Unconventional superconductivity in magic-angle graphene superlattices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04

AUTHORS

Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, Pablo Jarillo-Herrero

ABSTRACT

The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids. More... »

PAGES

43

References to SciGraph publications

  • 2005-10. Superconductivity in the intercalated graphite compounds C6Yb and C6Ca in NATURE PHYSICS
  • 1998. Organic Superconductors in NONE
  • 2018-04. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices in NATURE
  • 2015-02. From quantum matter to high-temperature superconductivity in copper oxides in NATURE
  • 2007-03. Bipolar supercurrent in graphene in NATURE
  • 2018-05. Dynamic band-structure tuning of graphene moiré superlattices with pressure in NATURE
  • 2013-05. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices in NATURE
  • 2013-05. Cloning of Dirac fermions in graphene superlattices in NATURE
  • 2010-03. Spin liquids in frustrated magnets in NATURE
  • 2018-01. Tunable Klein-like tunnelling of high-temperature superconducting pairs into graphene in NATURE PHYSICS
  • 2012-02. Chiral superconductivity from repulsive interactions in doped graphene in NATURE PHYSICS
  • 2017-01-19. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor in NATURE COMMUNICATIONS
  • 2008-01. Algebraic charge liquids in NATURE PHYSICS
  • 2008-11. Electric-field-induced superconductivity in an insulator in NATURE MATERIALS
  • 2015-04. Topological valley transport at bilayer graphene domain walls in NATURE
  • 2017-08. Tunnelling spectroscopy of Andreev states in graphene in NATURE PHYSICS
  • 2008-12. Electric field control of the LaAlO3/SrTiO3 interface ground state in NATURE
  • 2017-01. Highly crystalline 2D superconductors in NATURE REVIEWS MATERIALS
  • 2015-09. Ballistic Josephson junctions in edge-contacted graphene in NATURE NANOTECHNOLOGY
  • 2017-05. A cold-atom Fermi–Hubbard antiferromagnet in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature26160

    DOI

    http://dx.doi.org/10.1038/nature26160

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101336540

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29512651


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cao", 
            "givenName": "Yuan", 
            "id": "sg:person.010452736144.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010452736144.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fatemi", 
            "givenName": "Valla", 
            "id": "sg:person.01220504652.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220504652.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fang", 
            "givenName": "Shiang", 
            "id": "sg:person.01076616305.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076616305.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Watanabe", 
            "givenName": "Kenji", 
            "id": "sg:person.010575643400.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Institute for Materials Science", 
              "id": "https://www.grid.ac/institutes/grid.21941.3f", 
              "name": [
                "National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Taniguchi", 
            "givenName": "Takashi", 
            "id": "sg:person.0765715521.02", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kaxiras", 
            "givenName": "Efthimios", 
            "id": "sg:person.01156413776.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156413776.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jarillo-Herrero", 
            "givenName": "Pablo", 
            "id": "sg:person.01034030721.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034030721.03"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.100.047003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001304863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.047003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001304863"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.79.1015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001523507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.79.1015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001523507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.195458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002371346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.85.195458", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002371346"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.83.1589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007215987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.83.1589", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007215987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.71.875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007959417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.71.875", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007959417"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2015.156", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008215660", 
              "https://doi.org/10.1038/nnano.2015.156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1108174108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008495685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1237240", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011524156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmat2298", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012680701", 
              "https://doi.org/10.1038/nmat2298"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012780501", 
              "https://doi.org/10.1038/nature05555"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.80.885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013088353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.80.885", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013088353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.125413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013970916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.125413", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013970916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.nanolett.5b05263", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014530874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.81.1551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014616029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.81.1551", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014616029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/b12795", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015883721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1244358", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016025802"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.241401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017014538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.241401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017014538"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.107007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022316837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.107007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022316837"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022690485", 
              "https://doi.org/10.1038/nature14165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/natrevmats.2016.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024042391", 
              "https://doi.org/10.1038/natrevmats.2016.94"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.155449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026324859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.155449", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026324859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12187", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026408867", 
              "https://doi.org/10.1038/nature12187"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1259440", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028497923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/16/40/007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030600847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.121407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031066269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.82.121407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031066269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.4863786", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032023344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1219821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033302450"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12186", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039071679", 
              "https://doi.org/10.1038/nature12186"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.187005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040917914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.187005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040917914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys0010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041281578", 
              "https://doi.org/10.1038/nphys0010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys0010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041281578", 
              "https://doi.org/10.1038/nphys0010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.047004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041767661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.047004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041767661"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042830450", 
              "https://doi.org/10.1038/nature08917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08917", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042830450", 
              "https://doi.org/10.1038/nature08917"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1043012680", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-58262-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043012680", 
              "https://doi.org/10.1007/978-3-642-58262-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-58262-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043012680", 
              "https://doi.org/10.1007/978-3-642-58262-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043677942", 
              "https://doi.org/10.1038/nphys790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.3.021018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045180810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevx.3.021018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045180810"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys2208", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047312131", 
              "https://doi.org/10.1038/nphys2208"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07576", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049096576", 
              "https://doi.org/10.1038/nature07576"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1308853110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049457266"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14364", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051960071", 
              "https://doi.org/10.1038/nature14364"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052592156", 
              "https://doi.org/10.1038/ncomms14024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.146801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053294137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.98.146801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053294137"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.12.877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060520602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.12.877", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060520602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.165105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060632413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.81.165105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060632413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.214503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060640482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.86.214503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060640482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.235153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060650739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.93.235153", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060650739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.187001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060758277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.106.187001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060758277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.116804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060766308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.117.116804", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060766308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.70.1039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.70.1039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.72.969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.72.969", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.78.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.78.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1214987", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062465716"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1228006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062467063"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1361-648x/aa5f26", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083733561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1620140114", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084152914"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys4110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085099431", 
              "https://doi.org/10.1038/nphys4110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys4110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085099431", 
              "https://doi.org/10.1038/nphys4110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085573099", 
              "https://doi.org/10.1038/nature22362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature22362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085573099", 
              "https://doi.org/10.1038/nature22362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812810458_0043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088795096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.96.075311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091439269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevb.96.075311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091439269"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.107201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091623721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.119.107201", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091623721"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys4278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092142139", 
              "https://doi.org/10.1038/nphys4278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphys4278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092142139", 
              "https://doi.org/10.1038/nphys4278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature26154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101337104", 
              "https://doi.org/10.1038/nature26154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature26154", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101337104", 
              "https://doi.org/10.1038/nature26154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41586-018-0107-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103889279", 
              "https://doi.org/10.1038/s41586-018-0107-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-04", 
        "datePublishedReg": "2018-04-01", 
        "description": "The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1\u00b0-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 1011 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature26160", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3479835", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5885411", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2996694", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2992146", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7699", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "556"
          }
        ], 
        "name": "Unconventional superconductivity in magic-angle graphene superlattices", 
        "pagination": "43", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "90c67b111a6e919cac38cbf1522d4d777495bc6323b26647840b253739c046c6"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29512651"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature26160"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101336540"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature26160", 
          "https://app.dimensions.ai/details/publication/pub.1101336540"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87115_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature26160"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature26160'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature26160'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature26160'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature26160'


     

    This table displays all metadata directly associated to this object as RDF triples.

    334 TRIPLES      21 PREDICATES      92 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature26160 schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Nd42884bc7ef04f979a42a497fe778778
    4 schema:citation sg:pub.10.1007/978-3-642-58262-2
    5 sg:pub.10.1038/natrevmats.2016.94
    6 sg:pub.10.1038/nature05555
    7 sg:pub.10.1038/nature07576
    8 sg:pub.10.1038/nature08917
    9 sg:pub.10.1038/nature12186
    10 sg:pub.10.1038/nature12187
    11 sg:pub.10.1038/nature14165
    12 sg:pub.10.1038/nature14364
    13 sg:pub.10.1038/nature22362
    14 sg:pub.10.1038/nature26154
    15 sg:pub.10.1038/ncomms14024
    16 sg:pub.10.1038/nmat2298
    17 sg:pub.10.1038/nnano.2015.156
    18 sg:pub.10.1038/nphys0010
    19 sg:pub.10.1038/nphys2208
    20 sg:pub.10.1038/nphys4110
    21 sg:pub.10.1038/nphys4278
    22 sg:pub.10.1038/nphys790
    23 sg:pub.10.1038/s41586-018-0107-1
    24 https://app.dimensions.ai/details/publication/pub.1043012680
    25 https://doi.org/10.1021/acs.nanolett.5b05263
    26 https://doi.org/10.1063/1.4863786
    27 https://doi.org/10.1073/pnas.1108174108
    28 https://doi.org/10.1073/pnas.1308853110
    29 https://doi.org/10.1073/pnas.1620140114
    30 https://doi.org/10.1088/0953-8984/16/40/007
    31 https://doi.org/10.1088/1361-648x/aa5f26
    32 https://doi.org/10.1103/physrevb.12.877
    33 https://doi.org/10.1103/physrevb.81.165105
    34 https://doi.org/10.1103/physrevb.82.121407
    35 https://doi.org/10.1103/physrevb.85.195458
    36 https://doi.org/10.1103/physrevb.86.125413
    37 https://doi.org/10.1103/physrevb.86.155449
    38 https://doi.org/10.1103/physrevb.86.214503
    39 https://doi.org/10.1103/physrevb.86.241401
    40 https://doi.org/10.1103/physrevb.93.235153
    41 https://doi.org/10.1103/physrevb.96.075311
    42 https://doi.org/10.1103/physrevlett.100.047003
    43 https://doi.org/10.1103/physrevlett.100.047004
    44 https://doi.org/10.1103/physrevlett.100.187005
    45 https://doi.org/10.1103/physrevlett.102.107007
    46 https://doi.org/10.1103/physrevlett.106.187001
    47 https://doi.org/10.1103/physrevlett.117.116804
    48 https://doi.org/10.1103/physrevlett.119.107201
    49 https://doi.org/10.1103/physrevlett.98.146801
    50 https://doi.org/10.1103/physrevx.3.021018
    51 https://doi.org/10.1103/revmodphys.70.1039
    52 https://doi.org/10.1103/revmodphys.71.875
    53 https://doi.org/10.1103/revmodphys.72.969
    54 https://doi.org/10.1103/revmodphys.78.17
    55 https://doi.org/10.1103/revmodphys.79.1015
    56 https://doi.org/10.1103/revmodphys.80.885
    57 https://doi.org/10.1103/revmodphys.81.1551
    58 https://doi.org/10.1103/revmodphys.83.1589
    59 https://doi.org/10.1126/science.1214987
    60 https://doi.org/10.1126/science.1219821
    61 https://doi.org/10.1126/science.1228006
    62 https://doi.org/10.1126/science.1237240
    63 https://doi.org/10.1126/science.1244358
    64 https://doi.org/10.1126/science.1259440
    65 https://doi.org/10.1142/9789812810458_0043
    66 https://doi.org/10.1201/b12795
    67 schema:datePublished 2018-04
    68 schema:datePublishedReg 2018-04-01
    69 schema:description The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 10<sup>11</sup> per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.
    70 schema:genre research_article
    71 schema:inLanguage en
    72 schema:isAccessibleForFree true
    73 schema:isPartOf N2068ee1825e14b11bd83c21bf1c93a8c
    74 Neffa0665f3a74391bd0ecd069ed23dd2
    75 sg:journal.1018957
    76 schema:name Unconventional superconductivity in magic-angle graphene superlattices
    77 schema:pagination 43
    78 schema:productId N9f082cf5548541cb903abee7f7587d9f
    79 Na57777daf554429784dc0544aa0b1f7e
    80 Nbca058bb25f5494c959f013389f5f976
    81 Nd258c9bd95a84b709f5aebbabfd909df
    82 Nfa0bf2fb99fb4e3bb827c34f63075b9d
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101336540
    84 https://doi.org/10.1038/nature26160
    85 schema:sdDatePublished 2019-04-11T12:27
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher N9d9ce3c93301403eab7df0faa82c6240
    88 schema:url https://www.nature.com/articles/nature26160
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N0e2f4d76b1d04f0183ac84d2c3020096 rdf:first sg:person.01076616305.66
    93 rdf:rest Nab0700104dec4b47a4eb0c8e28d46a52
    94 N2068ee1825e14b11bd83c21bf1c93a8c schema:volumeNumber 556
    95 rdf:type schema:PublicationVolume
    96 N21391c865fa04a25afdc2d9176de1d8d rdf:first sg:person.01220504652.18
    97 rdf:rest N0e2f4d76b1d04f0183ac84d2c3020096
    98 N3f14da3337f646b69f93769830f0e0a5 rdf:first sg:person.01034030721.03
    99 rdf:rest rdf:nil
    100 N782eef289aaa48c1991ef4ce08e0b203 rdf:first sg:person.01156413776.52
    101 rdf:rest N3f14da3337f646b69f93769830f0e0a5
    102 N9d9ce3c93301403eab7df0faa82c6240 schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 N9f082cf5548541cb903abee7f7587d9f schema:name dimensions_id
    105 schema:value pub.1101336540
    106 rdf:type schema:PropertyValue
    107 Na57777daf554429784dc0544aa0b1f7e schema:name pubmed_id
    108 schema:value 29512651
    109 rdf:type schema:PropertyValue
    110 Nab0700104dec4b47a4eb0c8e28d46a52 rdf:first sg:person.010575643400.34
    111 rdf:rest Nd0c94e77c36f41bb82d8e4f2fbd764a2
    112 Nbca058bb25f5494c959f013389f5f976 schema:name doi
    113 schema:value 10.1038/nature26160
    114 rdf:type schema:PropertyValue
    115 Nd0c94e77c36f41bb82d8e4f2fbd764a2 rdf:first sg:person.0765715521.02
    116 rdf:rest N782eef289aaa48c1991ef4ce08e0b203
    117 Nd258c9bd95a84b709f5aebbabfd909df schema:name nlm_unique_id
    118 schema:value 0410462
    119 rdf:type schema:PropertyValue
    120 Nd42884bc7ef04f979a42a497fe778778 rdf:first sg:person.010452736144.78
    121 rdf:rest N21391c865fa04a25afdc2d9176de1d8d
    122 Neffa0665f3a74391bd0ecd069ed23dd2 schema:issueNumber 7699
    123 rdf:type schema:PublicationIssue
    124 Nfa0bf2fb99fb4e3bb827c34f63075b9d schema:name readcube_id
    125 schema:value 90c67b111a6e919cac38cbf1522d4d777495bc6323b26647840b253739c046c6
    126 rdf:type schema:PropertyValue
    127 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    128 schema:name Physical Sciences
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    132 rdf:type schema:DefinedTerm
    133 sg:grant.2992146 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26160
    134 rdf:type schema:MonetaryGrant
    135 sg:grant.2996694 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26160
    136 rdf:type schema:MonetaryGrant
    137 sg:grant.3479835 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26160
    138 rdf:type schema:MonetaryGrant
    139 sg:grant.5885411 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26160
    140 rdf:type schema:MonetaryGrant
    141 sg:journal.1018957 schema:issn 0090-0028
    142 1476-4687
    143 schema:name Nature
    144 rdf:type schema:Periodical
    145 sg:person.01034030721.03 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    146 schema:familyName Jarillo-Herrero
    147 schema:givenName Pablo
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034030721.03
    149 rdf:type schema:Person
    150 sg:person.010452736144.78 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    151 schema:familyName Cao
    152 schema:givenName Yuan
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010452736144.78
    154 rdf:type schema:Person
    155 sg:person.010575643400.34 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
    156 schema:familyName Watanabe
    157 schema:givenName Kenji
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34
    159 rdf:type schema:Person
    160 sg:person.01076616305.66 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    161 schema:familyName Fang
    162 schema:givenName Shiang
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076616305.66
    164 rdf:type schema:Person
    165 sg:person.01156413776.52 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    166 schema:familyName Kaxiras
    167 schema:givenName Efthimios
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156413776.52
    169 rdf:type schema:Person
    170 sg:person.01220504652.18 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    171 schema:familyName Fatemi
    172 schema:givenName Valla
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220504652.18
    174 rdf:type schema:Person
    175 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
    176 schema:familyName Taniguchi
    177 schema:givenName Takashi
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
    179 rdf:type schema:Person
    180 sg:pub.10.1007/978-3-642-58262-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043012680
    181 https://doi.org/10.1007/978-3-642-58262-2
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/natrevmats.2016.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024042391
    184 https://doi.org/10.1038/natrevmats.2016.94
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/nature05555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012780501
    187 https://doi.org/10.1038/nature05555
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1038/nature07576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049096576
    190 https://doi.org/10.1038/nature07576
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1038/nature08917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042830450
    193 https://doi.org/10.1038/nature08917
    194 rdf:type schema:CreativeWork
    195 sg:pub.10.1038/nature12186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039071679
    196 https://doi.org/10.1038/nature12186
    197 rdf:type schema:CreativeWork
    198 sg:pub.10.1038/nature12187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026408867
    199 https://doi.org/10.1038/nature12187
    200 rdf:type schema:CreativeWork
    201 sg:pub.10.1038/nature14165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022690485
    202 https://doi.org/10.1038/nature14165
    203 rdf:type schema:CreativeWork
    204 sg:pub.10.1038/nature14364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051960071
    205 https://doi.org/10.1038/nature14364
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1038/nature22362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085573099
    208 https://doi.org/10.1038/nature22362
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1038/nature26154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101337104
    211 https://doi.org/10.1038/nature26154
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1038/ncomms14024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052592156
    214 https://doi.org/10.1038/ncomms14024
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1038/nmat2298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012680701
    217 https://doi.org/10.1038/nmat2298
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/nnano.2015.156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008215660
    220 https://doi.org/10.1038/nnano.2015.156
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nphys0010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041281578
    223 https://doi.org/10.1038/nphys0010
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nphys2208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047312131
    226 https://doi.org/10.1038/nphys2208
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/nphys4110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085099431
    229 https://doi.org/10.1038/nphys4110
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/nphys4278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092142139
    232 https://doi.org/10.1038/nphys4278
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nphys790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043677942
    235 https://doi.org/10.1038/nphys790
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/s41586-018-0107-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103889279
    238 https://doi.org/10.1038/s41586-018-0107-1
    239 rdf:type schema:CreativeWork
    240 https://app.dimensions.ai/details/publication/pub.1043012680 schema:CreativeWork
    241 https://doi.org/10.1021/acs.nanolett.5b05263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014530874
    242 rdf:type schema:CreativeWork
    243 https://doi.org/10.1063/1.4863786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032023344
    244 rdf:type schema:CreativeWork
    245 https://doi.org/10.1073/pnas.1108174108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008495685
    246 rdf:type schema:CreativeWork
    247 https://doi.org/10.1073/pnas.1308853110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049457266
    248 rdf:type schema:CreativeWork
    249 https://doi.org/10.1073/pnas.1620140114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084152914
    250 rdf:type schema:CreativeWork
    251 https://doi.org/10.1088/0953-8984/16/40/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030600847
    252 rdf:type schema:CreativeWork
    253 https://doi.org/10.1088/1361-648x/aa5f26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083733561
    254 rdf:type schema:CreativeWork
    255 https://doi.org/10.1103/physrevb.12.877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060520602
    256 rdf:type schema:CreativeWork
    257 https://doi.org/10.1103/physrevb.81.165105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632413
    258 rdf:type schema:CreativeWork
    259 https://doi.org/10.1103/physrevb.82.121407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031066269
    260 rdf:type schema:CreativeWork
    261 https://doi.org/10.1103/physrevb.85.195458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002371346
    262 rdf:type schema:CreativeWork
    263 https://doi.org/10.1103/physrevb.86.125413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013970916
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1103/physrevb.86.155449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026324859
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1103/physrevb.86.214503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640482
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1103/physrevb.86.241401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017014538
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1103/physrevb.93.235153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650739
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1103/physrevb.96.075311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091439269
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1103/physrevlett.100.047003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001304863
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1103/physrevlett.100.047004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041767661
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1103/physrevlett.100.187005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040917914
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1103/physrevlett.102.107007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022316837
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1103/physrevlett.106.187001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060758277
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1103/physrevlett.117.116804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766308
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1103/physrevlett.119.107201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091623721
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1103/physrevlett.98.146801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053294137
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1103/physrevx.3.021018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045180810
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1103/revmodphys.70.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839416
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1103/revmodphys.71.875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007959417
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1103/revmodphys.72.969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839530
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1103/revmodphys.78.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839611
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1103/revmodphys.79.1015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001523507
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1103/revmodphys.80.885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013088353
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1103/revmodphys.81.1551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014616029
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1103/revmodphys.83.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007215987
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1126/science.1214987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465716
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1126/science.1219821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033302450
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1126/science.1228006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467063
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1126/science.1237240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011524156
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1126/science.1244358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025802
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1126/science.1259440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028497923
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1142/9789812810458_0043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088795096
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1201/b12795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015883721
    324 rdf:type schema:CreativeWork
    325 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    326 schema:name Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
    327 rdf:type schema:Organization
    328 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
    329 schema:name National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
    330 rdf:type schema:Organization
    331 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    332 schema:name Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
    333 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
    334 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...