The potential and challenges of nanopore sequencing View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-10

AUTHORS

Daniel Branton, David W Deamer, Andre Marziali, Hagan Bayley, Steven A Benner, Thomas Butler, Massimiliano Di Ventra, Slaven Garaj, Andrew Hibbs, Xiaohua Huang, Stevan B Jovanovich, Predrag S Krstic, Stuart Lindsay, Xinsheng Sean Ling, Carlos H Mastrangelo, Amit Meller, John S Oliver, Yuriy V Pershin, J Michael Ramsey, Robert Riehn, Gautam V Soni, Vincent Tabard-Cossa, Meni Wanunu, Matthew Wiggin, Jeffery A Schloss

ABSTRACT

A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h. More... »

PAGES

1146-1153

Journal

TITLE

Nature Biotechnology

ISSUE

10

VOLUME

26

Related Patents

  • Bare Single-Layer Graphene Membrane Having A Nanopore Enabling High-Sensitivity Molecular Detection And Analysis
  • Adaptors For Nucleic Acid Constructs In Transmembrane Sequencing
  • Biochemical Analysis Instrument
  • High Throughput Nucleic Acid Sequencing By Expansion
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Structure With Nanopore And Apparatus For Determining Sequences Of Nucleic Acids Including The Same
  • Methods For Sequencing A Biomolecule By Detecting Relative Positions Of Hybridized Probes
  • Molecular Adaptors
  • Enzyme-Pore Constructs
  • Nanopore Device With Graphene Supported Artificial Lipid Membrane
  • Reducing Background Fluorescence In Mems Materials By Low Energy Ion Beam Treatment
  • Nanopore-Based Polymer Analysis With Mutually-Quenching Fluorescent Labels
  • Methods And Compositions For Nanostructure-Based Nucleic Acid Sequencing
  • Hairpin Loop Method For Double Strand Polynucleotide Sequencing Using Transmembrane Pores
  • Study Of Polymer Molecules And Conformations With A Nanopore
  • Fabricate Self-Formed Nanometer Pore Array At Wafer Scale For Dna Sequencing
  • Methods And Apparatus For Characterizing Polynucleotides
  • Devices And Methods For Analyzing Biomolecules And Probes Bound Thereto
  • Devices And Methods For Target Molecule Characterization
  • Fabricating Self-Formed Nanometer Pore Array At Wafer Scale For Dna Sequencing
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Control Of Enzyme Translocation In Nanopore Sequencing
  • Translocation And Nucleotide Reading Mechanisms For Sequencing Nanodevices
  • Nanofluidic Channels With Gradual Depth Change For Reducing Entropic Barrier Of Biopolymers
  • Nanopore Sequencing Using Ratiometric Impedance
  • Integrated Nanowire/Nanosheet Nanogap And Nanopore For Dna And Rna Sequencing
  • Spectroscopy Using Nanopore Cavities
  • Characterizing Stretched Polynucleotides In A Synthetic Nanopassage
  • Nanopore-Based Nucleic Acid Analysis With Mixed Fret Detection
  • Graphene Transistor Gated By Charges Through A Nanopore For Bio-Molecular Sensing And Dna Sequencing
  • Electrical Double Layer Capacitive Devices And Methods Of Using Same For Sequencing Polymers And Detecting Analytes
  • Structure With Nanopore And Apparatus For Determining Sequences Of Nucleic Acids Including The Same
  • Massively Parallel Continguity Mapping
  • Using A Field Effect Device For Identifying Translocating Charge-Tagged Molecules In A Nanopore Sequencing Device
  • Fabrication Of Tunneling Junction For Nanopore Dna Sequencing
  • Systems And Devices For Molecule Sensing And Method Of Manufacturing Thereof
  • An Apparatus For Detection, Identification Of Molecules And Sequencing Of Dna, Rna Or Other Natural Or Artificial Polymers Using Graphene And A Laser Light Beam.
  • Increased Molecule Capture Rate Into A Nanopore
  • Biopolymer Sequencing By Hybridization Of Probes To Form Ternary Complexes And Variable Range Alignment
  • Use Of Longitudinally Displaced Nanoscale Electrodes For Voltage Sensing Of Biomolecules And Other Analytes In Fluidic Channels
  • Dna Sequencing Using Multiple Metal Layer Structure With Different Organic Coatings Forming Different Transient Bondings To Dna
  • Single Molecule Nucleic Acid Sequencing With Molecular Sensor Complexes
  • Process For Forming A Hexagonal Array
  • Methods For Amplification And Sequencing Using Thermostable Tthprimpol
  • Method
  • Enzyme Mutant
  • Hybridization Linkers
  • Ultrafast Sequencing Of Biological Polymers Using A Labeled Nanopore
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Sensor For Detection And Identification Of Analytes And A Method Thereof
  • Controlled Tunnel Gap Device For Sequencing Polymers
  • Method And Device For Identifying Nucleotide, And Method And Device For Determining Nucleotide Sequence Of Polynucleotide
  • Linear Valve Arrays
  • Nanopore Biosensors For Detection Of Proteins And Nucleic Acids
  • Nanopore Sequencing Using Ratiometric Impedance
  • Nanofluidic Channels With Gradual Depth Change For Reducing Entropic Barrier Of Biopolymers
  • Chemical Functionalization Of Solid-State Nanopores And Nanopore Arrays And Applications Thereof
  • Optimization Of Multigene Analysis Of Tumor Samples
  • Fabrication Of Tunneling Junction For Nanopore Dna Sequencing
  • Methods For Sequencing A Biomolecule By Detecting Relative Positions Of Hybridized Probes
  • Dna Sequencing Using Multiple Metal Layer Structure With Organic Coatings Forming Transient Bonding To Dna Bases
  • Tagged-Fragment Map Assembly
  • Nanopore Sequencing Using N-Mers
  • Integrated Carbon Nanotube Field Effect Transistor And Nanochannel For Sequencing
  • Nanopore Sequencing Using N-Mers
  • Measurement Of Analytes With Membrane Channel Molecules, And Bilayer Arrays
  • Mutant Lysenin Pores
  • Nanofluidic Biochemical Sensors Based On Surface Charge Modulated Ion Current
  • Study Of Polymer Molecules And Conformations With A Nanopore
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Sample Preparation Method
  • Integrated Carbon Nanotube Field Effect Transistor And Nanochannel For Sequencing
  • Methods Using Pores
  • Forming An Electrode Having Reduced Corrosion And Water Decomposition On Surface Using A Custom Oxide Layer
  • Dna Sequence Using Multiple Metal Layer Structure With Different Organic Coatings Forming Different Transient Bondings To Dna
  • Detecting And Sorting Methylated Dna Using A Synthetic Nanopore
  • Integrated Nanowire/Nanosheet Nanogap And Nanopore For Dna And Rna Sequencing
  • Characterization Of Individual Polymer Molecules Based On Monomer-Interface Interactions
  • Nanopore Sequencing Using Charge Blockade Labels
  • Efficient Optical Analysis Of Polymers Using Arrays Of Nanostructures
  • Assay Methods Using Nicking Endonucleases
  • Forming An Electrode Having Reduced Corrosion And Water Decomposition On Surface Using An Organic Protective Layer
  • Method For Identifying Transcriptional Regulatory Elements
  • Detection Of Nucleic Acid Lesions And Adducts Using Nanopores
  • Methods And Compositions For Nanostructure-Based Nucleic Acid Sequencing
  • A Method For Sequencing Of Biopolymers
  • Method And Apparatus For Sequencing Molecules
  • Sequence Analysis Using Decorated Nucleic Acids
  • Base-Detecting Pore
  • Apparatus And Method For Nucleic Acid Sequencing Based On Nanochannels
  • Use Of Longitudinally Displaced Nanoscale Electrodes For Voltage Sensing Of Biomolecules And Other Analytes In Fluidic Channels
  • Nano-Fluidic Field Effective Device To Control Dna Transport Through The Same
  • Ultrafast Sequencing Of Biological Polymers Using A Labeled Nanopore
  • Fluorescence-Based Analysis Of Biopolymers Using Nanopores
  • Quadruplex Method
  • Nano Pores Unit For Cutting Long Dna - Molecules In Fragments
  • Nanopore Functionality Control
  • Msp Nanopores And Related Methods
  • Noise Reduction Methods For Nucleic Acid And Macromolecule Sequencing
  • Methods For Accurate Sequence Data And Modified Base Position Determination
  • Nucleic Acid Ligation Systems And Methods
  • Methods Of Enhancing Translocation Of Charged Analytes Through Transmembrane Protein Pores
  • Nanopore Sensor Comprising A Sub-Nanometer-Thick Layer
  • Nanofluidic Channels With Gradual Depth Change For Reducing Entropic Barrier Of Biopolymers
  • Field Effect Based Nanosensor For Biopolymer Manipulation And Detection
  • Method For Deducing A Polymer Sequence From A Nominal Base-By-Base Measurement
  • Devices And Methods For Determining The Length Of Biopolymers And Distances Between Probes Bound Thereto
  • Devices And Methods For Determining The Length Of Biopolymers And Distances Between Probes Bound Thereto
  • Graphene Transistor Gated By Charges Through A Nanopore For Bio-Molecular Sensing And Dna Sequencing
  • Method And Apparatus For Controlling Materials Through A Through-Hole
  • Heterojunction Nanopore For Sequencing
  • Use Of Nanopores - Arrays For The Multiplex - Sequencing Of Nucleic Acids
  • Controlled Tunnel Gap Device For Sequencing Polymers
  • Biochemical Analysis Instrument
  • Msp Nanopores And Related Methods
  • Fabricate Self-Formed Nanometer Pore Array At Wafer Scale For Dna Sequencing
  • Structure With Nanopore And Apparatus For Determining Sequences Of Nucleic Acids Including The Same
  • Nanopore Sequencing Using N-Mers
  • Field Effect Based Nanosensor For Biopolymer Manipulation And Detection
  • Systems And Methods For Isolating Nucleic Acids
  • Mutant Pores
  • Method For Deducing A Polymer Sequence From A Nominal Base-By-Base Measurement
  • Devices And Methods For Determining The Length Of Biopolymers And Distances Between Probes Bound Thereto
  • Plasmonic Force Manipulation In Nanostructures
  • Aptamers And Uses Thereof
  • Compositions And Methods For Aptamer Screening
  • Methods And Apparatuses For Filtering Water Fluid By Screening Ionic Minerals
  • Method Of Characterizing A Target Ribonucleic Acid (Rna) Comprising Forming A Complementary Polynucleotide Which Moves Through A Transmembrane Pore
  • Method And Apparatus For Sequencing Molecules
  • Nanofluidic Sorting System For Gene Synthesis And Pcr Reaction Products
  • Functionally Switchable Self-Assembled Coating Compound For Controlling Translocation Of Molecule Through Nanopores
  • Functionally Switchable Self-Assembled Coating Compound For Controlling Translocation Of Molecule Through Nanopores
  • Nanopore-Facilitated Single Molecule Detection Of Nucleic Acids
  • Biomarker Associated With Irritable Bowel Syndrome And Crohn's Disease
  • Apparatus And Methods For Analysis Of Biomolecules Using High Frequency Alternating Current Excitation
  • Reducing Sequence Read Count Error In Assessment Of Complex Genetic Variations
  • Graphene Transistor Gated By Charges Through A Nanopore For Bio-Molecular Sensing And Dna Sequencing
  • Characterization Of Individual Polymer Molecules Based On Monomer-Interface Interactions
  • Nano-Fluidic Field Effective Device To Control Dna Transport Through The Same
  • Nanofluidic Channels With Gradual Depth Change For Reducing Entropic Barrier Of Biopolymers
  • Methods And Compositions For Analyzing Nucleic Acid
  • Msp Nanopores And Related Methods
  • Microfluidic Devices
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Nanopore Device And A Method For Nucleic Acid Analysis
  • Nanogap Device With Capped Nanowire Structures
  • Methods And Processes For Non-Invasive Assessment Of Genetic Variations
  • Systems And Methods For Isolating Nucleic Acids From Cellular Samples
  • Biopolymer Sequencing By Hybridization Of Probes To Form Ternary Complexes And Variable Range Alignment
  • Heterojunction Nanopore For Sequencing
  • Enzyme-Pore Constructs
  • Msp Nanopores And Related Methods
  • Methods For Accurate Sequence Data And Modified Base Position Determination
  • Dna Sequencing And Amplification Systems Using Nanoscale Field Effect Sensor Arrays
  • Ultrafast Sequencing Of Biological Polymers Using A Labeled Nanopore
  • Multiplexed Identification Of Nucleic Acid Sequences
  • Multiplex Capture Of Nucleic Acids
  • Nanopore Based Device For Cutting Long Dna Molecules Into Fragments
  • Msp Nanopores And Related Methods
  • Membrane-Integrated Viral Dna-Packaging Motor Protein Connector Biosensor For Dna Sequencing And Other Uses
  • Analyte Sequencing With Nanopores
  • Method For Sequencing A Heteropolymeric Target Nucleic Acid Sequence
  • Nanostructured Substrates For Surface Enhanced Raman Spectroscopy (Sers) And Detection Of Biological And Chemical Analytes By Electrical Double Layer (Edl) Capacitance
  • Detection Of Nucleic Acid Lesions And Adducts Using Nanopores
  • Electron Beam Sculpting Of Tunneling Junction For Nanopore Dna Sequencing
  • Hybridization Linkers
  • Sequence Preserved Dna Conversion For Optical Nanopore Sequencing
  • Plasmonic Force Manipulation In Nanostructures
  • Study Of Polymer Molecules And Conformations With A Nanopore
  • Methods For Accurate Sequence Data And Modified Base Position Determination
  • Method And Apparatus For The Analysis And Identification Of Molecules
  • Methods For Sequencing A Biomolecule By Detecting Relative Positions Of Hybridized Probes
  • Translocation And Nucleotide Reading Mechanisms For Sequencing Nanodevices
  • Nanopore Sequencing Using Charge Blockade Labels
  • Bare Single-Layer Graphene Membrane Having A Nanopore Enabling High-Sensitivity Molecular Detection And Analysis
  • Nucleic Acid Based Nanopores Or Transmembrane Channels And Their Uses
  • Multiplexed Identification Of Nucleic Acid Sequences
  • Linear Valve Arrays
  • Concentrating A Target Molecule For Sensing By A Nanopore
  • Graphene Supported Artificial Membranes And Uses Thereof
  • Biochemical Analysis Instrument
  • Ultrafast Sequencing Of Biological Polymers Using A Labeled Nanopore
  • Base Recognition Based On The Conformation Change Of A Motor Molecule
  • Assay Methods Using Nicking Endonucleases
  • High Throughput Nucleic Acid Sequencing By Expansion
  • Electron Beam Sculpting Of Tunneling Junction For Nanopore Dna Sequencing
  • Manufacturable Sub-3 Nanometer Palladium Gap Devices For Fixed Electrode Tunneling Recognition
  • Dna Sequencing Using Multiple Metal Layer Structure With Different Organic Coatings Forming Different Transient Bondings To Dna
  • Method And Apparatus For The Analysis And Identification Of Molecules
  • Use Of Aptamers In Proteomics
  • Multiplex Capture Of Nucleic Acids
  • A Method For Producing A Nanopore For Sequencing Of A Biopolymer
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nbt.1495

    DOI

    http://dx.doi.org/10.1038/nbt.1495

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1037155475

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/18846088


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosome Mapping", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Forecasting", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanostructures", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nanotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Alignment", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, DNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Branton", 
            "givenName": "Daniel", 
            "id": "sg:person.01073115173.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073115173.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Santa Cruz", 
              "id": "https://www.grid.ac/institutes/grid.205975.c", 
              "name": [
                "Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Deamer", 
            "givenName": "David W", 
            "id": "sg:person.01245334451.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245334451.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Marziali", 
            "givenName": "Andre", 
            "id": "sg:person.01313422341.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313422341.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Oxford", 
              "id": "https://www.grid.ac/institutes/grid.4991.5", 
              "name": [
                "Department of Chemical Biology, Oxford University, Oxford OX1 3TA, UK."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bayley", 
            "givenName": "Hagan", 
            "id": "sg:person.0737547372.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737547372.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Foundation for Applied Molecular Evolution", 
              "id": "https://www.grid.ac/institutes/grid.417974.8", 
              "name": [
                "Foundation for Applied Molecular Evolution, Gainesville, Florida 32604, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benner", 
            "givenName": "Steven A", 
            "id": "sg:person.01156710260.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156710260.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Washington", 
              "id": "https://www.grid.ac/institutes/grid.34477.33", 
              "name": [
                "Department of Physics, University of Washington, Seattle, Washington 98195, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Butler", 
            "givenName": "Thomas", 
            "id": "sg:person.01267640443.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267640443.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Physics, University of California at San Diego, La Jolla, California 92093, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Di Ventra", 
            "givenName": "Massimiliano", 
            "id": "sg:person.012470512553.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012470512553.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Garaj", 
            "givenName": "Slaven", 
            "id": "sg:person.0577522223.68", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577522223.68"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Electronic BioSciences (United States)", 
              "id": "https://www.grid.ac/institutes/grid.420917.9", 
              "name": [
                "Electronic BioSciences, San Diego, California 92121, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hibbs", 
            "givenName": "Andrew", 
            "id": "sg:person.01053550155.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053550155.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Xiaohua", 
            "id": "sg:person.0726576143.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726576143.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Microchip Biotechnologies Inc., Dublin, California 94568, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jovanovich", 
            "givenName": "Stevan B", 
            "id": "sg:person.0733607412.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733607412.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Oak Ridge National Laboratory", 
              "id": "https://www.grid.ac/institutes/grid.135519.a", 
              "name": [
                "Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Krstic", 
            "givenName": "Predrag S", 
            "id": "sg:person.0742104155.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742104155.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Arizona State University", 
              "id": "https://www.grid.ac/institutes/grid.215654.1", 
              "name": [
                "Departments of Physics and Chemistry and the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lindsay", 
            "givenName": "Stuart", 
            "id": "sg:person.010324152712.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324152712.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Brown University", 
              "id": "https://www.grid.ac/institutes/grid.40263.33", 
              "name": [
                "Department of Physics, Brown University, Providence, Rhode Island 02912, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ling", 
            "givenName": "Xinsheng Sean", 
            "id": "sg:person.01044562214.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044562214.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Case Western Reserve University", 
              "id": "https://www.grid.ac/institutes/grid.67105.35", 
              "name": [
                "Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mastrangelo", 
            "givenName": "Carlos H", 
            "id": "sg:person.0632363342.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632363342.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University", 
              "id": "https://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Meller", 
            "givenName": "Amit", 
            "id": "sg:person.01041625647.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041625647.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "NABsys, Inc., Providence, Rhode Island 02906, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Oliver", 
            "givenName": "John S", 
            "id": "sg:person.01341614743.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341614743.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, San Diego", 
              "id": "https://www.grid.ac/institutes/grid.266100.3", 
              "name": [
                "Department of Physics, University of California at San Diego, La Jolla, California 92093, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pershin", 
            "givenName": "Yuriy V", 
            "id": "sg:person.0616210643.60", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616210643.60"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of North Carolina System", 
              "id": "https://www.grid.ac/institutes/grid.410711.2", 
              "name": [
                "Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ramsey", 
            "givenName": "J Michael", 
            "id": "sg:person.011426356417.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011426356417.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Carolina State University", 
              "id": "https://www.grid.ac/institutes/grid.40803.3f", 
              "name": [
                "Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Riehn", 
            "givenName": "Robert", 
            "id": "sg:person.01331153340.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331153340.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University", 
              "id": "https://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soni", 
            "givenName": "Gautam V", 
            "id": "sg:person.0675332401.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675332401.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tabard-Cossa", 
            "givenName": "Vincent", 
            "id": "sg:person.01046665643.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046665643.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Boston University", 
              "id": "https://www.grid.ac/institutes/grid.189504.1", 
              "name": [
                "Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wanunu", 
            "givenName": "Meni", 
            "id": "sg:person.01146162630.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146162630.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of British Columbia", 
              "id": "https://www.grid.ac/institutes/grid.17091.3e", 
              "name": [
                "Department of Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wiggin", 
            "givenName": "Matthew", 
            "id": "sg:person.01062745341.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062745341.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Human Genome Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.280128.1", 
              "name": [
                "National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schloss", 
            "givenName": "Jeffery A", 
            "id": "sg:person.01231227443.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231227443.17"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1529/biophysj.106.085548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000085237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048289w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000291436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048289w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000291436"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/17/3/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000374893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/17/3/002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000374893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001271085", 
              "https://doi.org/10.1038/nnano.2007.344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja0761840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002191378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja0761840", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002191378"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/07391102.1989.10507773", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002321858"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2217/17435889.2.4.459", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003026977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl051063o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003445790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl051063o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003445790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45713-5_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003600879", 
              "https://doi.org/10.1007/3-540-45713-5_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-45713-5_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003600879", 
              "https://doi.org/10.1007/3-540-45713-5_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.200462114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005368293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005954516", 
              "https://doi.org/10.1038/nbt1486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1074-5521(97)90321-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006663312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/17/13/014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007076960"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physa.2006.08.068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007692256"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.108.137760", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007694232"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/15/32/203", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009994961"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la061234k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010265631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/la061234k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010265631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048030d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010322921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048030d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010322921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048654j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010592885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl048654j", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010592885"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev.bi.63.070194.004021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011392853"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl052107w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012253571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl052107w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012253571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl070462b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013352629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl070462b", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013352629"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014966509", 
              "https://doi.org/10.1038/nmeth1021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.042960", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016067119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.93.24.13770", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016336761"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.238101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016991327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.90.238101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016991327"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0601076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017504546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0601076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017504546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.200461885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018415994"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0502947102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019046743"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2007.381", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021078964", 
              "https://doi.org/10.1038/nnano.2007.381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022278679", 
              "https://doi.org/10.1038/nbt1485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.047274", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022535175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0726205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022633772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0726205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022633772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl071890k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024637030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl071890k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024637030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.80.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024856382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.80.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024856382"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2357118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025560513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bltj.20102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026762223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/bltj.20102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026762223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2007.12.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027335183"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/15/17/202", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029291567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.106.089268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029984447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.058727", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030155710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(99)77153-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030222196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030841250", 
              "https://doi.org/10.1038/nmat941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat941", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030841250", 
              "https://doi.org/10.1038/nmat941"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/18/42/424018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031460389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031950554", 
              "https://doi.org/10.1038/nchembio793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031950554", 
              "https://doi.org/10.1038/nchembio793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja057123+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033489924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja057123+", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033489924"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/elps.200700047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033706082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.200700049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033915195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl051199m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034200741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl051199m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034200741"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1373/clinchem.2007.091231", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035276375"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.106.102269", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037118122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/adma.200601191", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038208071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0506130103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038678460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.041814", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038897645"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.106.094060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038919191"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1522-2683(200208)23:16<2583::aid-elps2583>3.0.co;2-h", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039866586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/18/30/305505", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040789246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.97.3.1079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041054957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/smll.200600732", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042622325"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043496789", 
              "https://doi.org/10.1038/nmat965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat965", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043496789", 
              "https://doi.org/10.1038/nmat965"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja077082c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043668942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja077082c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043668942"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0494001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044228549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0494001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044228549"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35084037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045265151", 
              "https://doi.org/10.1038/35084037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35084037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045265151", 
              "https://doi.org/10.1038/35084037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3991(92)90499-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046579877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0304-3991(92)90499-a", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046579877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1529/biophysj.104.040212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048744447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0510725103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049264990"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0006-3495(99)77027-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049567590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1008-1113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053533041", 
              "https://doi.org/10.1038/nbt1008-1113"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar000138m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055148249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar000138m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055148249"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/bi00329a017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055170486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja042470p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055835598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja042470p", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055835598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja068654g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055844027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja068654g", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055844027"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja073174q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055845204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ja073174q", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055845204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp077483e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056074893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/jp077483e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056074893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0619103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056216875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl0619103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056216875"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl062906u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056217052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl062906u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056217052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1392367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057702306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.2835350", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057877530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.041913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060729910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.67.041913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060729910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.011919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060734789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.74.011919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060734789"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.77.031904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060737125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.77.031904", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060737125"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.3435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060822884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.3435", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060822884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.118103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060831977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.96.118103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060831977"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.232.4746.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062532195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.232.4746.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062532195"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-10", 
        "datePublishedReg": "2008-10-01", 
        "description": "A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nbt.1495", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2529245", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2613388", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2613371", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2529234", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1115214", 
            "issn": [
              "1087-0156", 
              "1546-1696"
            ], 
            "name": "Nature Biotechnology", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "name": "The potential and challenges of nanopore sequencing", 
        "pagination": "1146-1153", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b0feeeed014f98167303ae75e7bc46d90fc27c0f12cb7486f07cccae64de0628"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "18846088"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9604648"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nbt.1495"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1037155475"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nbt.1495", 
          "https://app.dimensions.ai/details/publication/pub.1037155475"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000425.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://www.nature.com/articles/nbt.1495"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nbt.1495'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nbt.1495'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nbt.1495'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nbt.1495'


     

    This table displays all metadata directly associated to this object as RDF triples.

    592 TRIPLES      21 PREDICATES      121 URIs      29 LITERALS      17 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nbt.1495 schema:about N1e2b68932b664cb6982a6666a7b8a0b4
    2 N421a3b2f2e8e41318eb597f9903f9dc0
    3 N616d03be4ed34fceaae57c1dbd2c3780
    4 N912aa572808d409599eb24d3d3e0b24d
    5 Na731d8dcb62d4fb69b02ba3426a92209
    6 Naf68e0f50a2d494dabe874e1a8ca5477
    7 Nc22a94e037144b888eff470e81568866
    8 Nd8021f5a929d488bb2805b771b08040a
    9 anzsrc-for:06
    10 anzsrc-for:0604
    11 schema:author N3cbc3d9df60546fb8b2cdc9cc6c645cc
    12 schema:citation sg:pub.10.1007/3-540-45713-5_5
    13 sg:pub.10.1038/35084037
    14 sg:pub.10.1038/nbt1008-1113
    15 sg:pub.10.1038/nbt1485
    16 sg:pub.10.1038/nbt1486
    17 sg:pub.10.1038/nchembio793
    18 sg:pub.10.1038/nmat941
    19 sg:pub.10.1038/nmat965
    20 sg:pub.10.1038/nmeth1021
    21 sg:pub.10.1038/nnano.2007.344
    22 sg:pub.10.1038/nnano.2007.381
    23 https://doi.org/10.1002/1522-2683(200208)23:16<2583::aid-elps2583>3.0.co;2-h
    24 https://doi.org/10.1002/adma.200601191
    25 https://doi.org/10.1002/anie.200461885
    26 https://doi.org/10.1002/anie.200462114
    27 https://doi.org/10.1002/bltj.20102
    28 https://doi.org/10.1002/elps.200700047
    29 https://doi.org/10.1002/smll.200600732
    30 https://doi.org/10.1002/smll.200700049
    31 https://doi.org/10.1016/0304-3991(92)90499-a
    32 https://doi.org/10.1016/j.physa.2006.08.068
    33 https://doi.org/10.1016/j.tig.2007.12.007
    34 https://doi.org/10.1016/s0006-3495(99)77027-x
    35 https://doi.org/10.1016/s0006-3495(99)77153-5
    36 https://doi.org/10.1016/s1074-5521(97)90321-5
    37 https://doi.org/10.1021/ar000138m
    38 https://doi.org/10.1021/bi00329a017
    39 https://doi.org/10.1021/ja042470p
    40 https://doi.org/10.1021/ja057123+
    41 https://doi.org/10.1021/ja068654g
    42 https://doi.org/10.1021/ja073174q
    43 https://doi.org/10.1021/ja0761840
    44 https://doi.org/10.1021/ja077082c
    45 https://doi.org/10.1021/jp077483e
    46 https://doi.org/10.1021/la061234k
    47 https://doi.org/10.1021/nl048030d
    48 https://doi.org/10.1021/nl048289w
    49 https://doi.org/10.1021/nl048654j
    50 https://doi.org/10.1021/nl0494001
    51 https://doi.org/10.1021/nl051063o
    52 https://doi.org/10.1021/nl051199m
    53 https://doi.org/10.1021/nl052107w
    54 https://doi.org/10.1021/nl0601076
    55 https://doi.org/10.1021/nl0619103
    56 https://doi.org/10.1021/nl062906u
    57 https://doi.org/10.1021/nl070462b
    58 https://doi.org/10.1021/nl071890k
    59 https://doi.org/10.1021/nl0726205
    60 https://doi.org/10.1063/1.1392367
    61 https://doi.org/10.1063/1.2357118
    62 https://doi.org/10.1063/1.2835350
    63 https://doi.org/10.1073/pnas.0502947102
    64 https://doi.org/10.1073/pnas.0506130103
    65 https://doi.org/10.1073/pnas.0510725103
    66 https://doi.org/10.1073/pnas.93.24.13770
    67 https://doi.org/10.1073/pnas.97.3.1079
    68 https://doi.org/10.1080/07391102.1989.10507773
    69 https://doi.org/10.1088/0953-8984/15/17/202
    70 https://doi.org/10.1088/0953-8984/15/32/203
    71 https://doi.org/10.1088/0957-4484/17/13/014
    72 https://doi.org/10.1088/0957-4484/17/3/002
    73 https://doi.org/10.1088/0957-4484/18/30/305505
    74 https://doi.org/10.1088/0957-4484/18/42/424018
    75 https://doi.org/10.1103/physreve.67.041913
    76 https://doi.org/10.1103/physreve.74.011919
    77 https://doi.org/10.1103/physreve.77.031904
    78 https://doi.org/10.1103/physrevlett.86.3435
    79 https://doi.org/10.1103/physrevlett.90.238101
    80 https://doi.org/10.1103/physrevlett.96.118103
    81 https://doi.org/10.1103/revmodphys.80.141
    82 https://doi.org/10.1126/science.232.4746.48
    83 https://doi.org/10.1146/annurev.bi.63.070194.004021
    84 https://doi.org/10.1373/clinchem.2007.091231
    85 https://doi.org/10.1529/biophysj.104.040212
    86 https://doi.org/10.1529/biophysj.104.041814
    87 https://doi.org/10.1529/biophysj.104.042960
    88 https://doi.org/10.1529/biophysj.104.047274
    89 https://doi.org/10.1529/biophysj.104.058727
    90 https://doi.org/10.1529/biophysj.106.085548
    91 https://doi.org/10.1529/biophysj.106.089268
    92 https://doi.org/10.1529/biophysj.106.094060
    93 https://doi.org/10.1529/biophysj.106.102269
    94 https://doi.org/10.1529/biophysj.108.137760
    95 https://doi.org/10.2217/17435889.2.4.459
    96 schema:datePublished 2008-10
    97 schema:datePublishedReg 2008-10-01
    98 schema:description A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for approximately $1,000 in approximately 24 h.
    99 schema:genre research_article
    100 schema:inLanguage en
    101 schema:isAccessibleForFree true
    102 schema:isPartOf N0d0b118bccb64f73b003b4d70da65d59
    103 N6eb3152b36e647d2b5e112c7911c7773
    104 sg:journal.1115214
    105 schema:name The potential and challenges of nanopore sequencing
    106 schema:pagination 1146-1153
    107 schema:productId N0b0ca9ddf1e74e6d86a94e31a0539c77
    108 N25ef6dc4c92e4db4a838099fb1a643e4
    109 N3845d7c6adab418da50e584c7f1c18eb
    110 N963d677b8c4a4a3dacbea3ad4433a581
    111 Nd744c0f1bcc54a1c8dd3eadfc03b08d1
    112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037155475
    113 https://doi.org/10.1038/nbt.1495
    114 schema:sdDatePublished 2019-04-10T18:56
    115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    116 schema:sdPublisher N56fe8e58d8824a1ab56ac30584defeea
    117 schema:url http://www.nature.com/articles/nbt.1495
    118 sgo:license sg:explorer/license/
    119 sgo:sdDataset articles
    120 rdf:type schema:ScholarlyArticle
    121 N0b0ca9ddf1e74e6d86a94e31a0539c77 schema:name dimensions_id
    122 schema:value pub.1037155475
    123 rdf:type schema:PropertyValue
    124 N0d0b118bccb64f73b003b4d70da65d59 schema:volumeNumber 26
    125 rdf:type schema:PublicationVolume
    126 N122172f90b1046b8880652c6b2a02a1a rdf:first sg:person.01331153340.61
    127 rdf:rest N8f9f346bb8f84985ab9b35106e58fa24
    128 N1381dd31789648329852351d6d1c7a0d rdf:first sg:person.01041625647.45
    129 rdf:rest N1cdc245bd9804db5a795e75fc2147edb
    130 N1bf87ec0d67b4e9988111f316841c6b2 rdf:first sg:person.0733607412.05
    131 rdf:rest Nd977de24cb654d50bedd5ab745f2de62
    132 N1cdc245bd9804db5a795e75fc2147edb rdf:first sg:person.01341614743.49
    133 rdf:rest Na7dfde9adc9e4fe5a0eab425bcd6b4b1
    134 N1e2b68932b664cb6982a6666a7b8a0b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name DNA
    136 rdf:type schema:DefinedTerm
    137 N25ef6dc4c92e4db4a838099fb1a643e4 schema:name readcube_id
    138 schema:value b0feeeed014f98167303ae75e7bc46d90fc27c0f12cb7486f07cccae64de0628
    139 rdf:type schema:PropertyValue
    140 N2de1dbb066d7441bbc115b97364fa983 rdf:first sg:person.011426356417.25
    141 rdf:rest N122172f90b1046b8880652c6b2a02a1a
    142 N3681325f2ca6407f931c778ea6719c4d rdf:first sg:person.01313422341.27
    143 rdf:rest Nbbfc5ff0b923468e9306ffdc769c4c63
    144 N3845d7c6adab418da50e584c7f1c18eb schema:name doi
    145 schema:value 10.1038/nbt.1495
    146 rdf:type schema:PropertyValue
    147 N3cbc3d9df60546fb8b2cdc9cc6c645cc rdf:first sg:person.01073115173.02
    148 rdf:rest Ncf36f2217bcb4643aca6f3178e8be9b3
    149 N421a3b2f2e8e41318eb597f9903f9dc0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Sequence Analysis, DNA
    151 rdf:type schema:DefinedTerm
    152 N56fe8e58d8824a1ab56ac30584defeea schema:name Springer Nature - SN SciGraph project
    153 rdf:type schema:Organization
    154 N5c7b10d34b664cc787233d5c158c6568 rdf:first sg:person.01156710260.51
    155 rdf:rest Nd25bab1a1082438994690d5117503cc9
    156 N5fcf73b79f4e456abd4705ba42399a2e rdf:first sg:person.010324152712.91
    157 rdf:rest Nf75defdad0394a4da40283194310853f
    158 N616d03be4ed34fceaae57c1dbd2c3780 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Sequence Alignment
    160 rdf:type schema:DefinedTerm
    161 N69c65bcb4d3547889c83c778c2feb5d0 rdf:first sg:person.01231227443.17
    162 rdf:rest rdf:nil
    163 N6d270016abed49d89b81752011875de7 rdf:first sg:person.01062745341.77
    164 rdf:rest N69c65bcb4d3547889c83c778c2feb5d0
    165 N6eb3152b36e647d2b5e112c7911c7773 schema:issueNumber 10
    166 rdf:type schema:PublicationIssue
    167 N74c7e1edcc6941fbaf0662b8c14699cc schema:name Microchip Biotechnologies Inc., Dublin, California 94568, USA.
    168 rdf:type schema:Organization
    169 N78d6b17febea42b2b7bb97fb62703b27 schema:name NABsys, Inc., Providence, Rhode Island 02906, USA.
    170 rdf:type schema:Organization
    171 N8f9f346bb8f84985ab9b35106e58fa24 rdf:first sg:person.0675332401.01
    172 rdf:rest Nda9cdb40368f4be8ab2f9043502a2495
    173 N912aa572808d409599eb24d3d3e0b24d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Forecasting
    175 rdf:type schema:DefinedTerm
    176 N963d677b8c4a4a3dacbea3ad4433a581 schema:name pubmed_id
    177 schema:value 18846088
    178 rdf:type schema:PropertyValue
    179 Na1e185a1e853419b9479a98b46621c5d rdf:first sg:person.0726576143.07
    180 rdf:rest N1bf87ec0d67b4e9988111f316841c6b2
    181 Na731d8dcb62d4fb69b02ba3426a92209 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Nanostructures
    183 rdf:type schema:DefinedTerm
    184 Na7dfde9adc9e4fe5a0eab425bcd6b4b1 rdf:first sg:person.0616210643.60
    185 rdf:rest N2de1dbb066d7441bbc115b97364fa983
    186 Naf68e0f50a2d494dabe874e1a8ca5477 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Chromosome Mapping
    188 rdf:type schema:DefinedTerm
    189 Nbbfc5ff0b923468e9306ffdc769c4c63 rdf:first sg:person.0737547372.38
    190 rdf:rest N5c7b10d34b664cc787233d5c158c6568
    191 Nbceed2e163464a24922bbda88957fd4b rdf:first sg:person.0577522223.68
    192 rdf:rest Ncb86c639937c40c3aa4df87383ad77c1
    193 Nbcef8035dab54fe28912e89f1d15d8a4 rdf:first sg:person.01146162630.66
    194 rdf:rest N6d270016abed49d89b81752011875de7
    195 Nbd091a613a634f9da3a276e36ee326cf rdf:first sg:person.0632363342.05
    196 rdf:rest N1381dd31789648329852351d6d1c7a0d
    197 Nc22a94e037144b888eff470e81568866 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    198 schema:name Nanotechnology
    199 rdf:type schema:DefinedTerm
    200 Ncb86c639937c40c3aa4df87383ad77c1 rdf:first sg:person.01053550155.34
    201 rdf:rest Na1e185a1e853419b9479a98b46621c5d
    202 Ncf36f2217bcb4643aca6f3178e8be9b3 rdf:first sg:person.01245334451.10
    203 rdf:rest N3681325f2ca6407f931c778ea6719c4d
    204 Nd25bab1a1082438994690d5117503cc9 rdf:first sg:person.01267640443.74
    205 rdf:rest Nd669287feac14e8da3a1ba4b35534f54
    206 Nd669287feac14e8da3a1ba4b35534f54 rdf:first sg:person.012470512553.96
    207 rdf:rest Nbceed2e163464a24922bbda88957fd4b
    208 Nd744c0f1bcc54a1c8dd3eadfc03b08d1 schema:name nlm_unique_id
    209 schema:value 9604648
    210 rdf:type schema:PropertyValue
    211 Nd8021f5a929d488bb2805b771b08040a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Genomics
    213 rdf:type schema:DefinedTerm
    214 Nd977de24cb654d50bedd5ab745f2de62 rdf:first sg:person.0742104155.81
    215 rdf:rest N5fcf73b79f4e456abd4705ba42399a2e
    216 Nda9cdb40368f4be8ab2f9043502a2495 rdf:first sg:person.01046665643.63
    217 rdf:rest Nbcef8035dab54fe28912e89f1d15d8a4
    218 Nf75defdad0394a4da40283194310853f rdf:first sg:person.01044562214.54
    219 rdf:rest Nbd091a613a634f9da3a276e36ee326cf
    220 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    221 schema:name Biological Sciences
    222 rdf:type schema:DefinedTerm
    223 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    224 schema:name Genetics
    225 rdf:type schema:DefinedTerm
    226 sg:grant.2529234 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1495
    227 rdf:type schema:MonetaryGrant
    228 sg:grant.2529245 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1495
    229 rdf:type schema:MonetaryGrant
    230 sg:grant.2613371 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1495
    231 rdf:type schema:MonetaryGrant
    232 sg:grant.2613388 http://pending.schema.org/fundedItem sg:pub.10.1038/nbt.1495
    233 rdf:type schema:MonetaryGrant
    234 sg:journal.1115214 schema:issn 1087-0156
    235 1546-1696
    236 schema:name Nature Biotechnology
    237 rdf:type schema:Periodical
    238 sg:person.010324152712.91 schema:affiliation https://www.grid.ac/institutes/grid.215654.1
    239 schema:familyName Lindsay
    240 schema:givenName Stuart
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010324152712.91
    242 rdf:type schema:Person
    243 sg:person.01041625647.45 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
    244 schema:familyName Meller
    245 schema:givenName Amit
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041625647.45
    247 rdf:type schema:Person
    248 sg:person.01044562214.54 schema:affiliation https://www.grid.ac/institutes/grid.40263.33
    249 schema:familyName Ling
    250 schema:givenName Xinsheng Sean
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01044562214.54
    252 rdf:type schema:Person
    253 sg:person.01046665643.63 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    254 schema:familyName Tabard-Cossa
    255 schema:givenName Vincent
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01046665643.63
    257 rdf:type schema:Person
    258 sg:person.01053550155.34 schema:affiliation https://www.grid.ac/institutes/grid.420917.9
    259 schema:familyName Hibbs
    260 schema:givenName Andrew
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053550155.34
    262 rdf:type schema:Person
    263 sg:person.01062745341.77 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    264 schema:familyName Wiggin
    265 schema:givenName Matthew
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062745341.77
    267 rdf:type schema:Person
    268 sg:person.01073115173.02 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    269 schema:familyName Branton
    270 schema:givenName Daniel
    271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01073115173.02
    272 rdf:type schema:Person
    273 sg:person.011426356417.25 schema:affiliation https://www.grid.ac/institutes/grid.410711.2
    274 schema:familyName Ramsey
    275 schema:givenName J Michael
    276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011426356417.25
    277 rdf:type schema:Person
    278 sg:person.01146162630.66 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
    279 schema:familyName Wanunu
    280 schema:givenName Meni
    281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146162630.66
    282 rdf:type schema:Person
    283 sg:person.01156710260.51 schema:affiliation https://www.grid.ac/institutes/grid.417974.8
    284 schema:familyName Benner
    285 schema:givenName Steven A
    286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156710260.51
    287 rdf:type schema:Person
    288 sg:person.01231227443.17 schema:affiliation https://www.grid.ac/institutes/grid.280128.1
    289 schema:familyName Schloss
    290 schema:givenName Jeffery A
    291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231227443.17
    292 rdf:type schema:Person
    293 sg:person.01245334451.10 schema:affiliation https://www.grid.ac/institutes/grid.205975.c
    294 schema:familyName Deamer
    295 schema:givenName David W
    296 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245334451.10
    297 rdf:type schema:Person
    298 sg:person.012470512553.96 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    299 schema:familyName Di Ventra
    300 schema:givenName Massimiliano
    301 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012470512553.96
    302 rdf:type schema:Person
    303 sg:person.01267640443.74 schema:affiliation https://www.grid.ac/institutes/grid.34477.33
    304 schema:familyName Butler
    305 schema:givenName Thomas
    306 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01267640443.74
    307 rdf:type schema:Person
    308 sg:person.01313422341.27 schema:affiliation https://www.grid.ac/institutes/grid.17091.3e
    309 schema:familyName Marziali
    310 schema:givenName Andre
    311 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313422341.27
    312 rdf:type schema:Person
    313 sg:person.01331153340.61 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
    314 schema:familyName Riehn
    315 schema:givenName Robert
    316 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331153340.61
    317 rdf:type schema:Person
    318 sg:person.01341614743.49 schema:affiliation N78d6b17febea42b2b7bb97fb62703b27
    319 schema:familyName Oliver
    320 schema:givenName John S
    321 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341614743.49
    322 rdf:type schema:Person
    323 sg:person.0577522223.68 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    324 schema:familyName Garaj
    325 schema:givenName Slaven
    326 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577522223.68
    327 rdf:type schema:Person
    328 sg:person.0616210643.60 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    329 schema:familyName Pershin
    330 schema:givenName Yuriy V
    331 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616210643.60
    332 rdf:type schema:Person
    333 sg:person.0632363342.05 schema:affiliation https://www.grid.ac/institutes/grid.67105.35
    334 schema:familyName Mastrangelo
    335 schema:givenName Carlos H
    336 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632363342.05
    337 rdf:type schema:Person
    338 sg:person.0675332401.01 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
    339 schema:familyName Soni
    340 schema:givenName Gautam V
    341 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675332401.01
    342 rdf:type schema:Person
    343 sg:person.0726576143.07 schema:affiliation https://www.grid.ac/institutes/grid.266100.3
    344 schema:familyName Huang
    345 schema:givenName Xiaohua
    346 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726576143.07
    347 rdf:type schema:Person
    348 sg:person.0733607412.05 schema:affiliation N74c7e1edcc6941fbaf0662b8c14699cc
    349 schema:familyName Jovanovich
    350 schema:givenName Stevan B
    351 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0733607412.05
    352 rdf:type schema:Person
    353 sg:person.0737547372.38 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
    354 schema:familyName Bayley
    355 schema:givenName Hagan
    356 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737547372.38
    357 rdf:type schema:Person
    358 sg:person.0742104155.81 schema:affiliation https://www.grid.ac/institutes/grid.135519.a
    359 schema:familyName Krstic
    360 schema:givenName Predrag S
    361 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742104155.81
    362 rdf:type schema:Person
    363 sg:pub.10.1007/3-540-45713-5_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003600879
    364 https://doi.org/10.1007/3-540-45713-5_5
    365 rdf:type schema:CreativeWork
    366 sg:pub.10.1038/35084037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045265151
    367 https://doi.org/10.1038/35084037
    368 rdf:type schema:CreativeWork
    369 sg:pub.10.1038/nbt1008-1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053533041
    370 https://doi.org/10.1038/nbt1008-1113
    371 rdf:type schema:CreativeWork
    372 sg:pub.10.1038/nbt1485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022278679
    373 https://doi.org/10.1038/nbt1485
    374 rdf:type schema:CreativeWork
    375 sg:pub.10.1038/nbt1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005954516
    376 https://doi.org/10.1038/nbt1486
    377 rdf:type schema:CreativeWork
    378 sg:pub.10.1038/nchembio793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031950554
    379 https://doi.org/10.1038/nchembio793
    380 rdf:type schema:CreativeWork
    381 sg:pub.10.1038/nmat941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030841250
    382 https://doi.org/10.1038/nmat941
    383 rdf:type schema:CreativeWork
    384 sg:pub.10.1038/nmat965 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043496789
    385 https://doi.org/10.1038/nmat965
    386 rdf:type schema:CreativeWork
    387 sg:pub.10.1038/nmeth1021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014966509
    388 https://doi.org/10.1038/nmeth1021
    389 rdf:type schema:CreativeWork
    390 sg:pub.10.1038/nnano.2007.344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001271085
    391 https://doi.org/10.1038/nnano.2007.344
    392 rdf:type schema:CreativeWork
    393 sg:pub.10.1038/nnano.2007.381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021078964
    394 https://doi.org/10.1038/nnano.2007.381
    395 rdf:type schema:CreativeWork
    396 https://doi.org/10.1002/1522-2683(200208)23:16<2583::aid-elps2583>3.0.co;2-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1039866586
    397 rdf:type schema:CreativeWork
    398 https://doi.org/10.1002/adma.200601191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038208071
    399 rdf:type schema:CreativeWork
    400 https://doi.org/10.1002/anie.200461885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018415994
    401 rdf:type schema:CreativeWork
    402 https://doi.org/10.1002/anie.200462114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005368293
    403 rdf:type schema:CreativeWork
    404 https://doi.org/10.1002/bltj.20102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026762223
    405 rdf:type schema:CreativeWork
    406 https://doi.org/10.1002/elps.200700047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033706082
    407 rdf:type schema:CreativeWork
    408 https://doi.org/10.1002/smll.200600732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042622325
    409 rdf:type schema:CreativeWork
    410 https://doi.org/10.1002/smll.200700049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033915195
    411 rdf:type schema:CreativeWork
    412 https://doi.org/10.1016/0304-3991(92)90499-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1046579877
    413 rdf:type schema:CreativeWork
    414 https://doi.org/10.1016/j.physa.2006.08.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007692256
    415 rdf:type schema:CreativeWork
    416 https://doi.org/10.1016/j.tig.2007.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027335183
    417 rdf:type schema:CreativeWork
    418 https://doi.org/10.1016/s0006-3495(99)77027-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049567590
    419 rdf:type schema:CreativeWork
    420 https://doi.org/10.1016/s0006-3495(99)77153-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030222196
    421 rdf:type schema:CreativeWork
    422 https://doi.org/10.1016/s1074-5521(97)90321-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006663312
    423 rdf:type schema:CreativeWork
    424 https://doi.org/10.1021/ar000138m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055148249
    425 rdf:type schema:CreativeWork
    426 https://doi.org/10.1021/bi00329a017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055170486
    427 rdf:type schema:CreativeWork
    428 https://doi.org/10.1021/ja042470p schema:sameAs https://app.dimensions.ai/details/publication/pub.1055835598
    429 rdf:type schema:CreativeWork
    430 https://doi.org/10.1021/ja057123+ schema:sameAs https://app.dimensions.ai/details/publication/pub.1033489924
    431 rdf:type schema:CreativeWork
    432 https://doi.org/10.1021/ja068654g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055844027
    433 rdf:type schema:CreativeWork
    434 https://doi.org/10.1021/ja073174q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055845204
    435 rdf:type schema:CreativeWork
    436 https://doi.org/10.1021/ja0761840 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002191378
    437 rdf:type schema:CreativeWork
    438 https://doi.org/10.1021/ja077082c schema:sameAs https://app.dimensions.ai/details/publication/pub.1043668942
    439 rdf:type schema:CreativeWork
    440 https://doi.org/10.1021/jp077483e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056074893
    441 rdf:type schema:CreativeWork
    442 https://doi.org/10.1021/la061234k schema:sameAs https://app.dimensions.ai/details/publication/pub.1010265631
    443 rdf:type schema:CreativeWork
    444 https://doi.org/10.1021/nl048030d schema:sameAs https://app.dimensions.ai/details/publication/pub.1010322921
    445 rdf:type schema:CreativeWork
    446 https://doi.org/10.1021/nl048289w schema:sameAs https://app.dimensions.ai/details/publication/pub.1000291436
    447 rdf:type schema:CreativeWork
    448 https://doi.org/10.1021/nl048654j schema:sameAs https://app.dimensions.ai/details/publication/pub.1010592885
    449 rdf:type schema:CreativeWork
    450 https://doi.org/10.1021/nl0494001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044228549
    451 rdf:type schema:CreativeWork
    452 https://doi.org/10.1021/nl051063o schema:sameAs https://app.dimensions.ai/details/publication/pub.1003445790
    453 rdf:type schema:CreativeWork
    454 https://doi.org/10.1021/nl051199m schema:sameAs https://app.dimensions.ai/details/publication/pub.1034200741
    455 rdf:type schema:CreativeWork
    456 https://doi.org/10.1021/nl052107w schema:sameAs https://app.dimensions.ai/details/publication/pub.1012253571
    457 rdf:type schema:CreativeWork
    458 https://doi.org/10.1021/nl0601076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017504546
    459 rdf:type schema:CreativeWork
    460 https://doi.org/10.1021/nl0619103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056216875
    461 rdf:type schema:CreativeWork
    462 https://doi.org/10.1021/nl062906u schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217052
    463 rdf:type schema:CreativeWork
    464 https://doi.org/10.1021/nl070462b schema:sameAs https://app.dimensions.ai/details/publication/pub.1013352629
    465 rdf:type schema:CreativeWork
    466 https://doi.org/10.1021/nl071890k schema:sameAs https://app.dimensions.ai/details/publication/pub.1024637030
    467 rdf:type schema:CreativeWork
    468 https://doi.org/10.1021/nl0726205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022633772
    469 rdf:type schema:CreativeWork
    470 https://doi.org/10.1063/1.1392367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702306
    471 rdf:type schema:CreativeWork
    472 https://doi.org/10.1063/1.2357118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025560513
    473 rdf:type schema:CreativeWork
    474 https://doi.org/10.1063/1.2835350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057877530
    475 rdf:type schema:CreativeWork
    476 https://doi.org/10.1073/pnas.0502947102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019046743
    477 rdf:type schema:CreativeWork
    478 https://doi.org/10.1073/pnas.0506130103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038678460
    479 rdf:type schema:CreativeWork
    480 https://doi.org/10.1073/pnas.0510725103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049264990
    481 rdf:type schema:CreativeWork
    482 https://doi.org/10.1073/pnas.93.24.13770 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016336761
    483 rdf:type schema:CreativeWork
    484 https://doi.org/10.1073/pnas.97.3.1079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041054957
    485 rdf:type schema:CreativeWork
    486 https://doi.org/10.1080/07391102.1989.10507773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002321858
    487 rdf:type schema:CreativeWork
    488 https://doi.org/10.1088/0953-8984/15/17/202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029291567
    489 rdf:type schema:CreativeWork
    490 https://doi.org/10.1088/0953-8984/15/32/203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009994961
    491 rdf:type schema:CreativeWork
    492 https://doi.org/10.1088/0957-4484/17/13/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007076960
    493 rdf:type schema:CreativeWork
    494 https://doi.org/10.1088/0957-4484/17/3/002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000374893
    495 rdf:type schema:CreativeWork
    496 https://doi.org/10.1088/0957-4484/18/30/305505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040789246
    497 rdf:type schema:CreativeWork
    498 https://doi.org/10.1088/0957-4484/18/42/424018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031460389
    499 rdf:type schema:CreativeWork
    500 https://doi.org/10.1103/physreve.67.041913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060729910
    501 rdf:type schema:CreativeWork
    502 https://doi.org/10.1103/physreve.74.011919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060734789
    503 rdf:type schema:CreativeWork
    504 https://doi.org/10.1103/physreve.77.031904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060737125
    505 rdf:type schema:CreativeWork
    506 https://doi.org/10.1103/physrevlett.86.3435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822884
    507 rdf:type schema:CreativeWork
    508 https://doi.org/10.1103/physrevlett.90.238101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016991327
    509 rdf:type schema:CreativeWork
    510 https://doi.org/10.1103/physrevlett.96.118103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060831977
    511 rdf:type schema:CreativeWork
    512 https://doi.org/10.1103/revmodphys.80.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024856382
    513 rdf:type schema:CreativeWork
    514 https://doi.org/10.1126/science.232.4746.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062532195
    515 rdf:type schema:CreativeWork
    516 https://doi.org/10.1146/annurev.bi.63.070194.004021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011392853
    517 rdf:type schema:CreativeWork
    518 https://doi.org/10.1373/clinchem.2007.091231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035276375
    519 rdf:type schema:CreativeWork
    520 https://doi.org/10.1529/biophysj.104.040212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048744447
    521 rdf:type schema:CreativeWork
    522 https://doi.org/10.1529/biophysj.104.041814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038897645
    523 rdf:type schema:CreativeWork
    524 https://doi.org/10.1529/biophysj.104.042960 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016067119
    525 rdf:type schema:CreativeWork
    526 https://doi.org/10.1529/biophysj.104.047274 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022535175
    527 rdf:type schema:CreativeWork
    528 https://doi.org/10.1529/biophysj.104.058727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030155710
    529 rdf:type schema:CreativeWork
    530 https://doi.org/10.1529/biophysj.106.085548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000085237
    531 rdf:type schema:CreativeWork
    532 https://doi.org/10.1529/biophysj.106.089268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029984447
    533 rdf:type schema:CreativeWork
    534 https://doi.org/10.1529/biophysj.106.094060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038919191
    535 rdf:type schema:CreativeWork
    536 https://doi.org/10.1529/biophysj.106.102269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037118122
    537 rdf:type schema:CreativeWork
    538 https://doi.org/10.1529/biophysj.108.137760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007694232
    539 rdf:type schema:CreativeWork
    540 https://doi.org/10.2217/17435889.2.4.459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003026977
    541 rdf:type schema:CreativeWork
    542 https://www.grid.ac/institutes/grid.135519.a schema:alternateName Oak Ridge National Laboratory
    543 schema:name Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.
    544 rdf:type schema:Organization
    545 https://www.grid.ac/institutes/grid.17091.3e schema:alternateName University of British Columbia
    546 schema:name Department of Biochemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
    547 Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada.
    548 rdf:type schema:Organization
    549 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
    550 schema:name Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA.
    551 rdf:type schema:Organization
    552 https://www.grid.ac/institutes/grid.205975.c schema:alternateName University of California, Santa Cruz
    553 schema:name Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA.
    554 rdf:type schema:Organization
    555 https://www.grid.ac/institutes/grid.215654.1 schema:alternateName Arizona State University
    556 schema:name Departments of Physics and Chemistry and the Biodesign Institute, Arizona State University, Tempe, Arizona 85287, USA.
    557 rdf:type schema:Organization
    558 https://www.grid.ac/institutes/grid.266100.3 schema:alternateName University of California, San Diego
    559 schema:name Department of Bioengineering, University of California at San Diego, La Jolla, California 92093, USA.
    560 Department of Physics, University of California at San Diego, La Jolla, California 92093, USA.
    561 rdf:type schema:Organization
    562 https://www.grid.ac/institutes/grid.280128.1 schema:alternateName National Human Genome Research Institute
    563 schema:name National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
    564 rdf:type schema:Organization
    565 https://www.grid.ac/institutes/grid.34477.33 schema:alternateName University of Washington
    566 schema:name Department of Physics, University of Washington, Seattle, Washington 98195, USA.
    567 rdf:type schema:Organization
    568 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    569 schema:name Department of Molecular and Cell Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
    570 Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
    571 rdf:type schema:Organization
    572 https://www.grid.ac/institutes/grid.40263.33 schema:alternateName Brown University
    573 schema:name Department of Physics, Brown University, Providence, Rhode Island 02912, USA.
    574 rdf:type schema:Organization
    575 https://www.grid.ac/institutes/grid.40803.3f schema:alternateName North Carolina State University
    576 schema:name Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA.
    577 rdf:type schema:Organization
    578 https://www.grid.ac/institutes/grid.410711.2 schema:alternateName University of North Carolina System
    579 schema:name Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
    580 rdf:type schema:Organization
    581 https://www.grid.ac/institutes/grid.417974.8 schema:alternateName Foundation for Applied Molecular Evolution
    582 schema:name Foundation for Applied Molecular Evolution, Gainesville, Florida 32604, USA.
    583 rdf:type schema:Organization
    584 https://www.grid.ac/institutes/grid.420917.9 schema:alternateName Electronic BioSciences (United States)
    585 schema:name Electronic BioSciences, San Diego, California 92121, USA.
    586 rdf:type schema:Organization
    587 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
    588 schema:name Department of Chemical Biology, Oxford University, Oxford OX1 3TA, UK.
    589 rdf:type schema:Organization
    590 https://www.grid.ac/institutes/grid.67105.35 schema:alternateName Case Western Reserve University
    591 schema:name Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio 44106, USA.
    592 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...