Evolved Cas9 variants with broad PAM compatibility and high DNA specificity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04

AUTHORS

Johnny H. Hu, Shannon M. Miller, Maarten H. Geurts, Weixin Tang, Liwei Chen, Ning Sun, Christina M. Zeina, Xue Gao, Holly A. Rees, Zhi Lin, David R. Liu

ABSTRACT

A key limitation of the use of the CRISPR-Cas9 system for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), the required PAM sequence is NGG. No natural or engineered Cas9 variants that have been shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG. Here we use phage-assisted continuous evolution to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA and GAT. The PAM compatibility of xCas9 is the broadest reported, to our knowledge, among Cas9 proteins that are active in mammalian cells, and supports applications in human cells including targeted transcriptional activation, nuclease-mediated gene disruption, and cytidine and adenine base editing. Notably, despite its broadened PAM compatibility, xCas9 has much greater DNA specificity than SpCas9, with substantially lower genome-wide off-target activity at all NGG target sites tested, as well as minimal off-target activity when targeting genomic sites with non-NGG PAMs. These findings expand the DNA targeting scope of CRISPR systems and establish that there is no necessary trade-off between Cas9 editing efficiency, PAM compatibility and DNA specificity. More... »

PAGES

57

References to SciGraph publications

  • 2017-12. Phage-assisted continuous evolution of proteases with altered substrate specificity in NATURE COMMUNICATIONS
  • 2016-05. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage in NATURE
  • 2011-09. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection in NATURE METHODS
  • 2017-06-05. Engineered Cpf1 variants with altered PAM specificities in NATURE BIOTECHNOLOGY
  • 2015-12. Development of potent in vivo mutagenesis plasmids with broad mutational spectra in NATURE COMMUNICATIONS
  • 2015-04. In vivo genome editing using Staphylococcus aureus Cas9 in NATURE
  • 2006-06. Identifying DNA sequences recognized by a transcription factor using a bacterial one-hybrid system in NATURE PROTOCOLS
  • 2014-09. Saturation editing of genomic regions by multiplex homology-directed repair in NATURE
  • 2016-01. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects in NATURE
  • 2015-03. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases in NATURE BIOTECHNOLOGY
  • 2015-12. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition in NATURE BIOTECHNOLOGY
  • 2017-12. Continuous directed evolution of aminoacyl-tRNA synthetases in NATURE CHEMICAL BIOLOGY
  • 2017-12. Rescue of high-specificity Cas9 variants using sgRNAs with matched 5’ nucleotides in GENOME BIOLOGY
  • 2014-09. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease in NATURE
  • 2015-04. Highly efficient Cas9-mediated transcriptional programming in NATURE METHODS
  • 2015-06-22. Engineered CRISPR-Cas9 nucleases with altered PAM specificities in NATURE
  • 2017-10. Enhanced proofreading governs CRISPR–Cas9 targeting accuracy in NATURE
  • 2017-02-21. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni in NATURE COMMUNICATIONS
  • 2011-04. A system for the continuous directed evolution of biomolecules in NATURE
  • 2015-11. Conformational control of DNA target cleavage by CRISPR–Cas9 in NATURE
  • 2016-05. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance in NATURE
  • 2015-10. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity in NATURE METHODS
  • 2017-11. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage in NATURE
  • 2017-04. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions in NATURE BIOTECHNOLOGY
  • 2014-12. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation in NATURE BIOTECHNOLOGY
  • 1997-04. Activation of prokaryotic transcription through arbitrary protein–protein contacts in NATURE
  • 2015-05. Comparison of non-canonical PAMs for CRISPR/Cas9-mediated DNA cleavage in human cells in SCIENTIFIC REPORTS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature26155

    DOI

    http://dx.doi.org/10.1038/nature26155

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1101264077

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/29512652


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Associated Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Cas Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Cleavage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Deoxyribonucleases", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Directed Molecular Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Editing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "HEK293 Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nucleotide Motifs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Streptococcus pyogenes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Substrate Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptional Activation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Johnny H.", 
            "id": "sg:person.01274115410.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274115410.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Miller", 
            "givenName": "Shannon M.", 
            "id": "sg:person.01165222203.25", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165222203.25"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Geurts", 
            "givenName": "Maarten H.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Weixin", 
            "id": "sg:person.012617540703.71", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012617540703.71"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Liwei", 
            "id": "sg:person.01101110761.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101110761.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Ning", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zeina", 
            "givenName": "Christina M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Xue", 
            "id": "sg:person.01124734553.97", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124734553.97"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rees", 
            "givenName": "Holly A.", 
            "id": "sg:person.011276167727.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276167727.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Zhi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA", 
                "Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA", 
                "Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "David R.", 
            "id": "sg:person.0654235666.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654235666.54"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.3515", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001171659", 
              "https://doi.org/10.1038/nmeth.3515"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/mt.2015.218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/mt.2016.8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007307612"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.3312", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008897838", 
              "https://doi.org/10.1038/nmeth.3312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009172001", 
              "https://doi.org/10.1038/nature17946"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt1113", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009629440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature16526", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010800066", 
              "https://doi.org/10.1038/nature16526"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17938", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011009109", 
              "https://doi.org/10.1038/nature17938"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012243466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2015.09.038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015956969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.849004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016890117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09929", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017568559", 
              "https://doi.org/10.1038/nature09929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14299", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019168198", 
              "https://doi.org/10.1038/nature14299"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.aad5227", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020934192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021849416", 
              "https://doi.org/10.1038/nbt.3117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022202677", 
              "https://doi.org/10.1038/nature13695"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2016.10.044", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025497074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1258096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033404992"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033528408", 
              "https://doi.org/10.1038/nbt.3026"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036390967", 
              "https://doi.org/10.1038/nature13579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/386627a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036416155", 
              "https://doi.org/10.1038/386627a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms9425", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037681456", 
              "https://doi.org/10.1038/ncomms9425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2006.6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037983278", 
              "https://doi.org/10.1038/nprot.2006.6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2006.6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037983278", 
              "https://doi.org/10.1038/nprot.2006.6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039182708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1225829", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041850060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043918422", 
              "https://doi.org/10.1038/nmeth.1670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047292250", 
              "https://doi.org/10.1038/nature14592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature15544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047311922", 
              "https://doi.org/10.1038/nature15544"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051712669", 
              "https://doi.org/10.1038/srep05405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052861805", 
              "https://doi.org/10.1038/nbt.3404"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3803", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083803971", 
              "https://doi.org/10.1038/nbt.3803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms14500", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083852488", 
              "https://doi.org/10.1038/ncomms14500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3900", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085865597", 
              "https://doi.org/10.1038/nbt.3900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tibtech.2017.06.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090859131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/sciadv.aao4774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091394150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091860712", 
              "https://doi.org/10.1038/nature24268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24268", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091860712", 
              "https://doi.org/10.1038/nature24268"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41467-017-01055-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092152760", 
              "https://doi.org/10.1038/s41467-017-01055-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.2474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092234018", 
              "https://doi.org/10.1038/nchembio.2474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nchembio.2474", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092234018", 
              "https://doi.org/10.1038/nchembio.2474"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092351376", 
              "https://doi.org/10.1038/nature24644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature24644", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092351376", 
              "https://doi.org/10.1038/nature24644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13059-017-1355-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092693196", 
              "https://doi.org/10.1186/s13059-017-1355-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-04", 
        "datePublishedReg": "2018-04-01", 
        "description": "A key limitation of the use of the CRISPR-Cas9 system for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), the required PAM sequence is NGG. No natural or engineered Cas9 variants that have been shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG. Here we use phage-assisted continuous evolution to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA and GAT. The PAM compatibility of xCas9 is the broadest reported, to our knowledge, among Cas9 proteins that are active in mammalian cells, and supports applications in human cells including targeted transcriptional activation, nuclease-mediated gene disruption, and cytidine and adenine base editing. Notably, despite its broadened PAM compatibility, xCas9 has much greater DNA specificity than SpCas9, with substantially lower genome-wide off-target activity at all NGG target sites tested, as well as minimal off-target activity when targeting genomic sites with non-NGG PAMs. These findings expand the DNA targeting scope of CRISPR systems and establish that there is no necessary trade-off between Cas9 editing efficiency, PAM compatibility and DNA specificity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature26155", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7767931", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4897755", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7028791", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.5124751", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7699", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "556"
          }
        ], 
        "name": "Evolved Cas9 variants with broad PAM compatibility and high DNA specificity", 
        "pagination": "57", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9b8bc571e7c130428cd742e6bd1d168c9176d046c91a2a21ba8a6e98b88ebd86"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "29512652"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature26155"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1101264077"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature26155", 
          "https://app.dimensions.ai/details/publication/pub.1101264077"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:24", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature26155"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature26155'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature26155'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature26155'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature26155'


     

    This table displays all metadata directly associated to this object as RDF triples.

    352 TRIPLES      21 PREDICATES      84 URIs      36 LITERALS      24 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature26155 schema:about N021c54f2613b47ae8aaa9215bfbba767
    2 N0eb6df8245fe4e47972111eea2cc81bf
    3 N1dd0782de00d4698921f9bc5421fd301
    4 N22ff24bbe40745abb8a89859a6ccbc9e
    5 N5c5b37c39ef54688be9da6ac33000797
    6 N70ff2abe60a1497fbb7285dff7e8c904
    7 N7d2eebe690d143379eb01a84e11a68b2
    8 N9765ee03a95e4677bce5f5ededdcfe3e
    9 Na0b4ad010f204685b33801b0832eb7c3
    10 Nab9894c3794747b39eb70b67a8c3a975
    11 Nbec9be8d2a364d01928eeebd0b5982bc
    12 Nc9c572faf2fd42fe80462465ecfd3865
    13 Nd13e4b75d1d04deda9c3556e84c9abf8
    14 Nd5404aae700e46339875042fe7e06bd4
    15 Ndea82c303c984b62981919df29777262
    16 anzsrc-for:06
    17 anzsrc-for:0604
    18 schema:author N2693dc3974414c4c88dc5d1217242063
    19 schema:citation sg:pub.10.1038/386627a0
    20 sg:pub.10.1038/nature09929
    21 sg:pub.10.1038/nature13579
    22 sg:pub.10.1038/nature13695
    23 sg:pub.10.1038/nature14299
    24 sg:pub.10.1038/nature14592
    25 sg:pub.10.1038/nature15544
    26 sg:pub.10.1038/nature16526
    27 sg:pub.10.1038/nature17938
    28 sg:pub.10.1038/nature17946
    29 sg:pub.10.1038/nature24268
    30 sg:pub.10.1038/nature24644
    31 sg:pub.10.1038/nbt.3026
    32 sg:pub.10.1038/nbt.3117
    33 sg:pub.10.1038/nbt.3404
    34 sg:pub.10.1038/nbt.3803
    35 sg:pub.10.1038/nbt.3900
    36 sg:pub.10.1038/nchembio.2474
    37 sg:pub.10.1038/ncomms14500
    38 sg:pub.10.1038/ncomms9425
    39 sg:pub.10.1038/nmeth.1670
    40 sg:pub.10.1038/nmeth.3312
    41 sg:pub.10.1038/nmeth.3515
    42 sg:pub.10.1038/nprot.2006.6
    43 sg:pub.10.1038/s41467-017-01055-9
    44 sg:pub.10.1038/srep05405
    45 sg:pub.10.1186/s13059-017-1355-3
    46 https://doi.org/10.1016/j.cell.2014.05.010
    47 https://doi.org/10.1016/j.cell.2015.09.038
    48 https://doi.org/10.1016/j.cell.2016.10.044
    49 https://doi.org/10.1016/j.tibtech.2017.06.004
    50 https://doi.org/10.1038/mt.2015.218
    51 https://doi.org/10.1038/mt.2016.8
    52 https://doi.org/10.1093/nar/gkt1113
    53 https://doi.org/10.1093/nar/gkt555
    54 https://doi.org/10.1101/gr.849004
    55 https://doi.org/10.1126/sciadv.aao4774
    56 https://doi.org/10.1126/science.1225829
    57 https://doi.org/10.1126/science.1258096
    58 https://doi.org/10.1126/science.aad5227
    59 schema:datePublished 2018-04
    60 schema:datePublishedReg 2018-04-01
    61 schema:description A key limitation of the use of the CRISPR-Cas9 system for genome editing and other applications is the requirement that a protospacer adjacent motif (PAM) be present at the target site. For the most commonly used Cas9 from Streptococcus pyogenes (SpCas9), the required PAM sequence is NGG. No natural or engineered Cas9 variants that have been shown to function efficiently in mammalian cells offer a PAM less restrictive than NGG. Here we use phage-assisted continuous evolution to evolve an expanded PAM SpCas9 variant (xCas9) that can recognize a broad range of PAM sequences including NG, GAA and GAT. The PAM compatibility of xCas9 is the broadest reported, to our knowledge, among Cas9 proteins that are active in mammalian cells, and supports applications in human cells including targeted transcriptional activation, nuclease-mediated gene disruption, and cytidine and adenine base editing. Notably, despite its broadened PAM compatibility, xCas9 has much greater DNA specificity than SpCas9, with substantially lower genome-wide off-target activity at all NGG target sites tested, as well as minimal off-target activity when targeting genomic sites with non-NGG PAMs. These findings expand the DNA targeting scope of CRISPR systems and establish that there is no necessary trade-off between Cas9 editing efficiency, PAM compatibility and DNA specificity.
    62 schema:genre research_article
    63 schema:inLanguage en
    64 schema:isAccessibleForFree false
    65 schema:isPartOf Nc4cc1e992c714dab88a8b8dab0fe94d3
    66 Neb709633daed4c8eb8be686527141308
    67 sg:journal.1018957
    68 schema:name Evolved Cas9 variants with broad PAM compatibility and high DNA specificity
    69 schema:pagination 57
    70 schema:productId N08a071a0ed66461eaf4b7bd15ccd5324
    71 N3a22c64a93394622a2bdfa8a06f42dbd
    72 N661e8281e1424ba7a51e8c03ac448230
    73 N930b4ffb07284b86bd7185e913b28373
    74 Nb56dcc0941c04fa1a9d1b715239c300c
    75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101264077
    76 https://doi.org/10.1038/nature26155
    77 schema:sdDatePublished 2019-04-11T12:24
    78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    79 schema:sdPublisher N3e1a173d9b294177afac89c811523ff8
    80 schema:url https://www.nature.com/articles/nature26155
    81 sgo:license sg:explorer/license/
    82 sgo:sdDataset articles
    83 rdf:type schema:ScholarlyArticle
    84 N021c54f2613b47ae8aaa9215bfbba767 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    85 schema:name Deoxyribonucleases
    86 rdf:type schema:DefinedTerm
    87 N08a071a0ed66461eaf4b7bd15ccd5324 schema:name doi
    88 schema:value 10.1038/nature26155
    89 rdf:type schema:PropertyValue
    90 N0eb6df8245fe4e47972111eea2cc81bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name DNA
    92 rdf:type schema:DefinedTerm
    93 N1dd0782de00d4698921f9bc5421fd301 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Humans
    95 rdf:type schema:DefinedTerm
    96 N22ff24bbe40745abb8a89859a6ccbc9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Streptococcus pyogenes
    98 rdf:type schema:DefinedTerm
    99 N2693dc3974414c4c88dc5d1217242063 rdf:first sg:person.01274115410.07
    100 rdf:rest N6c1e799bf1b74e878be842d14038a3c8
    101 N3a22c64a93394622a2bdfa8a06f42dbd schema:name dimensions_id
    102 schema:value pub.1101264077
    103 rdf:type schema:PropertyValue
    104 N3e1a173d9b294177afac89c811523ff8 schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N40bf4d70b92c4b4f80f9e0654b2dcf99 rdf:first Ne7801bbc11594eff8800fc3890ee3589
    107 rdf:rest N77a49f86f7704b5883b25d0dfda03271
    108 N4ed05772148041a689517e46c9a3cb88 rdf:first Nf1943a4871bb44f1a918530da4baa6b6
    109 rdf:rest Nb9477a83bf2f410d9e435d52f26eae0c
    110 N5c5b37c39ef54688be9da6ac33000797 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name Genome, Human
    112 rdf:type schema:DefinedTerm
    113 N661e8281e1424ba7a51e8c03ac448230 schema:name pubmed_id
    114 schema:value 29512652
    115 rdf:type schema:PropertyValue
    116 N6c1e799bf1b74e878be842d14038a3c8 rdf:first sg:person.01165222203.25
    117 rdf:rest N40bf4d70b92c4b4f80f9e0654b2dcf99
    118 N705e945cc1004c6b9fb10fcbc926af88 rdf:first Nb9052e544abc4d568267f6b81229e935
    119 rdf:rest N90bfdf5cbf0349adac258d9417f3d935
    120 N70ff2abe60a1497fbb7285dff7e8c904 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name CRISPR-Associated Proteins
    122 rdf:type schema:DefinedTerm
    123 N77a49f86f7704b5883b25d0dfda03271 rdf:first sg:person.012617540703.71
    124 rdf:rest Ne4fe37ba2bc14705ac175d5d0232be45
    125 N7d2eebe690d143379eb01a84e11a68b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Gene Editing
    127 rdf:type schema:DefinedTerm
    128 N8509548cbf8f43ca8f27629d46aacb52 rdf:first sg:person.011276167727.89
    129 rdf:rest N4ed05772148041a689517e46c9a3cb88
    130 N90bfdf5cbf0349adac258d9417f3d935 rdf:first N9760702375a2493695727d7b88b9b135
    131 rdf:rest Nc9a14d10981740049e2eddfcccd3f926
    132 N930b4ffb07284b86bd7185e913b28373 schema:name readcube_id
    133 schema:value 9b8bc571e7c130428cd742e6bd1d168c9176d046c91a2a21ba8a6e98b88ebd86
    134 rdf:type schema:PropertyValue
    135 N9760702375a2493695727d7b88b9b135 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    136 schema:familyName Zeina
    137 schema:givenName Christina M.
    138 rdf:type schema:Person
    139 N9765ee03a95e4677bce5f5ededdcfe3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name HEK293 Cells
    141 rdf:type schema:DefinedTerm
    142 Na0b4ad010f204685b33801b0832eb7c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name DNA Cleavage
    144 rdf:type schema:DefinedTerm
    145 Nab9894c3794747b39eb70b67a8c3a975 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Mutation
    147 rdf:type schema:DefinedTerm
    148 Nb56dcc0941c04fa1a9d1b715239c300c schema:name nlm_unique_id
    149 schema:value 0410462
    150 rdf:type schema:PropertyValue
    151 Nb9052e544abc4d568267f6b81229e935 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    152 schema:familyName Sun
    153 schema:givenName Ning
    154 rdf:type schema:Person
    155 Nb9477a83bf2f410d9e435d52f26eae0c rdf:first sg:person.0654235666.54
    156 rdf:rest rdf:nil
    157 Nbec9be8d2a364d01928eeebd0b5982bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    158 schema:name Directed Molecular Evolution
    159 rdf:type schema:DefinedTerm
    160 Nc4cc1e992c714dab88a8b8dab0fe94d3 schema:issueNumber 7699
    161 rdf:type schema:PublicationIssue
    162 Nc9a14d10981740049e2eddfcccd3f926 rdf:first sg:person.01124734553.97
    163 rdf:rest N8509548cbf8f43ca8f27629d46aacb52
    164 Nc9c572faf2fd42fe80462465ecfd3865 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name CRISPR-Cas Systems
    166 rdf:type schema:DefinedTerm
    167 Nd13e4b75d1d04deda9c3556e84c9abf8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    168 schema:name Transcriptional Activation
    169 rdf:type schema:DefinedTerm
    170 Nd5404aae700e46339875042fe7e06bd4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    171 schema:name Nucleotide Motifs
    172 rdf:type schema:DefinedTerm
    173 Ndea82c303c984b62981919df29777262 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Substrate Specificity
    175 rdf:type schema:DefinedTerm
    176 Ne4fe37ba2bc14705ac175d5d0232be45 rdf:first sg:person.01101110761.89
    177 rdf:rest N705e945cc1004c6b9fb10fcbc926af88
    178 Ne7801bbc11594eff8800fc3890ee3589 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    179 schema:familyName Geurts
    180 schema:givenName Maarten H.
    181 rdf:type schema:Person
    182 Neb709633daed4c8eb8be686527141308 schema:volumeNumber 556
    183 rdf:type schema:PublicationVolume
    184 Nf1943a4871bb44f1a918530da4baa6b6 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    185 schema:familyName Lin
    186 schema:givenName Zhi
    187 rdf:type schema:Person
    188 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    189 schema:name Biological Sciences
    190 rdf:type schema:DefinedTerm
    191 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    192 schema:name Genetics
    193 rdf:type schema:DefinedTerm
    194 sg:grant.4897755 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26155
    195 rdf:type schema:MonetaryGrant
    196 sg:grant.5124751 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26155
    197 rdf:type schema:MonetaryGrant
    198 sg:grant.7028791 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26155
    199 rdf:type schema:MonetaryGrant
    200 sg:grant.7767931 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26155
    201 rdf:type schema:MonetaryGrant
    202 sg:journal.1018957 schema:issn 0090-0028
    203 1476-4687
    204 schema:name Nature
    205 rdf:type schema:Periodical
    206 sg:person.01101110761.89 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    207 schema:familyName Chen
    208 schema:givenName Liwei
    209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101110761.89
    210 rdf:type schema:Person
    211 sg:person.01124734553.97 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    212 schema:familyName Gao
    213 schema:givenName Xue
    214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01124734553.97
    215 rdf:type schema:Person
    216 sg:person.011276167727.89 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    217 schema:familyName Rees
    218 schema:givenName Holly A.
    219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276167727.89
    220 rdf:type schema:Person
    221 sg:person.01165222203.25 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    222 schema:familyName Miller
    223 schema:givenName Shannon M.
    224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165222203.25
    225 rdf:type schema:Person
    226 sg:person.012617540703.71 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    227 schema:familyName Tang
    228 schema:givenName Weixin
    229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012617540703.71
    230 rdf:type schema:Person
    231 sg:person.01274115410.07 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    232 schema:familyName Hu
    233 schema:givenName Johnny H.
    234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274115410.07
    235 rdf:type schema:Person
    236 sg:person.0654235666.54 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    237 schema:familyName Liu
    238 schema:givenName David R.
    239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0654235666.54
    240 rdf:type schema:Person
    241 sg:pub.10.1038/386627a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036416155
    242 https://doi.org/10.1038/386627a0
    243 rdf:type schema:CreativeWork
    244 sg:pub.10.1038/nature09929 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017568559
    245 https://doi.org/10.1038/nature09929
    246 rdf:type schema:CreativeWork
    247 sg:pub.10.1038/nature13579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036390967
    248 https://doi.org/10.1038/nature13579
    249 rdf:type schema:CreativeWork
    250 sg:pub.10.1038/nature13695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022202677
    251 https://doi.org/10.1038/nature13695
    252 rdf:type schema:CreativeWork
    253 sg:pub.10.1038/nature14299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019168198
    254 https://doi.org/10.1038/nature14299
    255 rdf:type schema:CreativeWork
    256 sg:pub.10.1038/nature14592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047292250
    257 https://doi.org/10.1038/nature14592
    258 rdf:type schema:CreativeWork
    259 sg:pub.10.1038/nature15544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047311922
    260 https://doi.org/10.1038/nature15544
    261 rdf:type schema:CreativeWork
    262 sg:pub.10.1038/nature16526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010800066
    263 https://doi.org/10.1038/nature16526
    264 rdf:type schema:CreativeWork
    265 sg:pub.10.1038/nature17938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011009109
    266 https://doi.org/10.1038/nature17938
    267 rdf:type schema:CreativeWork
    268 sg:pub.10.1038/nature17946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009172001
    269 https://doi.org/10.1038/nature17946
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1038/nature24268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091860712
    272 https://doi.org/10.1038/nature24268
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1038/nature24644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092351376
    275 https://doi.org/10.1038/nature24644
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1038/nbt.3026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033528408
    278 https://doi.org/10.1038/nbt.3026
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1038/nbt.3117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021849416
    281 https://doi.org/10.1038/nbt.3117
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1038/nbt.3404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052861805
    284 https://doi.org/10.1038/nbt.3404
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1038/nbt.3803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083803971
    287 https://doi.org/10.1038/nbt.3803
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1038/nbt.3900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085865597
    290 https://doi.org/10.1038/nbt.3900
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nchembio.2474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092234018
    293 https://doi.org/10.1038/nchembio.2474
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/ncomms14500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083852488
    296 https://doi.org/10.1038/ncomms14500
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/ncomms9425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037681456
    299 https://doi.org/10.1038/ncomms9425
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/nmeth.1670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043918422
    302 https://doi.org/10.1038/nmeth.1670
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nmeth.3312 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008897838
    305 https://doi.org/10.1038/nmeth.3312
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nmeth.3515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001171659
    308 https://doi.org/10.1038/nmeth.3515
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nprot.2006.6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037983278
    311 https://doi.org/10.1038/nprot.2006.6
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/s41467-017-01055-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092152760
    314 https://doi.org/10.1038/s41467-017-01055-9
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/srep05405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051712669
    317 https://doi.org/10.1038/srep05405
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1186/s13059-017-1355-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092693196
    320 https://doi.org/10.1186/s13059-017-1355-3
    321 rdf:type schema:CreativeWork
    322 https://doi.org/10.1016/j.cell.2014.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039182708
    323 rdf:type schema:CreativeWork
    324 https://doi.org/10.1016/j.cell.2015.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015956969
    325 rdf:type schema:CreativeWork
    326 https://doi.org/10.1016/j.cell.2016.10.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025497074
    327 rdf:type schema:CreativeWork
    328 https://doi.org/10.1016/j.tibtech.2017.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090859131
    329 rdf:type schema:CreativeWork
    330 https://doi.org/10.1038/mt.2015.218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929948
    331 rdf:type schema:CreativeWork
    332 https://doi.org/10.1038/mt.2016.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007307612
    333 rdf:type schema:CreativeWork
    334 https://doi.org/10.1093/nar/gkt1113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009629440
    335 rdf:type schema:CreativeWork
    336 https://doi.org/10.1093/nar/gkt555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012243466
    337 rdf:type schema:CreativeWork
    338 https://doi.org/10.1101/gr.849004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016890117
    339 rdf:type schema:CreativeWork
    340 https://doi.org/10.1126/sciadv.aao4774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091394150
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1126/science.1225829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850060
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1126/science.1258096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033404992
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1126/science.aad5227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020934192
    347 rdf:type schema:CreativeWork
    348 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    349 schema:name Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
    350 Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
    351 Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
    352 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...