Correlated insulator behaviour at half-filling in magic-angle graphene superlattices View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-04

AUTHORS

Yuan Cao, Valla Fatemi, Ahmet Demir, Shiang Fang, Spencer L. Tomarken, Jason Y. Luo, Javier D. Sanchez-Yamagishi, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, Ray C. Ashoori, Pablo Jarillo-Herrero

ABSTRACT

A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the 'twist' angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the 'magic' angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids. More... »

PAGES

80

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature26154

DOI

http://dx.doi.org/10.1038/nature26154

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101337104

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29512654


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Yuan", 
        "id": "sg:person.010452736144.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010452736144.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fatemi", 
        "givenName": "Valla", 
        "id": "sg:person.01220504652.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220504652.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Demir", 
        "givenName": "Ahmet", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fang", 
        "givenName": "Shiang", 
        "id": "sg:person.01076616305.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076616305.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tomarken", 
        "givenName": "Spencer L.", 
        "id": "sg:person.011003224420.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003224420.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Luo", 
        "givenName": "Jason Y.", 
        "id": "sg:person.011721477715.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721477715.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sanchez-Yamagishi", 
        "givenName": "Javier D.", 
        "id": "sg:person.0641412577.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641412577.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Watanabe", 
        "givenName": "Kenji", 
        "id": "sg:person.010575643400.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taniguchi", 
        "givenName": "Takashi", 
        "id": "sg:person.0765715521.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA", 
            "John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaxiras", 
        "givenName": "Efthimios", 
        "id": "sg:person.01156413776.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156413776.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashoori", 
        "givenName": "Ray C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Massachusetts Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jarillo-Herrero", 
        "givenName": "Pablo", 
        "id": "sg:person.01034030721.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034030721.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.85.195458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002371346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.195458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002371346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.126802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002372755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.126802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002372755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/76/5/056503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007854882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1108174108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008495685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009742023", 
          "https://doi.org/10.1038/nnano.2009.177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009742023", 
          "https://doi.org/10.1038/nnano.2009.177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1237240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011524156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.125413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013970916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.125413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013970916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.5b05263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014530874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/b12795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015883721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1244358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016025802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.094506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022093248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.094506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022093248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.115404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024597229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.115404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024597229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1191195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024771240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024857999", 
          "https://doi.org/10.1038/nature12385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.155449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026324859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.155449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026324859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12187", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026408867", 
          "https://doi.org/10.1038/nature12187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.070401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026809674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.070401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026809674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.266801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028746127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.266801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028746127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.121407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031066269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.121407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031066269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039071679", 
          "https://doi.org/10.1038/nature12186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.086805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040008071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.086805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040008071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2012-30570-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041413000", 
          "https://doi.org/10.1140/epjb/e2012-30570-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042830450", 
          "https://doi.org/10.1038/nature08917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042830450", 
          "https://doi.org/10.1038/nature08917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.096802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044994606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.096802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044994606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045564126", 
          "https://doi.org/10.1038/nphys1463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2776887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049832147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2220880243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052528064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.nanolett.6b01906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055121570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/25/16/011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059072392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/17/5/055016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059136884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.71.622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060453259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.2239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.235153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.235153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060650739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.016602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.016602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060752631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.196802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060760561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.116804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.117.116804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060766308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.62.1201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.3088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.70.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.78.17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.74.1674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063121796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-32536-1_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074203198", 
          "https://doi.org/10.1007/978-3-319-32536-1_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.075124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083810546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.075124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083810546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1620140114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084152914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.075311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091439269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.96.075311", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091439269"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04", 
    "datePublishedReg": "2018-04-01", 
    "description": "A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the 'twist' angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moir\u00e9 pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the 'magic' angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moir\u00e9 pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature26154", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3479835", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3582699", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5885411", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2996694", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2992146", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7699", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "556"
      }
    ], 
    "name": "Correlated insulator behaviour at half-filling in magic-angle graphene superlattices", 
    "pagination": "80", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "be5e45f3ed46d90b202c8632c4e63619b02eb568e11ee9c3c8435195c5c2979f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29512654"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature26154"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101337104"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature26154", 
      "https://app.dimensions.ai/details/publication/pub.1101337104"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87082_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature26154"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature26154'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature26154'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature26154'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature26154'


 

This table displays all metadata directly associated to this object as RDF triples.

307 TRIPLES      21 PREDICATES      75 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature26154 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Naa56775ff4c7408c984a813535f01bec
4 schema:citation sg:pub.10.1007/978-3-319-32536-1_2
5 sg:pub.10.1038/nature08917
6 sg:pub.10.1038/nature12186
7 sg:pub.10.1038/nature12187
8 sg:pub.10.1038/nature12385
9 sg:pub.10.1038/nnano.2009.177
10 sg:pub.10.1038/nphys1463
11 sg:pub.10.1140/epjb/e2012-30570-7
12 https://doi.org/10.1002/pssb.2220880243
13 https://doi.org/10.1021/acs.nanolett.5b05263
14 https://doi.org/10.1021/acs.nanolett.6b01906
15 https://doi.org/10.1063/1.2776887
16 https://doi.org/10.1073/pnas.1108174108
17 https://doi.org/10.1073/pnas.1620140114
18 https://doi.org/10.1088/0034-4885/76/5/056503
19 https://doi.org/10.1088/0305-4470/25/16/011
20 https://doi.org/10.1088/1367-2630/17/5/055016
21 https://doi.org/10.1103/physrev.71.622
22 https://doi.org/10.1103/physrevb.14.2239
23 https://doi.org/10.1103/physrevb.82.121407
24 https://doi.org/10.1103/physrevb.83.115404
25 https://doi.org/10.1103/physrevb.85.195458
26 https://doi.org/10.1103/physrevb.86.125413
27 https://doi.org/10.1103/physrevb.86.155449
28 https://doi.org/10.1103/physrevb.90.094506
29 https://doi.org/10.1103/physrevb.93.235153
30 https://doi.org/10.1103/physrevb.95.075124
31 https://doi.org/10.1103/physrevb.96.075311
32 https://doi.org/10.1103/physrevlett.100.016602
33 https://doi.org/10.1103/physrevlett.101.096802
34 https://doi.org/10.1103/physrevlett.106.126802
35 https://doi.org/10.1103/physrevlett.109.196802
36 https://doi.org/10.1103/physrevlett.111.266801
37 https://doi.org/10.1103/physrevlett.117.116804
38 https://doi.org/10.1103/physrevlett.62.1201
39 https://doi.org/10.1103/physrevlett.68.3088
40 https://doi.org/10.1103/physrevlett.96.086805
41 https://doi.org/10.1103/physrevlett.99.070401
42 https://doi.org/10.1103/revmodphys.70.1039
43 https://doi.org/10.1103/revmodphys.78.17
44 https://doi.org/10.1126/science.1102896
45 https://doi.org/10.1126/science.1191195
46 https://doi.org/10.1126/science.1237240
47 https://doi.org/10.1126/science.1244358
48 https://doi.org/10.1143/jpsj.74.1674
49 https://doi.org/10.1201/b12795
50 schema:datePublished 2018-04
51 schema:datePublishedReg 2018-04-01
52 schema:description A van der Waals heterostructure is a type of metamaterial that consists of vertically stacked two-dimensional building blocks held together by the van der Waals forces between the layers. This design means that the properties of van der Waals heterostructures can be engineered precisely, even more so than those of two-dimensional materials. One such property is the 'twist' angle between different layers in the heterostructure. This angle has a crucial role in the electronic properties of van der Waals heterostructures, but does not have a direct analogue in other types of heterostructure, such as semiconductors grown using molecular beam epitaxy. For small twist angles, the moiré pattern that is produced by the lattice misorientation between the two-dimensional layers creates long-range modulation of the stacking order. So far, studies of the effects of the twist angle in van der Waals heterostructures have concentrated mostly on heterostructures consisting of monolayer graphene on top of hexagonal boron nitride, which exhibit relatively weak interlayer interaction owing to the large bandgap in hexagonal boron nitride. Here we study a heterostructure consisting of bilayer graphene, in which the two graphene layers are twisted relative to each other by a certain angle. We show experimentally that, as predicted theoretically, when this angle is close to the 'magic' angle the electronic band structure near zero Fermi energy becomes flat, owing to strong interlayer coupling. These flat bands exhibit insulating states at half-filling, which are not expected in the absence of correlations between electrons. We show that these correlated states at half-filling are consistent with Mott-like insulator states, which can arise from electrons being localized in the superlattice that is induced by the moiré pattern. These properties of magic-angle-twisted bilayer graphene heterostructures suggest that these materials could be used to study other exotic many-body quantum phases in two dimensions in the absence of a magnetic field. The accessibility of the flat bands through electrical tunability and the bandwidth tunability through the twist angle could pave the way towards more exotic correlated systems, such as unconventional superconductors and quantum spin liquids.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree true
56 schema:isPartOf N39f54e5f5abc460fac1d850461797097
57 N5d563dfd9bc04990965b01025b2a64d6
58 sg:journal.1018957
59 schema:name Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
60 schema:pagination 80
61 schema:productId N004b3e04036f4f6c9140c345e74782ae
62 N394e647ccf924f088993b9f4308202e4
63 N4bbc0d2ad506463eb67f1afcf5b15485
64 N63644cedd01740aa8a538eca0f1e5643
65 Nf7216656ddc444638c19a5f3b0f6a3ed
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101337104
67 https://doi.org/10.1038/nature26154
68 schema:sdDatePublished 2019-04-11T12:22
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N2a80f1de6e0746f88ea998495e90130f
71 schema:url https://www.nature.com/articles/nature26154
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N004b3e04036f4f6c9140c345e74782ae schema:name pubmed_id
76 schema:value 29512654
77 rdf:type schema:PropertyValue
78 N194d664bb7db4e8b8be9d9c81a8e9ce7 rdf:first sg:person.010575643400.34
79 rdf:rest N2096202425304f2f812cd24b3f19bad5
80 N2096202425304f2f812cd24b3f19bad5 rdf:first sg:person.0765715521.02
81 rdf:rest Nd09bbeec489145c5b9445ca48515fb75
82 N2a394fe1b16e453d83bfef56d10e6f32 rdf:first Ne13e95fbbbd74378997917279bfaa60a
83 rdf:rest N9cbe8ea65a9f4e2386677d1cff375504
84 N2a80f1de6e0746f88ea998495e90130f schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N39058a3b507d4c31882d53cb8057f697 rdf:first sg:person.011721477715.79
87 rdf:rest N680f1bf2b0a64291ae0215ac82d669b8
88 N394e647ccf924f088993b9f4308202e4 schema:name doi
89 schema:value 10.1038/nature26154
90 rdf:type schema:PropertyValue
91 N39f54e5f5abc460fac1d850461797097 schema:issueNumber 7699
92 rdf:type schema:PublicationIssue
93 N4bbc0d2ad506463eb67f1afcf5b15485 schema:name nlm_unique_id
94 schema:value 0410462
95 rdf:type schema:PropertyValue
96 N5d563dfd9bc04990965b01025b2a64d6 schema:volumeNumber 556
97 rdf:type schema:PublicationVolume
98 N5e73eecfaddc42d1aa4b76d91fab355f rdf:first Naae508c7d93946598e09edf069103de3
99 rdf:rest N816a913e31e844c1b9a39db7a8710a20
100 N63644cedd01740aa8a538eca0f1e5643 schema:name readcube_id
101 schema:value be5e45f3ed46d90b202c8632c4e63619b02eb568e11ee9c3c8435195c5c2979f
102 rdf:type schema:PropertyValue
103 N680f1bf2b0a64291ae0215ac82d669b8 rdf:first sg:person.0641412577.25
104 rdf:rest N194d664bb7db4e8b8be9d9c81a8e9ce7
105 N816a913e31e844c1b9a39db7a8710a20 rdf:first sg:person.01034030721.03
106 rdf:rest rdf:nil
107 N89a3916ba1844a4686ce16d050078860 rdf:first sg:person.011003224420.59
108 rdf:rest N39058a3b507d4c31882d53cb8057f697
109 N9cbe8ea65a9f4e2386677d1cff375504 rdf:first sg:person.01076616305.66
110 rdf:rest N89a3916ba1844a4686ce16d050078860
111 Naa56775ff4c7408c984a813535f01bec rdf:first sg:person.010452736144.78
112 rdf:rest Nb69ec02d43b946719e9295abd15bd62d
113 Naae508c7d93946598e09edf069103de3 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
114 schema:familyName Ashoori
115 schema:givenName Ray C.
116 rdf:type schema:Person
117 Nb69ec02d43b946719e9295abd15bd62d rdf:first sg:person.01220504652.18
118 rdf:rest N2a394fe1b16e453d83bfef56d10e6f32
119 Nd09bbeec489145c5b9445ca48515fb75 rdf:first sg:person.01156413776.52
120 rdf:rest N5e73eecfaddc42d1aa4b76d91fab355f
121 Ne13e95fbbbd74378997917279bfaa60a schema:affiliation https://www.grid.ac/institutes/grid.116068.8
122 schema:familyName Demir
123 schema:givenName Ahmet
124 rdf:type schema:Person
125 Nf7216656ddc444638c19a5f3b0f6a3ed schema:name dimensions_id
126 schema:value pub.1101337104
127 rdf:type schema:PropertyValue
128 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
129 schema:name Physical Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
132 schema:name Condensed Matter Physics
133 rdf:type schema:DefinedTerm
134 sg:grant.2992146 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26154
135 rdf:type schema:MonetaryGrant
136 sg:grant.2996694 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26154
137 rdf:type schema:MonetaryGrant
138 sg:grant.3479835 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26154
139 rdf:type schema:MonetaryGrant
140 sg:grant.3582699 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26154
141 rdf:type schema:MonetaryGrant
142 sg:grant.5885411 http://pending.schema.org/fundedItem sg:pub.10.1038/nature26154
143 rdf:type schema:MonetaryGrant
144 sg:journal.1018957 schema:issn 0090-0028
145 1476-4687
146 schema:name Nature
147 rdf:type schema:Periodical
148 sg:person.01034030721.03 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
149 schema:familyName Jarillo-Herrero
150 schema:givenName Pablo
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034030721.03
152 rdf:type schema:Person
153 sg:person.010452736144.78 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
154 schema:familyName Cao
155 schema:givenName Yuan
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010452736144.78
157 rdf:type schema:Person
158 sg:person.010575643400.34 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
159 schema:familyName Watanabe
160 schema:givenName Kenji
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010575643400.34
162 rdf:type schema:Person
163 sg:person.01076616305.66 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
164 schema:familyName Fang
165 schema:givenName Shiang
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076616305.66
167 rdf:type schema:Person
168 sg:person.011003224420.59 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
169 schema:familyName Tomarken
170 schema:givenName Spencer L.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011003224420.59
172 rdf:type schema:Person
173 sg:person.01156413776.52 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
174 schema:familyName Kaxiras
175 schema:givenName Efthimios
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156413776.52
177 rdf:type schema:Person
178 sg:person.011721477715.79 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
179 schema:familyName Luo
180 schema:givenName Jason Y.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721477715.79
182 rdf:type schema:Person
183 sg:person.01220504652.18 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
184 schema:familyName Fatemi
185 schema:givenName Valla
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220504652.18
187 rdf:type schema:Person
188 sg:person.0641412577.25 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
189 schema:familyName Sanchez-Yamagishi
190 schema:givenName Javier D.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641412577.25
192 rdf:type schema:Person
193 sg:person.0765715521.02 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
194 schema:familyName Taniguchi
195 schema:givenName Takashi
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765715521.02
197 rdf:type schema:Person
198 sg:pub.10.1007/978-3-319-32536-1_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074203198
199 https://doi.org/10.1007/978-3-319-32536-1_2
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/nature08917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042830450
202 https://doi.org/10.1038/nature08917
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nature12186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039071679
205 https://doi.org/10.1038/nature12186
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nature12187 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026408867
208 https://doi.org/10.1038/nature12187
209 rdf:type schema:CreativeWork
210 sg:pub.10.1038/nature12385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024857999
211 https://doi.org/10.1038/nature12385
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nnano.2009.177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009742023
214 https://doi.org/10.1038/nnano.2009.177
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/nphys1463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045564126
217 https://doi.org/10.1038/nphys1463
218 rdf:type schema:CreativeWork
219 sg:pub.10.1140/epjb/e2012-30570-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041413000
220 https://doi.org/10.1140/epjb/e2012-30570-7
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1002/pssb.2220880243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052528064
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1021/acs.nanolett.5b05263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014530874
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1021/acs.nanolett.6b01906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055121570
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1063/1.2776887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049832147
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1073/pnas.1108174108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008495685
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.1620140114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084152914
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1088/0034-4885/76/5/056503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007854882
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1088/0305-4470/25/16/011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059072392
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1088/1367-2630/17/5/055016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136884
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/physrev.71.622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060453259
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/physrevb.14.2239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521465
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1103/physrevb.82.121407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031066269
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1103/physrevb.83.115404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024597229
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1103/physrevb.85.195458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002371346
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1103/physrevb.86.125413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013970916
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1103/physrevb.86.155449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026324859
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1103/physrevb.90.094506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022093248
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1103/physrevb.93.235153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060650739
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1103/physrevb.95.075124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083810546
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1103/physrevb.96.075311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091439269
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1103/physrevlett.100.016602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752631
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1103/physrevlett.101.096802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044994606
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1103/physrevlett.106.126802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002372755
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1103/physrevlett.109.196802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060760561
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1103/physrevlett.111.266801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028746127
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1103/physrevlett.117.116804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060766308
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1103/physrevlett.62.1201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798406
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1103/physrevlett.68.3088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804645
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1103/physrevlett.96.086805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040008071
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1103/physrevlett.99.070401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026809674
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1103/revmodphys.70.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839416
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1103/revmodphys.78.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839611
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1126/science.1191195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024771240
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1126/science.1237240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011524156
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1126/science.1244358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016025802
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1143/jpsj.74.1674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063121796
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1201/b12795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015883721
297 rdf:type schema:CreativeWork
298 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
299 schema:name Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
302 schema:name National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
303 rdf:type schema:Organization
304 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
305 schema:name Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
306 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
307 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...