3D printing of high-strength aluminium alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

John H. Martin, Brennan D. Yahata, Jacob M. Hundley, Justin A. Mayer, Tobias A. Schaedler, Tresa M. Pollock

ABSTRACT

Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues. More... »

PAGES

365

References to SciGraph publications

  • 2007-01. Dilatant shear bands in solidifying metals in NATURE
  • 2014-06. Metal Additive Manufacturing: A Review in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 1999-02. A new hot-tearing criterion in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2003-08. A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1999-06. Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms—a review of the literature in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1992-06. The Al-Zr (aluminum-zirconium) system in JOURNAL OF PHASE EQUILIBRIA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature23894

    DOI

    http://dx.doi.org/10.1038/nature23894

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091859364

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28933439


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of California, Santa Barbara", 
              "id": "https://www.grid.ac/institutes/grid.133342.4", 
              "name": [
                "HRL Laboratories LLC, Sensors and Materials Laboratory, Architected Materials Department, Malibu, California, USA", 
                "Materials Department, University of California, Santa Barbara, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Martin", 
            "givenName": "John H.", 
            "id": "sg:person.01043760701.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043760701.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HRL Laboratories (United States)", 
              "id": "https://www.grid.ac/institutes/grid.435086.c", 
              "name": [
                "HRL Laboratories LLC, Sensors and Materials Laboratory, Architected Materials Department, Malibu, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yahata", 
            "givenName": "Brennan D.", 
            "id": "sg:person.015267253363.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015267253363.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HRL Laboratories (United States)", 
              "id": "https://www.grid.ac/institutes/grid.435086.c", 
              "name": [
                "HRL Laboratories LLC, Sensors and Materials Laboratory, Architected Materials Department, Malibu, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hundley", 
            "givenName": "Jacob M.", 
            "id": "sg:person.016064633763.34", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016064633763.34"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HRL Laboratories (United States)", 
              "id": "https://www.grid.ac/institutes/grid.435086.c", 
              "name": [
                "HRL Laboratories LLC, Sensors and Materials Laboratory, Architected Materials Department, Malibu, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mayer", 
            "givenName": "Justin A.", 
            "id": "sg:person.016662214363.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016662214363.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "HRL Laboratories (United States)", 
              "id": "https://www.grid.ac/institutes/grid.435086.c", 
              "name": [
                "HRL Laboratories LLC, Sensors and Materials Laboratory, Architected Materials Department, Malibu, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schaedler", 
            "givenName": "Tobias A.", 
            "id": "sg:person.013307705575.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307705575.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of California, Santa Barbara", 
              "id": "https://www.grid.ac/institutes/grid.133342.4", 
              "name": [
                "Materials Department, University of California, Santa Barbara, California, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pollock", 
            "givenName": "Tresa M.", 
            "id": "sg:person.07657170501.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657170501.90"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.actamat.2005.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003507263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2005.05.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003507263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-matsci-070115-031816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006179653"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5416(84)90201-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007275551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5416(84)90201-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007275551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-5093(99)00653-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018705642"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020473967", 
              "https://doi.org/10.1038/nature05426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature05426", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020473967", 
              "https://doi.org/10.1038/nature05426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-999-0098-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023775419", 
              "https://doi.org/10.1007/s11661-999-0098-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-999-0098-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023775419", 
              "https://doi.org/10.1007/s11661-999-0098-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.actamat.2011.11.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024729396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-999-0334-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026049786", 
              "https://doi.org/10.1007/s11661-999-0334-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0376-0421(95)00004-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026939636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1146/annurev-matsci-070115-032024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028029620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02667556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028835810", 
              "https://doi.org/10.1007/bf02667556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02667556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028835810", 
              "https://doi.org/10.1007/bf02667556"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/1743284714y.0000000734", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030803440"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-014-0958-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032374549", 
              "https://doi.org/10.1007/s11665-014-0958-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2015.12.101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036445095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/1044-5803(95)00066-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036467786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/1743280413y.0000000020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037679943"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.phpro.2011.03.047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037853842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0079-6425(03)00037-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038891118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0079-6425(03)00037-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038891118"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/095066001225001049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042529976"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.phpro.2016.08.096", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044096800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-003-0311-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051076374", 
              "https://doi.org/10.1007/s11661-003-0311-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-003-0311-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051076374", 
              "https://doi.org/10.1007/s11661-003-0311-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.329867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057933265"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1557/mrs.2016.214", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067967414"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09", 
        "datePublishedReg": "2017-09-01", 
        "description": "Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature23894", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7672", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "549"
          }
        ], 
        "name": "3D printing of high-strength aluminium alloys", 
        "pagination": "365", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3b92369b633772796fa8a7c8a6f9c4d02ef44675f9f7b7354a797e9ddd50fe0a"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28933439"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature23894"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091859364"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature23894", 
          "https://app.dimensions.ai/details/publication/pub.1091859364"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000360_0000000360/records_118332_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature23894"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature23894'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature23894'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature23894'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature23894'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      52 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature23894 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ne700dfb635294bbaa0a27a14ff81e770
    4 schema:citation sg:pub.10.1007/bf02667556
    5 sg:pub.10.1007/s11661-003-0311-x
    6 sg:pub.10.1007/s11661-999-0098-5
    7 sg:pub.10.1007/s11661-999-0334-z
    8 sg:pub.10.1007/s11665-014-0958-z
    9 sg:pub.10.1038/nature05426
    10 https://doi.org/10.1016/0025-5416(84)90201-5
    11 https://doi.org/10.1016/0376-0421(95)00004-6
    12 https://doi.org/10.1016/1044-5803(95)00066-6
    13 https://doi.org/10.1016/j.actamat.2005.05.005
    14 https://doi.org/10.1016/j.actamat.2011.11.042
    15 https://doi.org/10.1016/j.msea.2015.12.101
    16 https://doi.org/10.1016/j.phpro.2011.03.047
    17 https://doi.org/10.1016/j.phpro.2016.08.096
    18 https://doi.org/10.1016/s0079-6425(03)00037-9
    19 https://doi.org/10.1016/s0921-5093(99)00653-x
    20 https://doi.org/10.1063/1.329867
    21 https://doi.org/10.1146/annurev-matsci-070115-031816
    22 https://doi.org/10.1146/annurev-matsci-070115-032024
    23 https://doi.org/10.1179/095066001225001049
    24 https://doi.org/10.1179/1743280413y.0000000020
    25 https://doi.org/10.1179/1743284714y.0000000734
    26 https://doi.org/10.1557/mrs.2016.214
    27 schema:datePublished 2017-09
    28 schema:datePublishedReg 2017-09-01
    29 schema:description Metal-based additive manufacturing, or three-dimensional (3D) printing, is a potentially disruptive technology across multiple industries, including the aerospace, biomedical and automotive industries. Building up metal components layer by layer increases design freedom and manufacturing flexibility, thereby enabling complex geometries, increased product customization and shorter time to market, while eliminating traditional economy-of-scale constraints. However, currently only a few alloys, the most relevant being AlSi10Mg, TiAl6V4, CoCr and Inconel 718, can be reliably printed; the vast majority of the more than 5,500 alloys in use today cannot be additively manufactured because the melting and solidification dynamics during the printing process lead to intolerable microstructures with large columnar grains and periodic cracks. Here we demonstrate that these issues can be resolved by introducing nanoparticles of nucleants that control solidification during additive manufacturing. We selected the nucleants on the basis of crystallographic information and assembled them onto 7075 and 6061 series aluminium alloy powders. After functionalization with the nucleants, we found that these high-strength aluminium alloys, which were previously incompatible with additive manufacturing, could be processed successfully using selective laser melting. Crack-free, equiaxed (that is, with grains roughly equal in length, width and height), fine-grained microstructures were achieved, resulting in material strengths comparable to that of wrought material. Our approach to metal-based additive manufacturing is applicable to a wide range of alloys and can be implemented using a range of additive machines. It thus provides a foundation for broad industrial applicability, including where electron-beam melting or directed-energy-deposition techniques are used instead of selective laser melting, and will enable additive manufacturing of other alloy systems, such as non-weldable nickel superalloys and intermetallics. Furthermore, this technology could be used in conventional processing such as in joining, casting and injection moulding, in which solidification cracking and hot tearing are also common issues.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N2c71fe75271a460c8f5c8ebb4aefd38a
    34 N5f63a9c58c294ea5af30c9fc2d056b9e
    35 sg:journal.1018957
    36 schema:name 3D printing of high-strength aluminium alloys
    37 schema:pagination 365
    38 schema:productId N13dcf9d05b434349aab0a76b16001821
    39 N5c8c6f5db619481f8535892064da6c0a
    40 N69fd1149eb0a4770a87bcf8dd758b873
    41 N994cf3b6044d4a25ac7529966c341887
    42 Nc3208135d931453db3c04b3794c70cd6
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091859364
    44 https://doi.org/10.1038/nature23894
    45 schema:sdDatePublished 2019-04-11T12:06
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N44bcdbf13f5b491dac223c395bc9470c
    48 schema:url https://www.nature.com/articles/nature23894
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N13dcf9d05b434349aab0a76b16001821 schema:name nlm_unique_id
    53 schema:value 0410462
    54 rdf:type schema:PropertyValue
    55 N2c71fe75271a460c8f5c8ebb4aefd38a schema:issueNumber 7672
    56 rdf:type schema:PublicationIssue
    57 N3d5b4339e5ad4aa4a2305878736e527d rdf:first sg:person.07657170501.90
    58 rdf:rest rdf:nil
    59 N44bcdbf13f5b491dac223c395bc9470c schema:name Springer Nature - SN SciGraph project
    60 rdf:type schema:Organization
    61 N5c8c6f5db619481f8535892064da6c0a schema:name doi
    62 schema:value 10.1038/nature23894
    63 rdf:type schema:PropertyValue
    64 N5f2e835f1c8f4535b5e7099d2749894f rdf:first sg:person.013307705575.17
    65 rdf:rest N3d5b4339e5ad4aa4a2305878736e527d
    66 N5f63a9c58c294ea5af30c9fc2d056b9e schema:volumeNumber 549
    67 rdf:type schema:PublicationVolume
    68 N5fcebdccc60d4ed5bb84c89f4f6d0ba9 rdf:first sg:person.016662214363.17
    69 rdf:rest N5f2e835f1c8f4535b5e7099d2749894f
    70 N69fd1149eb0a4770a87bcf8dd758b873 schema:name pubmed_id
    71 schema:value 28933439
    72 rdf:type schema:PropertyValue
    73 N8c3f9efd2a6649fbb64a1abb7c34ec25 rdf:first sg:person.016064633763.34
    74 rdf:rest N5fcebdccc60d4ed5bb84c89f4f6d0ba9
    75 N994cf3b6044d4a25ac7529966c341887 schema:name dimensions_id
    76 schema:value pub.1091859364
    77 rdf:type schema:PropertyValue
    78 Nc3208135d931453db3c04b3794c70cd6 schema:name readcube_id
    79 schema:value 3b92369b633772796fa8a7c8a6f9c4d02ef44675f9f7b7354a797e9ddd50fe0a
    80 rdf:type schema:PropertyValue
    81 Ne700dfb635294bbaa0a27a14ff81e770 rdf:first sg:person.01043760701.44
    82 rdf:rest Nf273f76aa8e64a6db3d22786bdd88f31
    83 Nf273f76aa8e64a6db3d22786bdd88f31 rdf:first sg:person.015267253363.55
    84 rdf:rest N8c3f9efd2a6649fbb64a1abb7c34ec25
    85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Engineering
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Materials Engineering
    90 rdf:type schema:DefinedTerm
    91 sg:journal.1018957 schema:issn 0090-0028
    92 1476-4687
    93 schema:name Nature
    94 rdf:type schema:Periodical
    95 sg:person.01043760701.44 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
    96 schema:familyName Martin
    97 schema:givenName John H.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043760701.44
    99 rdf:type schema:Person
    100 sg:person.013307705575.17 schema:affiliation https://www.grid.ac/institutes/grid.435086.c
    101 schema:familyName Schaedler
    102 schema:givenName Tobias A.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013307705575.17
    104 rdf:type schema:Person
    105 sg:person.015267253363.55 schema:affiliation https://www.grid.ac/institutes/grid.435086.c
    106 schema:familyName Yahata
    107 schema:givenName Brennan D.
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015267253363.55
    109 rdf:type schema:Person
    110 sg:person.016064633763.34 schema:affiliation https://www.grid.ac/institutes/grid.435086.c
    111 schema:familyName Hundley
    112 schema:givenName Jacob M.
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016064633763.34
    114 rdf:type schema:Person
    115 sg:person.016662214363.17 schema:affiliation https://www.grid.ac/institutes/grid.435086.c
    116 schema:familyName Mayer
    117 schema:givenName Justin A.
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016662214363.17
    119 rdf:type schema:Person
    120 sg:person.07657170501.90 schema:affiliation https://www.grid.ac/institutes/grid.133342.4
    121 schema:familyName Pollock
    122 schema:givenName Tresa M.
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07657170501.90
    124 rdf:type schema:Person
    125 sg:pub.10.1007/bf02667556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028835810
    126 https://doi.org/10.1007/bf02667556
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s11661-003-0311-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051076374
    129 https://doi.org/10.1007/s11661-003-0311-x
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s11661-999-0098-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023775419
    132 https://doi.org/10.1007/s11661-999-0098-5
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s11661-999-0334-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026049786
    135 https://doi.org/10.1007/s11661-999-0334-z
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s11665-014-0958-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1032374549
    138 https://doi.org/10.1007/s11665-014-0958-z
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1038/nature05426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020473967
    141 https://doi.org/10.1038/nature05426
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1016/0025-5416(84)90201-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007275551
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1016/0376-0421(95)00004-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026939636
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1016/1044-5803(95)00066-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036467786
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1016/j.actamat.2005.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003507263
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1016/j.actamat.2011.11.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024729396
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.msea.2015.12.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036445095
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1016/j.phpro.2011.03.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037853842
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1016/j.phpro.2016.08.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044096800
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1016/s0079-6425(03)00037-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038891118
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1016/s0921-5093(99)00653-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018705642
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1063/1.329867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057933265
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1146/annurev-matsci-070115-031816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006179653
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1146/annurev-matsci-070115-032024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028029620
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1179/095066001225001049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042529976
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1179/1743280413y.0000000020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037679943
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1179/1743284714y.0000000734 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030803440
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1557/mrs.2016.214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067967414
    176 rdf:type schema:CreativeWork
    177 https://www.grid.ac/institutes/grid.133342.4 schema:alternateName University of California, Santa Barbara
    178 schema:name HRL Laboratories LLC, Sensors and Materials Laboratory, Architected Materials Department, Malibu, California, USA
    179 Materials Department, University of California, Santa Barbara, California, USA
    180 rdf:type schema:Organization
    181 https://www.grid.ac/institutes/grid.435086.c schema:alternateName HRL Laboratories (United States)
    182 schema:name HRL Laboratories LLC, Sensors and Materials Laboratory, Architected Materials Department, Malibu, California, USA
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...