid Membrane
  • Reducing Background Fluorescence In Mems Materials By Low Energy Ion Beam Treatment
  • Nanopore-Based Polymer Analysis With Mutually-Quenching Fluorescent Labels
  • Methods And Compositions For Nanostructure-Based Nucleic Acid Sequencing
  • Hairpin Loop Method For Double Strand Polynucleotide Sequencing Using Transmembrane Pores
  • Study Of Polymer Molecules And Conformations With A Nanopore
  • Fabricate Self-Formed Nanometer Pore Array At Wafer Scale For Dna Sequencing
  • Methods And Apparatus For Characterizing Polynucleotides
  • Devices And Methods For Analyzing Biomolecules And Probes Bound Thereto
  • Devices And Methods For Target Molecule Characterization
  • Fabricating Self-Formed Nanometer Pore Array At Wafer Scale For Dna Sequencing
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Control Of Enzyme Translocation In Nanopore Sequencing
  • Translocation And Nucleotide Reading Mechanisms For Sequencing Nanodevices
  • Nanofluidic Channels With Gradual Depth Change For Reducing Entropic Barrier Of Biopolymers
  • Nanopore Sequencing Using Ratiometric Impedance
  • Integrated Nanowire/Nanosheet Nanogap And Nanopore For Dna And Rna Sequencing
  • Spectroscopy Using Nanopore Cavities
  • Characterizing Stretched Polynucleotides In A Synthetic Nanopassage
  • Nanopore-Based Nucleic Acid Analysis With Mixed Fret Detection
  • Graphene Transistor Gated By Charges Through A Nanopore For Bio-Molecular Sensing And Dna Sequencing
  • Electrical Double Layer Capacitive Devices And Methods Of Using Same For Sequencing Polymers And Detecting Analytes
  • Structure With Nanopore And Apparatus For Determining Sequences Of Nucleic Acids Including The Same
  • Massively Parallel Continguity Mapping
  • Using A Field Effect Device For Identifying Translocating Charge-Tagged Molecules In A Nanopore Sequencing Device
  • Fabrication Of Tunneling Junction For Nanopore Dna Sequencing
  • Systems And Devices For Molecule Sensing And Method Of Manufacturing Thereof
  • An Apparatus For Detection, Identification Of Molecules And Sequencing Of Dna, Rna Or Other Natural Or Artificial Polymers Using Graphene And A Laser Light Beam.
  • Increased Molecule Capture Rate Into A Nanopore
  • Biopolymer Sequencing By Hybridization Of Probes To Form Ternary Complexes And Variable Range Alignment
  • Use Of Longitudinally Displaced Nanoscale Electrodes For Voltage Sensing Of Biomolecules And Other Analytes In Fluidic Channels
  • Dna Sequencing Using Multiple Metal Layer Structure With Different Organic Coatings Forming Different Transient Bondings To Dna
  • Single Molecule Nucleic Acid Sequencing With Molecular Sensor Complexes
  • Process For Forming A Hexagonal Array
  • Methods For Amplification And Sequencing Using Thermostable Tthprimpol
  • Nanofluidic Biochemical Sensors Based On Surface Charge Modulated Ion Current
  • Study Of Polymer Molecules And Conformations With A Nanopore
  • Dna Sequencing Using Multiple Metal Layer Structure With Organic Coatings Forming Transient Bonding To Dna Bases
  • Methods Using Pores
  • Tagged-Fragment Map Assembly
  • Integrated Carbon Nanotube Field Effect Transistor And Nanochannel For Sequencing
  • Optimization Of Multigene Analysis Of Tumor Samples
  • Fabrication Of Tunneling Junction For Nanopore Dna Sequencing
  • Methods For Sequencing A Biomolecule By Detecting Relative Positions Of Hybridized Probes
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Sample Preparation Method
  • Sensor For Detection And Identification Of Analytes And A Method Thereof
  • Enzyme Mutant
  • Hybridization Linkers
  • Method
  • Method And Device For Identifying Nucleotide, And Method And Device For Determining Nucleotide Sequence Of Polynucleotide
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Ultrafast Sequencing Of Biological Polymers Using A Labeled Nanopore
  • Nanopore Sequencing Using N-Mers
  • Forming An Electrode Having Reduced Corrosion And Water Decomposition On Surface Using A Custom Oxide Layer
  • Nanopore Sequencing Using N-Mers
  • Measurement Of Analytes With Membrane Channel Molecules, And Bilayer Arrays
  • Mutant Lysenin Pores
  • Linear Valve Arrays
  • Nanopore Sequencing Using Ratiometric Impedance
  • Nanopore Biosensors For Detection Of Proteins And Nucleic Acids
  • Controlled Tunnel Gap Device For Sequencing Polymers
  • Nanofluidic Channels With Gradual Depth Change For Reducing Entropic Barrier Of Biopolymers
  • Chemical Functionalization Of Solid-State Nanopores And Nanopore Arrays And Applications Thereof
  • Detecting And Sorting Methylated Dna Using A Synthetic Nanopore
  • Forming An Electrode Having Reduced Corrosion And Water Decomposition On Surface Using An Organic Protective Layer
  • Characterization Of Individual Polymer Molecules Based On Monomer-Interface Interactions
  • Dna Sequence Using Multiple Metal Layer Structure With Different Organic Coatings Forming Different Transient Bondings To Dna
  • Integrated Carbon Nanotube Field Effect Transistor And Nanochannel For Sequencing
  • Assay Methods Using Nicking Endonucleases
  • Nanopore Sequencing Using Charge Blockade Labels
  • Integrated Nanowire/Nanosheet Nanogap And Nanopore For Dna And Rna Sequencing
  • Efficient Optical Analysis Of Polymers Using Arrays Of Nanostructures
  • Method For Identifying Transcriptional Regulatory Elements
  • Detection Of Nucleic Acid Lesions And Adducts Using Nanopores
  • Methods And Compositions For Nanostructure-Based Nucleic Acid Sequencing
  • A Method For Sequencing Of Biopolymers
  • Method And Apparatus For Sequencing Molecules
  • Sequence Analysis Using Decorated Nucleic Acids
  • Base-Detecting Pore
  • Apparatus And Method For Nucleic Acid Sequencing Based On Nanochannels
  • Use Of Longitudinally Displaced Nanoscale Electrodes For Voltage Sensing Of Biomolecules And Other Analytes In Fluidic Channels
  • Nano-Fluidic Field Effective Device To Control Dna Transport Through The Same
  • Ultrafast Sequencing Of Biological Polymers Using A Labeled Nanopore
  • Fluorescence-Based Analysis Of Biopolymers Using Nanopores
  • Quadruplex Method
  • Nano Pores Unit For Cutting Long Dna - Molecules In Fragments
  • Nanopore Functionality Control
  • Msp Nanopores And Related Methods
  • Noise Reduction Methods For Nucleic Acid And Macromolecule Sequencing
  • Methods For Accurate Sequence Data And Modified Base Position Determination
  • Ultrafast Sequencing Of Biological Polymers Using A Labeled Nanopore
  • Structure With Nanopore And Apparatus For Determining Sequences Of Nucleic Acids Including The Same
  • Sequence Analysis Using Decorated Nucleic Acids
  • Devices And Methods For Determining The Length Of Biopolymers And Distances Between Probes Bound Thereto
  • Use Of Nanopores - Arrays For The Multiplex - Sequencing Of Nucleic Acids
  • Apparatus And Method For Nucleic Acid Sequencing Based On Nanochannels
  • Use Of Longitudinally Displaced Nanoscale Electrodes For Voltage Sensing Of Biomolecules And Other Analytes In Fluidic Channels
  • Nano-Fluidic Field Effective Device To Control Dna Transport Through The Same
  • Method And Apparatus For Sequencing Molecules
  • Biochemical Analysis Instrument
  • Msp Nanopores And Related Methods
  • Fabricate Self-Formed Nanometer Pore Array At Wafer Scale For Dna Sequencing
  • Nanopore Sequencing Using N-Mers
  • Controlled Tunnel Gap Device For Sequencing Polymers
  • Devices And Methods For Determining The Length Of Biopolymers And Distances Between Probes Bound Thereto
  • Method And Apparatus For Controlling Materials Through A Through-Hole
  • Heterojunction Nanopore For Sequencing
  • Graphene Transistor Gated By Charges Through A Nanopore For Bio-Molecular Sensing And Dna Sequencing
  • Field Effect Based Nanosensor For Biopolymer Manipulation And Detection
  • Systems And Methods For Isolating Nucleic Acids
  • Mutant Pores
  • Method For Deducing A Polymer Sequence From A Nominal Base-By-Base Measurement
  • Devices And Methods For Determining The Length Of Biopolymers And Distances Between Probes Bound Thereto
  • Plasmonic Force Manipulation In Nanostructures
  • Aptamers And Uses Thereof
  • Compositions And Methods For Aptamer Screening
  • Methods And Apparatuses For Filtering Water Fluid By Screening Ionic Minerals
  • Method Of Characterizing A Target Ribonucleic Acid (Rna) Comprising Forming A Complementary Polynucleotide Which Moves Through A Transmembrane Pore
  • Method And Apparatus For Sequencing Molecules
  • Nanofluidic Sorting System For Gene Synthesis And Pcr Reaction Products
  • Functionally Switchable Self-Assembled Coating Compound For Controlling Translocation Of Molecule Through Nanopores
  • Functionally Switchable Self-Assembled Coating Compound For Controlling Translocation Of Molecule Through Nanopores
  • Nanopore-Facilitated Single Molecule Detection Of Nucleic Acids
  • Biomarker Associated With Irritable Bowel Syndrome And Crohn's Disease
  • Apparatus And Methods For Analysis Of Biomolecules Using High Frequency Alternating Current Excitation
  • Reducing Sequence Read Count Error In Assessment Of Complex Genetic Variations
  • Graphene Transistor Gated By Charges Through A Nanopore For Bio-Molecular Sensing And Dna Sequencing
  • Characterization Of Individual Polymer Molecules Based On Monomer-Interface Interactions
  • Nano-Fluidic Field Effective Device To Control Dna Transport Through The Same
  • Nanofluidic Channels With Gradual Depth Change For Reducing Entropic Barrier Of Biopolymers
  • Methods And Compositions For Analyzing Nucleic Acid
  • Msp Nanopores And Related Methods
  • Microfluidic Devices
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Nanopore Device And A Method For Nucleic Acid Analysis
  • Nanogap Device With Capped Nanowire Structures
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Systems And Methods For Isolating Nucleic Acids From Cellular Samples
  • Biopolymer Sequencing By Hybridization Of Probes To Form Ternary Complexes And Variable Range Alignment
  • Heterojunction Nanopore For Sequencing
  • Enzyme-Pore Constructs
  • Msp Nanopores And Related Methods
  • Methods For Accurate Sequence Data And Modified Base Position Determination
  • Dna Sequencing And Amplification Systems Using Nanoscale Field Effect Sensor Arrays
  • Ultrafast Sequencing Of Biological Polymers Using A Labeled Nanopore
  • Multiplexed Identification Of Nucleic Acid Sequences
  • Multiplex Capture Of Nucleic Acids
  • Nanopore Based Device For Cutting Long Dna Molecules Into Fragments
  • Msp Nanopores And Related Methods
  • Membrane-Integrated Viral Dna-Packaging Motor Protein Connector Biosensor For Dna Sequencing And Other Uses
  • Analyte Sequencing With Nanopores
  • Method For Sequencing A Heteropolymeric Target Nucleic Acid Sequence
  • Nanostructured Substrates For Surface Enhanced Raman Spectroscopy (Sers) And Detection Of Biological And Chemical Analytes By Electrical Double Layer (Edl) Capacitance
  • Detection Of Nucleic Acid Lesions And Adducts Using Nanopores
  • Electron Beam Sculpting Of Tunneling Junction For Nanopore Dna Sequencing
  • Hybridization Linkers
  • Sequence Preserved Dna Conversion For Optical Nanopore Sequencing
  • Plasmonic Force Manipulation In Nanostructures
  • Study Of Polymer Molecules And Conformations With A Nanopore
  • Methods For Accurate Sequence Data And Modified Base Position Determination
  • Method And Apparatus For The Analysis And Identification Of Molecules
  • Methods For Sequencing A Biomolecule By Detecting Relative Positions Of Hybridized Probes
  • Translocation And Nucleotide Reading Mechanisms For Sequencing Nanodevices
  • Nanopore Sequencing Using Charge Blockade Labels
  • Bare Single-Layer Graphene Membrane Having A Nanopore Enabling High-Sensitivity Molecular Detection And Analysis
  • Nucleic Acid Based Nanopores Or Transmembrane Channels And Their Uses
  • Multiplexed Identification Of Nucleic Acid Sequences
  • Linear Valve Arrays
  • Concentrating A Target Molecule For Sensing By A Nanopore
  • Graphene Supported Artificial Membranes And Uses Thereof
  • Biochemical Analysis Instrument
  • Ultrafast Sequencing Of Biological Polymers Using A Labeled Nanopore
  • Base Recognition Based On The Conformation Change Of A Motor Molecule
  • Assay Methods Using Nicking Endonucleases
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Electron Beam Sculpting Of Tunneling Junction For Nanopore Dna Sequencing
  • Manufacturable Sub-3 Nanometer Palladium Gap Devices For Fixed Electrode Tunneling Recognition
  • Dna Sequencing Using Multiple Metal Layer Structure With Different Organic Coatings Forming Different Transient Bondings To Dna
  • Method And Apparatus For The Analysis And Identification Of Molecules
  • Use Of Aptamers In Proteomics
  • Multiplex Capture Of Nucleic Acids
  • A Method For Producing A Nanopore For Sequencing Of A Biopolymer
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt.1495

    DOI

    http://dx.doi.org/10.1038/nbt.1495

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037155475

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18846088


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Forecasting", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Alignment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Branton", 
            "givenName": "Daniel", 
            "id": "sg:person.01073115173.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073115173.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Santa Cruz", 
              "id": "https://www.grid.ac/institutes/grid.205975.c", 
              "name": [
                "Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deamer", 
            "givenName": "David W", 
            "id": "sg:person.01245334451.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245334451.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marziali", 
            "givenName": "Andre", 
            "id": "sg:person.01313422341.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313422341.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Chemical Biology, Oxford University, Oxford OX1 3TA, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bayley", 
            "givenName": "Hagan", 
            "id": "sg:person.0737547372.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737547372.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Foundation for Applied Molecular Evolution", 
              "id": "https://www.grid.ac/institutes/grid.417974.8", 
              "name": [
                "Foundation for Applied Molecular Evolution, Gainesville, Florida 32604, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benner", 
            "givenName": "Steven A", 
            "id": "sg:person.01156710260.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156710260.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Washington", 
              "id": "https://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Physics, University of Washington, Seattle, Washington 98195, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Butler", 
            "givenName": "Thomas", 
            "id": "sg:person.01267640443.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267640443.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Physics, University of California at San Diego, La Jolla, California 92093, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Di Ventra", 
            "givenName": "Massimiliano", 
            "id": "sg:person.012470512553.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012470512553.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garaj", 
            "givenName": "Slaven", 
            "id": "sg:person.0577522223.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577522223.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electronic BioSciences (United States)", 
              "id": "https://www.grid.ac/institutes/grid.420917.9", 
              "name": [
                "Electronic BioSciences, San Diego, California 92121, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hibbs", 
            "givenName": "Andrew", 
            "id": "sg:person.01053550155.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053550155.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Xiaohua", 
            "id": "sg:person.0726576143.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726576143.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Microchip Biotechnologies Inc., Dublin, California 94568, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jovanovich", 
            "givenName": "Stevan B", 
            "id": "sg:person.0733607412.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733607412.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krstic", 
            "givenName": "Predrag S", 
            "id": "sg:person.0742104155.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742104155.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Arizona State University", 
              "id": "https://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Departments of Physics and Chemistry and the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lindsay", 
            "givenName": "Stuart", 
            "id": "sg:person.010324152712.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324152712.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Brown University", 
              "id": "https://www.grid.ac/institutes/grid.40263.33", 
              "name": [
                "Department of Physics, Brown University, Providence, Rhode Island 02912, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ling", 
            "givenName": "Xinsheng Sean", 
            "id": "sg:person.01044562214.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044562214.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Case Western Reserve University", 
              "id": "https://www.grid.ac/institutes/grid.67105.35", 
              "name": [
                "Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mastrangelo", 
            "givenName": "Carlos H", 
            "id": "sg:person.0632363342.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632363342.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University", 
              "id": "https://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meller", 
            "givenName": "Amit", 
            "id": "sg:person.01041625647.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041625647.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "NABsys, Inc., Providence, Rhode Island 02906, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oliver", 
            "givenName": "John S", 
            "id": "sg:person.01341614743.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341614743.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Physics, University of California at San Diego, La Jolla, California 92093, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pershin", 
            "givenName": "Yuriy V", 
            "id": "sg:person.0616210643.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616210643.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of North Carolina System", 
              "id": "https://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ramsey", 
            "givenName": "J Michael", 
            "id": "sg:person.011426356417.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011426356417.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Carolina State University", 
              "id": "https://www.grid.ac/institutes/grid.40803.3f", 
              "name": [
                "Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Riehn", 
            "givenName": "Robert", 
            "id": "sg:person.01331153340.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331153340.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University", 
              "id": "https://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soni", 
            "givenName": "Gautam V", 
            "id": "sg:person.0675332401.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675332401.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tabard-Cossa", 
            "givenName": "Vincent", 
            "id": "sg:person.01046665643.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046665643.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University", 
              "id": "https://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wanunu", 
            "givenName": "Meni", 
            "id": "sg:person.01146162630.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146162630.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Department of Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wiggin", 
            "givenName": "Matthew", 
            "id": "sg:person.01062745341.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062745341.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Human Genome Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.280128.1", 
              "name": [
                "National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schloss", 
            "givenName": "Jeffery A", 
            "id": "sg:person.01231227443.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231227443.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1529/biophysj.106.085548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000085237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048289w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000291436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048289w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000291436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/17/3/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000374893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/17/3/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000374893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001271085", 
              "https://doi.org/10.1038/nnano.2007.344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja0761840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002191378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja0761840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002191378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07391102.1989.10507773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002321858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/17435889.2.4.459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003026977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl051063o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003445790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl051063o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003445790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45713-5_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003600879", 
              "https://doi.org/10.1007/3-540-45713-5_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45713-5_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003600879", 
              "https://doi.org/10.1007/3-540-45713-5_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.200462114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005368293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005954516", 
              "https://doi.org/10.1038/nbt1486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1074-5521(97)90321-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006663312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/17/13/014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007076960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2006.08.068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007692256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.108.137760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007694232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/15/32/203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009994961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la061234k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010265631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la061234k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010265631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048030d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010322921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048030d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010322921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048654j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010592885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048654j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010592885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bi.63.070194.004021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011392853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl052107w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012253571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl052107w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012253571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl070462b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013352629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl070462b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013352629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014966509", 
              "https://doi.org/10.1038/nmeth1021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.042960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016067119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.24.13770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016336761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.238101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016991327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.238101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016991327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0601076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017504546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0601076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017504546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.200461885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018415994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0502947102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019046743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021078964", 
              "https://doi.org/10.1038/nnano.2007.381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022278679", 
              "https://doi.org/10.1038/nbt1485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.047274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022535175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0726205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022633772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0726205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022633772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl071890k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024637030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl071890k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024637030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.80.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024856382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.80.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024856382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2357118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025560513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bltj.20102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026762223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bltj.20102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026762223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2007.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027335183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/15/17/202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029291567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.106.089268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029984447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.058727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030155710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(99)77153-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030222196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030841250", 
              "https://doi.org/10.1038/nmat941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030841250", 
              "https://doi.org/10.1038/nmat941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/18/42/424018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031460389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031950554", 
              "https://doi.org/10.1038/nchembio793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031950554", 
              "https://doi.org/10.1038/nchembio793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja057123+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033489924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja057123+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033489924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.200700047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033706082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.200700049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033915195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl051199m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034200741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl051199m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034200741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1373/clinchem.2007.091231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035276375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.106.102269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037118122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200601191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038208071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506130103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038678460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.041814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038897645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.106.094060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038919191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1522-2683(200208)23:16<2583::aid-elps2583>3.0.co;2-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039866586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/18/30/305505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040789246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.97.3.1079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041054957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.200600732", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042622325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043496789", 
              "https://doi.org/10.1038/nmat965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043496789", 
              "https://doi.org/10.1038/nmat965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja077082c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043668942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja077082c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043668942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0494001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044228549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0494001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044228549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35084037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045265151", 
              "https://doi.org/10.1038/35084037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35084037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045265151", 
              "https://doi.org/10.1038/35084037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3991(92)90499-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046579877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3991(92)90499-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046579877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.040212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048744447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0510725103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049264990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(99)77027-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049567590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1008-1113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053533041", 
              "https://doi.org/10.1038/nbt1008-1113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar000138m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055148249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar000138m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055148249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00329a017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055170486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja042470p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055835598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja042470p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055835598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja068654g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055844027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja068654g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055844027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja073174q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055845204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja073174q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055845204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp077483e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056074893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp077483e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056074893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0619103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056216875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0619103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056216875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl062906u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056217052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl062906u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056217052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1392367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057702306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2835350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057877530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.041913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060729910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.041913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060729910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.011919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060734789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.011919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060734789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.77.031904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060737125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.77.031904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060737125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.3435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060822884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.3435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060822884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.118103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060831977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.118103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060831977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.232.4746.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062532195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.232.4746.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062532195"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-10", 
        "datePublishedReg": "2008-10-01", 
        "description": "A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt.1495", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2529245", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2613388", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2613371", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529234", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "The potential and challenges of nanopore sequencing", 
        "pagination": "1146-1153", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b0feeeed014f98167303ae75e7bc46d90fc27c0f12cb7486f07cccae64de0628"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18846088"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt.1495"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037155475"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt.1495", 
          "https://app.dimensions.ai/details/publication/pub.1037155475"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000425.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nbt.1495"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.1495'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.1495'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.1495'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.1495'


     

    This table displays all metadata directly associated to this object as RDF triples.

    592 TRIPLES      21 PREDICATES      121 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt.1495 schema:about N0804b5845e8842cf8ee123506badff6a
    2 N09390de74c46430e83aee2eec22ad49e
    3 N5f7235c4b4be45d88e23263bddabcf21
    4 N77e1bd1b371247a3b7292e9d1ffb060f
    5 N816cc7f957b84360b577adf59b75f068
    6 N90cdff8677374e468cf1a9a8e1cc97bd
    7 Na3d8ea57e03942fcbff5612a1fad7ea1
    8 Naddd2e7695814a7d8ea44dfd1b76b29a
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N873925a48c29445b83d6a011f3e18ea0
    12 schema:citation sg:pub.10.1007/3-540-45713-5_5
    13 sg:pub.10.1038/35084037
    14 sg:pub.10.1038/nbt1008-1113
    15 sg:pub.10.1038/nbt1485
    16 sg:pub.10.1038/nbt1486
    17 sg:pub.10.1038/nchembio793
    18 sg:pub.10.1038/nmat941
    19 sg:pub.10.1038/nmat965
    20 sg:pub.10.1038/nmeth1021
    21 sg:pub.10.1038/nnano.2007.344
    22 sg:pub.10.1038/nnano.2007.381
    23 https://doi.org/10.1002/1522-2683(200208)23:16<2583::aid-elps2583>3.0.co;2-h
    24 https://doi.org/10.1002/adma.200601191
    25 https://doi.org/10.1002/anie.200461885
    26 https://doi.org/10.1002/anie.200462114
    27 https://doi.org/10.1002/bltj.20102
    28 https://doi.org/10.1002/elps.200700047
    29 https://doi.org/10.1002/smll.200600732
    30 https://doi.org/10.1002/smll.200700049
    31 https://doi.org/10.1016/0304-3991(92)90499-a
    32 https://doi.org/10.1016/j.physa.2006.08.068
    33 https://doi.org/10.1016/j.tig.2007.12.007
    34 https://doi.org/10.1016/s0006-3495(99)77027-x
    35 https://doi.org/10.1016/s0006-3495(99)77153-5
    36 https://doi.org/10.1016/s1074-5521(97)90321-5
    37 https://doi.org/10.1021/ar000138m
    38 https://doi.org/10.1021/bi00329a017
    39 https://doi.org/10.1021/ja042470p
    40 https://doi.org/10.1021/ja057123+
    41 https://doi.org/10.1021/ja068654g
    42 https://doi.org/10.1021/ja073174q
    43 https://doi.org/10.1021/ja0761840
    44 https://doi.org/10.1021/ja077082c
    45 https://doi.org/10.1021/jp077483e
    46 https://doi.org/10.1021/la061234k
    47 https://doi.org/10.1021/nl048030d
    48 https://doi.org/10.1021/nl048289w
    49 https://doi.org/10.1021/nl048654j
    50 https://doi.org/10.1021/nl0494001
    51 https://doi.org/10.1021/nl051063o
    52 https://doi.org/10.1021/nl051199m
    53 https://doi.org/10.1021/nl052107w
    54 https://doi.org/10.1021/nl0601076
    55 https://doi.org/10.1021/nl0619103
    56 https://doi.org/10.1021/nl062906u
    57 https://doi.org/10.1021/nl070462b
    58 https://doi.org/10.1021/nl071890k
    59 https://doi.org/10.1021/nl0726205
    60 https://doi.org/10.1063/1.1392367
    61 https://doi.org/10.1063/1.2357118
    62 https://doi.org/10.1063/1.2835350
    63 https://doi.org/10.1073/pnas.0502947102
    64 https://doi.org/10.1073/pnas.0506130103
    65 https://doi.org/10.1073/pnas.0510725103
    66 https://doi.org/10.1073/pnas.93.24.13770
    67 https://doi.org/10.1073/pnas.97.3.1079
    68 https://doi.org/10.1080/07391102.1989.10507773
    69 https://doi.org/10.1088/0953-8984/15/17/202
    70 https://doi.org/10.1088/0953-8984/15/32/203
    71 https://doi.org/10.1088/0957-4484/17/13/014
    72 https://doi.org/10.1088/0957-4484/17/3/002
    73 https://doi.org/10.1088/0957-4484/18/30/305505
    74 https://doi.org/10.1088/0957-4484/18/42/424018
    75 https://doi.org/10.1103/physreve.67.041913
    76 https://doi.org/10.1103/physreve.74.011919
    77 https://doi.org/10.1103/physreve.77.031904
    78 https://doi.org/10.1103/physrevlett.86.3435
    79 https://doi.org/10.1103/physrevlett.90.238101
    80 https://doi.org/10.1103/physrevlett.96.118103
    81 https://doi.org/10.1103/revmodphys.80.141
    82 https://doi.org/10.1126/science.232.4746.48
    83 https://doi.org/10.1146/annurev.bi.63.070194.004021
    84 https://doi.org/10.1373/clinchem.2007.091231
    85 https://doi.org/10.1529/biophysj.104.040212
    86 https://doi.org/10.1529/biophysj.104.041814
    87 https://doi.org/10.1529/biophysj.104.042960
    88 https://doi.org/10.1529/biophysj.104.047274
    89 https://doi.org/10.1529/biophysj.104.058727
    90 https://doi.org/10.1529/biophysj.106.085548
    91 https://doi.org/10.1529/biophysj.106.089268
    92 https://doi.org/10.1529/biophysj.106.094060
    93 https://doi.org/10.1529/biophysj.106.102269
    94 https://doi.org/10.1529/biophysj.108.137760
    95 https://doi.org/10.2217/17435889.2.4.459
    96 schema:datePublished 2008-10
    97 schema:datePublishedReg 2008-10-01
    98 schema:description A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.
    99 schema:genre research_article
    100 schema:inLanguage en
    101 schema:isAccessibleForFree true
    102 schema:isPartOf N37276e6f5558439cb3673c0d437a6b45
    103 Ne5096da753794e60b23dbc6f8c735987
    104 sg:journal.1115214
    105 schema:name The potential and challenges of nanopore sequencing
    106 schema:pagination 1146-1153
    107 schema:productId N78baf49b727c4680bc5e466519e521ed
    108 N87daa960ad1d40b6956c25bf6245c784
    109 N940d9e4164d5424c83e63c7f69beaa50
    110 Na584d90a0f03490ea299777e44f48d51
    111 Nefd7d9f53ec04820acd343864d44cb14
    112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037155475
    113 https://doi.org/10.1038/nbt.1495
    114 schema:sdDatePublished 2019-04-10T18:56
    115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    116 schema:sdPublisher N137b236989cd4e00a888d9be0b99a5bd
    117 schema:url http://www.nature.com/articles/nbt.1495
    118 sgo:license sg:explorer/license/
    119 sgo:sdDataset articles
    120 rdf:type schema:ScholarlyArticle
    121 N0804b5845e8842cf8ee123506badff6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    122 schema:name DNA
    123 rdf:type schema:DefinedTerm
    124 N09390de74c46430e83aee2eec22ad49e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Nanostructures
    126 rdf:type schema:DefinedTerm
    127 N0e1b5521901641059c6d5cfffbf4c27b rdf:first sg:person.01146162630.66
    128 rdf:rest Nbafa534742f3417fa832f564a2d376e7
    129 N118e6799f624486e9615ee82e7fe8753 rdf:first sg:person.010324152712.91
    130 rdf:rest N80c22052132349daa37741ae33376afe
    131 N137b236989cd4e00a888d9be0b99a5bd schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 N161c1a3ce91f40a4b80cee1ef115d3e5 rdf:first sg:person.0737547372.38
    134 rdf:rest Nc7d76f38cae248e9814119d8a43b1efe
    135 N2328e26b0e5043b3b1403d95b3c37f16 rdf:first sg:person.0726576143.07
    136 rdf:rest Nd6a861b09ce641478045748d8a2df882
    137 N23ec7641f1a04dd39764a4273105d703 rdf:first sg:person.012470512553.96
    138 rdf:rest N30ae832f161945f8a34c977ab42e3c89
    139 N24de8d8cef7b4448ab9683b91359e831 rdf:first sg:person.0632363342.05
    140 rdf:rest Nb618587a1f124fac9bf3737fcafc8a30
    141 N30ae832f161945f8a34c977ab42e3c89 rdf:first sg:person.0577522223.68
    142 rdf:rest Na44497dc4233463d8e8aa797f1e71169
    143 N3143f07dddf14cecb1d99718504a8ea0 rdf:first sg:person.01341614743.49
    144 rdf:rest N5e6249fb62244240b506028103b915a2
    145 N37276e6f5558439cb3673c0d437a6b45 schema:issueNumber 10
    146 rdf:type schema:PublicationIssue
    147 N51b01f79192f4b99ab97a9e824fdf30e schema:name Microchip Biotechnologies Inc., Dublin, California 94568, USA.
    148 rdf:type schema:Organization
    149 N5e6249fb62244240b506028103b915a2 rdf:first sg:person.0616210643.60
    150 rdf:rest Nd0c797c9278c4b6b8e536f1cf1fe4857
    151 N5f7235c4b4be45d88e23263bddabcf21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Chromosome Mapping
    153 rdf:type schema:DefinedTerm
    154 N6cf85b915f064a938dc9f28ab940ae3a schema:name NABsys, Inc., Providence, Rhode Island 02906, USA.
    155 rdf:type schema:Organization
    156 N6fac5c90774844be987d4c45402b7332 rdf:first sg:person.01331153340.61
    157 rdf:rest N8f91eb05922f4210934e18cde02be7b3
    158 N7008ff13dffc4a459a5d637c2acc4282 rdf:first sg:person.01231227443.17
    159 rdf:rest rdf:nil
    160 N77e1bd1b371247a3b7292e9d1ffb060f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Nanotechnology
    162 rdf:type schema:DefinedTerm
    163 N78baf49b727c4680bc5e466519e521ed schema:name nlm_unique_id
    164 schema:value 9604648
    165 rdf:type schema:PropertyValue
    166 N80c22052132349daa37741ae33376afe rdf:first sg:person.01044562214.54
    167 rdf:rest N24de8d8cef7b4448ab9683b91359e831
    168 N816cc7f957b84360b577adf59b75f068 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    169 schema:name Sequence Analysis, DNA
    170 rdf:type schema:DefinedTerm
    171 N873925a48c29445b83d6a011f3e18ea0 rdf:first sg:person.01073115173.02
    172 rdf:rest Nef9ba845befd49ec89f230252a8f0568
    173 N87daa960ad1d40b6956c25bf6245c784 schema:name pubmed_id
    174 schema:value 18846088
    175 rdf:type schema:PropertyValue
    176 N8f91eb05922f4210934e18cde02be7b3 rdf:first sg:person.0675332401.01
    177 rdf:rest Nb5a24e51c9ba47e0b2ad9f923d86d6b6
    178 N90cdff8677374e468cf1a9a8e1cc97bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Forecasting
    180 rdf:type schema:DefinedTerm
    181 N940d9e4164d5424c83e63c7f69beaa50 schema:name doi
    182 schema:value 10.1038/nbt.1495
    183 rdf:type schema:PropertyValue
    184 Na3d8ea57e03942fcbff5612a1fad7ea1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    185 schema:name Genomics
    186 rdf:type schema:DefinedTerm
    187 Na44497dc4233463d8e8aa797f1e71169 rdf:first sg:person.01053550155.34
    188 rdf:rest N2328e26b0e5043b3b1403d95b3c37f16
    189 Na584d90a0f03490ea299777e44f48d51 schema:name readcube_id
    190 schema:value b0feeeed014f98167303ae75e7bc46d90fc27c0f12cb7486f07cccae64de0628
    191 rdf:type schema:PropertyValue
    192 Nababa10bffec4410afda3efa8c79d769 rdf:first sg:person.01313422341.27
    193 rdf:rest N161c1a3ce91f40a4b80cee1ef115d3e5
    194 Naddd2e7695814a7d8ea44dfd1b76b29a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Sequence Alignment
    196 rdf:type schema:DefinedTerm
    197 Nb0a93c13ec194aa989dc2113db663877 rdf:first sg:person.01267640443.74
    198 rdf:rest N23ec7641f1a04dd39764a4273105d703
    199 Nb5a24e51c9ba47e0b2ad9f923d86d6b6 rdf:first sg:person.01046665643.63
    200 rdf:rest N0e1b5521901641059c6d5cfffbf4c27b
    201 Nb618587a1f124fac9bf3737fcafc8a30 rdf:first sg:person.01041625647.45
    202 rdf:rest N3143f07dddf14cecb1d99718504a8ea0
    203 Nbafa534742f3417fa832f564a2d376e7 rdf:first sg:person.01062745341.77
    204 rdf:rest N7008ff13dffc4a459a5d637c2acc4282
    205 Nc7d76f38cae248e9814119d8a43b1efe rdf:first sg:person.01156710260.51
    206 rdf:rest Nb0a93c13ec194aa989dc2113db663877
    207 Nd0c797c9278c4b6b8e536f1cf1fe4857 rdf:first sg:person.011426356417.25
    208 rdf:rest N6fac5c90774844be987d4c45402b7332
    209 Nd6a861b09ce641478045748d8a2df882 rdf:first sg:person.0733607412.05
    210 rdf:rest Nf008df617ec14b5ea3511e007d090100
    211 Ne5096da753794e60b23dbc6f8c735987 schema:volumeNumber 26
    212 rdf:type schema:PublicationVolume
    213 Nef9ba845befd49ec89f230252a8f0568 rdf:first sg:person.01245334451.10
    214 rdf:rest Nababa10bffec4410afda3efa8c79d769
    215 Nefd7d9f53ec04820acd343864d44cb14 schema:name dimensions_id
    216 schema:value pub.1037155475
    217 rdf:type schema:PropertyValue
    218 Nf008df617ec14b5ea3511e007d090100 rdf:first sg:person.0742104155.81
    219 rdf:rest N118e6799f624486e9615ee82e7fe8753
    220 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    221 schema:name Biological Sciences
    222 rdf:type schema:DefinedTerm
    223 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    224 schema:name Genetics
    225 rdf:type schema:DefinedTerm
    226 sg:grant.2529234 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1495
    227 rdf:type schema:MonetaryGrant
    228 sg:grant.2529245 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1495
    229 rdf:type schema:MonetaryGrant
    230 sg:grant.2613371 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1495
    231 rdf:type schema:MonetaryGrant
    232 sg:grant.2613388 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1495
    233 rdf:type schema:MonetaryGrant
    234 sg:journal.1115214 schema:issn 1087-0156
    235 1546-1696
    236 schema:name Nature Biotechnology
    237 rdf:type schema:Periodical
    238 sg:person.010324152712.91 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
    239 schema:familyName Lindsay
    240 schema:givenName Stuart
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324152712.91
    242 rdf:type schema:Person
    243 sg:person.01041625647.45 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
    244 schema:familyName Meller
    245 schema:givenName Amit
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041625647.45
    247 rdf:type schema:Person
    248 sg:person.01044562214.54 schema:affiliation https://www.grid.ac/institutes/grid.40263.33
    249 schema:familyName Ling
    250 schema:givenName Xinsheng Sean
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044562214.54
    252 rdf:type schema:Person
    253 sg:person.01046665643.63 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    254 schema:familyName Tabard-Cossa
    255 schema:givenName Vincent
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046665643.63
    257 rdf:type schema:Person
    258 sg:person.01053550155.34 schema:affiliation https://www.grid.ac/institutes/grid.420917.9
    259 schema:familyName Hibbs
    260 schema:givenName Andrew
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053550155.34
    262 rdf:type schema:Person
    263 sg:person.01062745341.77 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    264 schema:familyName Wiggin
    265 schema:givenName Matthew
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062745341.77
    267 rdf:type schema:Person
    268 sg:person.01073115173.02 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    269 schema:familyName Branton
    270 schema:givenName Daniel
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073115173.02
    272 rdf:type schema:Person
    273 sg:person.011426356417.25 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
    274 schema:familyName Ramsey
    275 schema:givenName J Michael
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011426356417.25
    277 rdf:type schema:Person
    278 sg:person.01146162630.66 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
    279 schema:familyName Wanunu
    280 schema:givenName Meni
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146162630.66
    282 rdf:type schema:Person
    283 sg:person.01156710260.51 schema:affiliation https://www.grid.ac/institutes/grid.417974.8
    284 schema:familyName Benner
    285 schema:givenName Steven A
    286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156710260.51
    287 rdf:type schema:Person
    288 sg:person.01231227443.17 schema:affiliation https://www.grid.ac/institutes/grid.280128.1
    289 schema:familyName Schloss
    290 schema:givenName Jeffery A
    291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231227443.17
    292 rdf:type schema:Person
    293 sg:person.01245334451.10 schema:affiliation https://www.grid.ac/institutes/grid.205975.c
    294 schema:familyName Deamer
    295 schema:givenName David W
    296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245334451.10
    297 rdf:type schema:Person
    298 sg:person.012470512553.96 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    299 schema:familyName Di Ventra
    300 schema:givenName Massimiliano
    301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012470512553.96
    302 rdf:type schema:Person
    303 sg:person.01267640443.74 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
    304 schema:familyName Butler
    305 schema:givenName Thomas
    306 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267640443.74
    307 rdf:type schema:Person
    308 sg:person.01313422341.27 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    309 schema:familyName Marziali
    310 schema:givenName Andre
    311 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313422341.27
    312 rdf:type schema:Person
    313 sg:person.01331153340.61 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
    314 schema:familyName Riehn
    315 schema:givenName Robert
    316 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331153340.61
    317 rdf:type schema:Person
    318 sg:person.01341614743.49 schema:affiliation N6cf85b915f064a938dc9f28ab940ae3a
    319 schema:familyName Oliver
    320 schema:givenName John S
    321 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341614743.49
    322 rdf:type schema:Person
    323 sg:person.0577522223.68 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    324 schema:familyName Garaj
    325 schema:givenName Slaven
    326 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577522223.68
    327 rdf:type schema:Person
    328 sg:person.0616210643.60 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    329 schema:familyName Pershin
    330 schema:givenName Yuriy V
    331 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616210643.60
    332 rdf:type schema:Person
    333 sg:person.0632363342.05 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
    334 schema:familyName Mastrangelo
    335 schema:givenName Carlos H
    336 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632363342.05
    337 rdf:type schema:Person
    338 sg:person.0675332401.01 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
    339 schema:familyName Soni
    340 schema:givenName Gautam V
    341 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675332401.01
    342 rdf:type schema:Person
    343 sg:person.0726576143.07 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    344 schema:familyName Huang
    345 schema:givenName Xiaohua
    346 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726576143.07
    347 rdf:type schema:Person
    348 sg:person.0733607412.05 schema:affiliation N51b01f79192f4b99ab97a9e824fdf30e
    349 schema:familyName Jovanovich
    350 schema:givenName Stevan B
    351 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733607412.05
    352 rdf:type schema:Person
    353 sg:person.0737547372.38 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    354 schema:familyName Bayley
    355 schema:givenName Hagan
    356 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737547372.38
    357 rdf:type schema:Person
    358 sg:person.0742104155.81 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    359 schema:familyName Krstic
    360 schema:givenName Predrag S
    361 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742104155.81
    362 rdf:type schema:Person
    363 sg:pub.10.1007/3-540-45713-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003600879
    364 https://doi.org/10.1007/3-540-45713-5_5
    365 rdf:type schema:CreativeWork
    366 sg:pub.10.1038/35084037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045265151
    367 https://doi.org/10.1038/35084037
    368 rdf:type schema:CreativeWork
    369 sg:pub.10.1038/nbt1008-1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053533041
    370 https://doi.org/10.1038/nbt1008-1113
    371 rdf:type schema:CreativeWork
    372 sg:pub.10.1038/nbt1485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022278679
    373 https://doi.org/10.1038/nbt1485
    374 rdf:type schema:CreativeWork
    375 sg:pub.10.1038/nbt1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005954516
    376 https://doi.org/10.1038/nbt1486
    377 rdf:type schema:CreativeWork
    378 sg:pub.10.1038/nchembio793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031950554
    379 https://doi.org/10.1038/nchembio793
    380 rdf:type schema:CreativeWork
    381 sg:pub.10.1038/nmat941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030841250
    382 https://doi.org/10.1038/nmat941
    383 rdf:type schema:CreativeWork
    384 sg:pub.10.1038/nmat965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043496789
    385 https://doi.org/10.1038/nmat965
    386 rdf:type schema:CreativeWork
    387 sg:pub.10.1038/nmeth1021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014966509
    388 https://doi.org/10.1038/nmeth1021
    389 rdf:type schema:CreativeWork
    390 sg:pub.10.1038/nnano.2007.344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001271085
    391 https://doi.org/10.1038/nnano.2007.344
    392 rdf:type schema:CreativeWork
    393 sg:pub.10.1038/nnano.2007.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021078964
    394 https://doi.org/10.1038/nnano.2007.381
    395 rdf:type schema:CreativeWork
    396 https://doi.org/10.1002/1522-2683(200208)23:16<2583::aid-elps2583>3.0.co;2-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1039866586
    397 rdf:type schema:CreativeWork
    398 https://doi.org/10.1002/adma.200601191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038208071
    399 rdf:type schema:CreativeWork
    400 https://doi.org/10.1002/anie.200461885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018415994
    401 rdf:type schema:CreativeWork
    402 https://doi.org/10.1002/anie.200462114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005368293
    403 rdf:type schema:CreativeWork
    404 https://doi.org/10.1002/bltj.20102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026762223
    405 rdf:type schema:CreativeWork
    406 https://doi.org/10.1002/elps.200700047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033706082
    407 rdf:type schema:CreativeWork
    408 https://doi.org/10.1002/smll.200600732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042622325
    409 rdf:type schema:CreativeWork
    410 https://doi.org/10.1002/smll.200700049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033915195
    411 rdf:type schema:CreativeWork
    412 https://doi.org/10.1016/0304-3991(92)90499-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046579877
    413 rdf:type schema:CreativeWork
    414 https://doi.org/10.1016/j.physa.2006.08.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007692256
    415 rdf:type schema:CreativeWork
    416 https://doi.org/10.1016/j.tig.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335183
    417 rdf:type schema:CreativeWork
    418 https://doi.org/10.1016/s0006-3495(99)77027-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049567590
    419 rdf:type schema:CreativeWork
    420 https://doi.org/10.1016/s0006-3495(99)77153-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030222196
    421 rdf:type schema:CreativeWork
    422 https://doi.org/10.1016/s1074-5521(97)90321-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006663312
    423 rdf:type schema:CreativeWork
    424 https://doi.org/10.1021/ar000138m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055148249
    425 rdf:type schema:CreativeWork
    426 https://doi.org/10.1021/bi00329a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055170486
    427 rdf:type schema:CreativeWork
    428 https://doi.org/10.1021/ja042470p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055835598
    429 rdf:type schema:CreativeWork
    430 https://doi.org/10.1021/ja057123+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1033489924
    431 rdf:type schema:CreativeWork
    432 https://doi.org/10.1021/ja068654g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055844027
    433 rdf:type schema:CreativeWork
    434 https://doi.org/10.1021/ja073174q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055845204
    435 rdf:type schema:CreativeWork
    436 https://doi.org/10.1021/ja0761840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002191378
    437 rdf:type schema:CreativeWork
    438 https://doi.org/10.1021/ja077082c schema:sameAs https://app.dimensions.ai/details/publication/pub.1043668942
    439 rdf:type schema:CreativeWork
    440 https://doi.org/10.1021/jp077483e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056074893
    441 rdf:type schema:CreativeWork
    442 https://doi.org/10.1021/la061234k schema:sameAs https://app.dimensions.ai/details/publication/pub.1010265631
    443 rdf:type schema:CreativeWork
    444 https://doi.org/10.1021/nl048030d schema:sameAs https://app.dimensions.ai/details/publication/pub.1010322921
    445 rdf:type schema:CreativeWork
    446 https://doi.org/10.1021/nl048289w schema:sameAs https://app.dimensions.ai/details/publication/pub.1000291436
    447 rdf:type schema:CreativeWork
    448 https://doi.org/10.1021/nl048654j schema:sameAs https://app.dimensions.ai/details/publication/pub.1010592885
    449 rdf:type schema:CreativeWork
    450 https://doi.org/10.1021/nl0494001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044228549
    451 rdf:type schema:CreativeWork
    452 https://doi.org/10.1021/nl051063o schema:sameAs https://app.dimensions.ai/details/publication/pub.1003445790
    453 rdf:type schema:CreativeWork
    454 https://doi.org/10.1021/nl051199m schema:sameAs https://app.dimensions.ai/details/publication/pub.1034200741
    455 rdf:type schema:CreativeWork
    456 https://doi.org/10.1021/nl052107w schema:sameAs https://app.dimensions.ai/details/publication/pub.1012253571
    457 rdf:type schema:CreativeWork
    458 https://doi.org/10.1021/nl0601076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017504546
    459 rdf:type schema:CreativeWork
    460 https://doi.org/10.1021/nl0619103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216875
    461 rdf:type schema:CreativeWork
    462 https://doi.org/10.1021/nl062906u schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217052
    463 rdf:type schema:CreativeWork
    464 https://doi.org/10.1021/nl070462b schema:sameAs https://app.dimensions.ai/details/publication/pub.1013352629
    465 rdf:type schema:CreativeWork
    466 https://doi.org/10.1021/nl071890k schema:sameAs https://app.dimensions.ai/details/publication/pub.1024637030
    467 rdf:type schema:CreativeWork
    468 https://doi.org/10.1021/nl0726205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022633772
    469 rdf:type schema:CreativeWork
    470 https://doi.org/10.1063/1.1392367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702306
    471 rdf:type schema:CreativeWork
    472 https://doi.org/10.1063/1.2357118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025560513
    473 rdf:type schema:CreativeWork
    474 https://doi.org/10.1063/1.2835350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057877530
    475 rdf:type schema:CreativeWork
    476 https://doi.org/10.1073/pnas.0502947102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019046743
    477 rdf:type schema:CreativeWork
    478 https://doi.org/10.1073/pnas.0506130103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038678460
    479 rdf:type schema:CreativeWork
    480 https://doi.org/10.1073/pnas.0510725103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049264990
    481 rdf:type schema:CreativeWork
    482 https://doi.org/10.1073/pnas.93.24.13770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016336761
    483 rdf:type schema:CreativeWork
    484 https://doi.org/10.1073/pnas.97.3.1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041054957
    485 rdf:type schema:CreativeWork
    486 https://doi.org/10.1080/07391102.1989.10507773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002321858
    487 rdf:type schema:CreativeWork
    488 https://doi.org/10.1088/0953-8984/15/17/202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029291567
    489 rdf:type schema:CreativeWork
    490 https://doi.org/10.1088/0953-8984/15/32/203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009994961
    491 rdf:type schema:CreativeWork
    492 https://doi.org/10.1088/0957-4484/17/13/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007076960
    493 rdf:type schema:CreativeWork
    494 https://doi.org/10.1088/0957-4484/17/3/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000374893
    495 rdf:type schema:CreativeWork
    496 https://doi.org/10.1088/0957-4484/18/30/305505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040789246
    497 rdf:type schema:CreativeWork
    498 https://doi.org/10.1088/0957-4484/18/42/424018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031460389
    499 rdf:type schema:CreativeWork
    500 https://doi.org/10.1103/physreve.67.041913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060729910
    501 rdf:type schema:CreativeWork
    502 https://doi.org/10.1103/physreve.74.011919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060734789
    503 rdf:type schema:CreativeWork
    504 https://doi.org/10.1103/physreve.77.031904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060737125
    505 rdf:type schema:CreativeWork
    506 https://doi.org/10.1103/physrevlett.86.3435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822884
    507 rdf:type schema:CreativeWork
    508 https://doi.org/10.1103/physrevlett.90.238101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016991327
    509 rdf:type schema:CreativeWork
    510 https://doi.org/10.1103/physrevlett.96.118103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831977
    511 rdf:type schema:CreativeWork
    512 https://doi.org/10.1103/revmodphys.80.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024856382
    513 rdf:type schema:CreativeWork
    514 https://doi.org/10.1126/science.232.4746.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532195
    515 rdf:type schema:CreativeWork
    516 https://doi.org/10.1146/annurev.bi.63.070194.004021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011392853
    517 rdf:type schema:CreativeWork
    518 https://doi.org/10.1373/clinchem.2007.091231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035276375
    519 rdf:type schema:CreativeWork
    520 https://doi.org/10.1529/biophysj.104.040212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048744447
    521 rdf:type schema:CreativeWork
    522 https://doi.org/10.1529/biophysj.104.041814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038897645
    523 rdf:type schema:CreativeWork
    524 https://doi.org/10.1529/biophysj.104.042960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016067119
    525 rdf:type schema:CreativeWork
    526 https://doi.org/10.1529/biophysj.104.047274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022535175
    527 rdf:type schema:CreativeWork
    528 https://doi.org/10.1529/biophysj.104.058727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030155710
    529 rdf:type schema:CreativeWork
    530 https://doi.org/10.1529/biophysj.106.085548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000085237
    531 rdf:type schema:CreativeWork
    532 https://doi.org/10.1529/biophysj.106.089268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029984447
    533 rdf:type schema:CreativeWork
    534 https://doi.org/10.1529/biophysj.106.094060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038919191
    535 rdf:type schema:CreativeWork
    536 https://doi.org/10.1529/biophysj.106.102269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037118122
    537 rdf:type schema:CreativeWork
    538 https://doi.org/10.1529/biophysj.108.137760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007694232
    539 rdf:type schema:CreativeWork
    540 https://doi.org/10.2217/17435889.2.4.459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003026977
    541 rdf:type schema:CreativeWork
    542 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
    543 schema:name Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
    544 rdf:type schema:Organization
    545 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
    546 schema:name Department of Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
    547 Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
    548 rdf:type schema:Organization
    549 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
    550 schema:name Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA.
    551 rdf:type schema:Organization
    552 https://www.grid.ac/institutes/grid.205975.c schema:alternateName University of California, Santa Cruz
    553 schema:name Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.
    554 rdf:type schema:Organization
    555 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
    556 schema:name Departments of Physics and Chemistry and the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.
    557 rdf:type schema:Organization
    558 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
    559 schema:name Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA.
    560 Department of Physics, University of California at San Diego, La Jolla, California 92093, USA.
    561 rdf:type schema:Organization
    562 https://www.grid.ac/institutes/grid.280128.1 schema:alternateName National Human Genome Research Institute
    563 schema:name National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
    564 rdf:type schema:Organization
    565 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
    566 schema:name Department of Physics, University of Washington, Seattle, Washington 98195, USA.
    567 rdf:type schema:Organization
    568 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    569 schema:name Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
    570 Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
    571 rdf:type schema:Organization
    572 https://www.grid.ac/institutes/grid.40263.33 schema:alternateName Brown University
    573 schema:name Department of Physics, Brown University, Providence, Rhode Island 02912, USA.
    574 rdf:type schema:Organization
    575 https://www.grid.ac/institutes/grid.40803.3f schema:alternateName North Carolina State University
    576 schema:name Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA.
    577 rdf:type schema:Organization
    578 https://www.grid.ac/institutes/grid.410711.2 schema:alternateName University of North Carolina System
    579 schema:name Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
    580 rdf:type schema:Organization
    581 https://www.grid.ac/institutes/grid.417974.8 schema:alternateName Foundation for Applied Molecular Evolution
    582 schema:name Foundation for Applied Molecular Evolution, Gainesville, Florida 32604, USA.
    583 rdf:type schema:Organization
    584 https://www.grid.ac/institutes/grid.420917.9 schema:alternateName Electronic BioSciences (United States)
    585 schema:name Electronic BioSciences, San Diego, California 92121, USA.
    586 rdf:type schema:Organization
    587 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
    588 schema:name Department of Chemical Biology, Oxford University, Oxford OX1 3TA, UK.
    589 rdf:type schema:Organization
    590 https://www.grid.ac/institutes/grid.67105.35 schema:alternateName Case Western Reserve University
    591 schema:name Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106, USA.
    592 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...