Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07

AUTHORS

Johannes Gooth, Anna C. Niemann, Tobias Meng, Adolfo G. Grushin, Karl Landsteiner, Bernd Gotsmann, Fabian Menges, Marcus Schmidt, Chandra Shekhar, Vicky Süß, Ruben Hühne, Bernd Rellinghaus, Claudia Felser, Binghai Yan, Kornelius Nielsch

ABSTRACT

The conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies. One of the most prominent examples is the chiral anomaly, which involves massless chiral fermions. These particles have their spin, or internal angular momentum, aligned either parallel or antiparallel with their linear momentum, labelled as left and right chirality, respectively. In three spatial dimensions, the chiral anomaly is the breakdown (as a result of externally applied parallel electric and magnetic fields) of the classical conservation law that dictates that the number of massless fermions of each chirality are separately conserved. The current that measures the difference between left- and right-handed particles is called the axial current and is not conserved at the quantum level. In addition, an underlying curved space-time provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, but this anomaly has yet to be confirmed experimentally. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat space-time, suggesting that such types of mixed anomaly could be experimentally probed in condensed matter systems known as Weyl semimetals. Here, using a temperature gradient, we observe experimentally a positive magneto-thermoelectric conductance in the Weyl semimetal niobium phosphide (NbP) for collinear temperature gradients and magnetic fields that vanishes in the ultra-quantum limit, when only a single Landau level is occupied. This observation is consistent with the presence of a mixed axial-gravitational anomaly, providing clear evidence for a theoretical concept that has so far eluded experimental detection. More... »

PAGES

324

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature23005

DOI

http://dx.doi.org/10.1038/nature23005

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090775029

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28726829


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "IBM Research - Zurich", 
          "id": "https://www.grid.ac/institutes/grid.410387.9", 
          "name": [
            "Institute of Nanostructure and Solid State Physics, Universit\u00e4t Hamburg, Jungiusstra\u00dfe 11, 20355 Hamburg, Germany", 
            "IBM Research -Zurich, S\u00e4umerstrasse 4, 8803 R\u00fcschlikon, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gooth", 
        "givenName": "Johannes", 
        "id": "sg:person.0765667601.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765667601.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Solid State and Materials Research", 
          "id": "https://www.grid.ac/institutes/grid.14841.38", 
          "name": [
            "Institute of Nanostructure and Solid State Physics, Universit\u00e4t Hamburg, Jungiusstra\u00dfe 11, 20355 Hamburg, Germany", 
            "Leibniz Institute for Solid State and Materials Research Dresden, Institute for Metallic Materials, Helmholtzstra\u00dfe 20, 01069 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Niemann", 
        "givenName": "Anna C.", 
        "id": "sg:person.016514770541.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016514770541.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "TU Dresden", 
          "id": "https://www.grid.ac/institutes/grid.4488.0", 
          "name": [
            "Institute for Theoretical Physics, Technical University Dresden, Zellescher Weg 17, 01062 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Tobias", 
        "id": "sg:person.013301230437.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301230437.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Physics, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grushin", 
        "givenName": "Adolfo G.", 
        "id": "sg:person.014746655255.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014746655255.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Autonomous University of Madrid", 
          "id": "https://www.grid.ac/institutes/grid.5515.4", 
          "name": [
            "Instituto de F\u00edsica Te\u00f3rica UAM/CSIC, Nicol\u00e1s Cabrera 13\u201315, Universidad Aut\u00f3noma de Madrid, Cantoblanco, 28049 Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Landsteiner", 
        "givenName": "Karl", 
        "id": "sg:person.01221247162.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221247162.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Zurich", 
          "id": "https://www.grid.ac/institutes/grid.410387.9", 
          "name": [
            "IBM Research -Zurich, S\u00e4umerstrasse 4, 8803 R\u00fcschlikon, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gotsmann", 
        "givenName": "Bernd", 
        "id": "sg:person.01162065351.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162065351.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "IBM Research - Zurich", 
          "id": "https://www.grid.ac/institutes/grid.410387.9", 
          "name": [
            "IBM Research -Zurich, S\u00e4umerstrasse 4, 8803 R\u00fcschlikon, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Menges", 
        "givenName": "Fabian", 
        "id": "sg:person.0777523551.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777523551.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, N\u00f6thnitzer Stra\u00dfe 40, 01187 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Marcus", 
        "id": "sg:person.0734577100.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734577100.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, N\u00f6thnitzer Stra\u00dfe 40, 01187 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shekhar", 
        "givenName": "Chandra", 
        "id": "sg:person.01174257270.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174257270.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, N\u00f6thnitzer Stra\u00dfe 40, 01187 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "S\u00fc\u00df", 
        "givenName": "Vicky", 
        "id": "sg:person.01156673757.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156673757.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Solid State and Materials Research", 
          "id": "https://www.grid.ac/institutes/grid.14841.38", 
          "name": [
            "Leibniz Institute for Solid State and Materials Research Dresden, Institute for Metallic Materials, Helmholtzstra\u00dfe 20, 01069 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00fchne", 
        "givenName": "Ruben", 
        "id": "sg:person.01144272307.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144272307.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Solid State and Materials Research", 
          "id": "https://www.grid.ac/institutes/grid.14841.38", 
          "name": [
            "Leibniz Institute for Solid State and Materials Research Dresden, Institute for Metallic Materials, Helmholtzstra\u00dfe 20, 01069 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rellinghaus", 
        "givenName": "Bernd", 
        "id": "sg:person.0774246666.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774246666.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, N\u00f6thnitzer Stra\u00dfe 40, 01187 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Felser", 
        "givenName": "Claudia", 
        "id": "sg:person.0710676154.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710676154.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Weizmann Institute of Science", 
          "id": "https://www.grid.ac/institutes/grid.13992.30", 
          "name": [
            "Max Planck Institute for Chemical Physics of Solids, N\u00f6thnitzer Stra\u00dfe 40, 01187 Dresden, Germany", 
            "Department of Condensed Matter Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Binghai", 
        "id": "sg:person.01051315016.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051315016.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Leibniz Institute for Solid State and Materials Research", 
          "id": "https://www.grid.ac/institutes/grid.14841.38", 
          "name": [
            "Institute of Nanostructure and Solid State Physics, Universit\u00e4t Hamburg, Jungiusstra\u00dfe 11, 20355 Hamburg, Germany", 
            "Leibniz Institute for Solid State and Materials Research Dresden, Institute for Metallic Materials, Helmholtzstra\u00dfe 20, 01069 Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nielsch", 
        "givenName": "Kornelius", 
        "id": "sg:person.01172516647.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172516647.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-37305-3_17", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001667745", 
          "https://doi.org/10.1007/978-3-642-37305-3_17"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002042648", 
          "https://doi.org/10.1038/nphys3437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(81)90361-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003426861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(81)90361-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003426861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aac6089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003730190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.165115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007905061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.165115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007905061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.247203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008985347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.113.247203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008985347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep09(2011)121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009726384", 
          "https://doi.org/10.1007/jhep09(2011)121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)91529-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(83)91529-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009993034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010845176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevx.5.031023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010845176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep02(2013)088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011440270", 
          "https://doi.org/10.1007/jhep02(2013)088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02823296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012901556", 
          "https://doi.org/10.1007/bf02823296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02823296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012901556", 
          "https://doi.org/10.1007/bf02823296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(72)90825-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013289930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(72)90825-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013289930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys3372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014314134", 
          "https://doi.org/10.1038/nphys3372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90066-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014517690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90066-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014517690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat4684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016952109", 
          "https://doi.org/10.1038/nmat4684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physletb.2016.06.054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018807263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/jhep05(2016)105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018990272", 
          "https://doi.org/10.1007/jhep05(2016)105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1608881113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020802117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms11615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021091120", 
          "https://doi.org/10.1038/ncomms11615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029680711", 
          "https://doi.org/10.1038/ncomms3696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep33859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032232594", 
          "https://doi.org/10.1038/srep33859"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032808151", 
          "https://doi.org/10.1038/ncomms8373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.121108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036896747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.121108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036896747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.104412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037744625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.88.104412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037744625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms10301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041075027", 
          "https://doi.org/10.1038/ncomms10301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa9297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044122552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.021601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.021601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052645624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.177.2426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.177.2426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060440460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.035116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.035116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060648597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.085107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.93.085107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060649139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.37.1251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060780605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.37.1251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060780605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5506/aphyspolb.47.2617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072930025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep43394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084131350", 
          "https://doi.org/10.1038/srep43394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198507628.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098729012"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "The conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies. One of the most prominent examples is the chiral anomaly, which involves massless chiral fermions. These particles have their spin, or internal angular momentum, aligned either parallel or antiparallel with their linear momentum, labelled as left and right chirality, respectively. In three spatial dimensions, the chiral anomaly is the breakdown (as a result of externally applied parallel electric and magnetic fields) of the classical conservation law that dictates that the number of massless fermions of each chirality are separately conserved. The current that measures the difference between left- and right-handed particles is called the axial current and is not conserved at the quantum level. In addition, an underlying curved space-time provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, but this anomaly has yet to be confirmed experimentally. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat space-time, suggesting that such types of mixed anomaly could be experimentally probed in condensed matter systems known as Weyl semimetals. Here, using a temperature gradient, we observe experimentally a positive magneto-thermoelectric conductance in the Weyl semimetal niobium phosphide (NbP) for collinear temperature gradients and magnetic fields that vanishes in the ultra-quantum limit, when only a single Landau level is occupied. This observation is consistent with the presence of a mixed axial-gravitational anomaly, providing clear evidence for a theoretical concept that has so far eluded experimental detection.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature23005", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3941087", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7663", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "547"
      }
    ], 
    "name": "Experimental signatures of the mixed axial\u2013gravitational anomaly in the Weyl semimetal NbP", 
    "pagination": "324", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5c52ee8bdade6a649275fe1ea24263e9d404c280ab3652c4657110df9bdfaf6b"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28726829"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature23005"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090775029"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature23005", 
      "https://app.dimensions.ai/details/publication/pub.1090775029"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87091_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature23005"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature23005'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature23005'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature23005'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature23005'


 

This table displays all metadata directly associated to this object as RDF triples.

306 TRIPLES      21 PREDICATES      63 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature23005 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nc51a1b3f858e4e83898dfa5805ad88b1
4 schema:citation sg:pub.10.1007/978-3-642-37305-3_17
5 sg:pub.10.1007/bf02823296
6 sg:pub.10.1007/jhep02(2013)088
7 sg:pub.10.1007/jhep05(2016)105
8 sg:pub.10.1007/jhep09(2011)121
9 sg:pub.10.1038/ncomms10301
10 sg:pub.10.1038/ncomms11615
11 sg:pub.10.1038/ncomms3696
12 sg:pub.10.1038/ncomms8373
13 sg:pub.10.1038/nmat4684
14 sg:pub.10.1038/nphys3372
15 sg:pub.10.1038/nphys3437
16 sg:pub.10.1038/srep33859
17 sg:pub.10.1038/srep43394
18 https://doi.org/10.1016/0370-2693(72)90825-8
19 https://doi.org/10.1016/0370-2693(83)91529-0
20 https://doi.org/10.1016/0550-3213(81)90361-8
21 https://doi.org/10.1016/0550-3213(84)90066-x
22 https://doi.org/10.1016/j.physletb.2016.06.054
23 https://doi.org/10.1073/pnas.1608881113
24 https://doi.org/10.1093/acprof:oso/9780198507628.001.0001
25 https://doi.org/10.1103/physrev.177.2426
26 https://doi.org/10.1103/physrevb.88.104412
27 https://doi.org/10.1103/physrevb.90.121108
28 https://doi.org/10.1103/physrevb.90.165115
29 https://doi.org/10.1103/physrevb.93.035116
30 https://doi.org/10.1103/physrevb.93.085107
31 https://doi.org/10.1103/physrevlett.107.021601
32 https://doi.org/10.1103/physrevlett.113.247203
33 https://doi.org/10.1103/physrevlett.37.1251
34 https://doi.org/10.1103/physrevx.5.031023
35 https://doi.org/10.1126/science.aaa9297
36 https://doi.org/10.1126/science.aac6089
37 https://doi.org/10.5506/aphyspolb.47.2617
38 schema:datePublished 2017-07
39 schema:datePublishedReg 2017-07-01
40 schema:description The conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies. One of the most prominent examples is the chiral anomaly, which involves massless chiral fermions. These particles have their spin, or internal angular momentum, aligned either parallel or antiparallel with their linear momentum, labelled as left and right chirality, respectively. In three spatial dimensions, the chiral anomaly is the breakdown (as a result of externally applied parallel electric and magnetic fields) of the classical conservation law that dictates that the number of massless fermions of each chirality are separately conserved. The current that measures the difference between left- and right-handed particles is called the axial current and is not conserved at the quantum level. In addition, an underlying curved space-time provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial-gravitational anomaly, but this anomaly has yet to be confirmed experimentally. However, the presence of a mixed gauge-gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field, even in flat space-time, suggesting that such types of mixed anomaly could be experimentally probed in condensed matter systems known as Weyl semimetals. Here, using a temperature gradient, we observe experimentally a positive magneto-thermoelectric conductance in the Weyl semimetal niobium phosphide (NbP) for collinear temperature gradients and magnetic fields that vanishes in the ultra-quantum limit, when only a single Landau level is occupied. This observation is consistent with the presence of a mixed axial-gravitational anomaly, providing clear evidence for a theoretical concept that has so far eluded experimental detection.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree true
44 schema:isPartOf N78eef64b5c8b42939f675a4c19fb8c0e
45 Nec7cc7a9832a4b3baa6545ca07449bce
46 sg:journal.1018957
47 schema:name Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP
48 schema:pagination 324
49 schema:productId N4ee3b9719c2d4d0fbd7075df1d2444e6
50 Nb4b32cc378864513b739dee122c14408
51 Nd5206eb788ac47feb62ac09f6601ce3d
52 Ne3db13479c0744b7b2834c9397463ff4
53 Nf2c63a74164749398639bfcfa54e25dc
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090775029
55 https://doi.org/10.1038/nature23005
56 schema:sdDatePublished 2019-04-11T12:23
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N48e9c8bc2d584c19894ec37549310570
59 schema:url https://www.nature.com/articles/nature23005
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N080533e6639d4d95a87261cc871cafe6 rdf:first sg:person.01162065351.42
64 rdf:rest N1e48a3e5256c4fa6bd6eada004e4a2b8
65 N1e48a3e5256c4fa6bd6eada004e4a2b8 rdf:first sg:person.0777523551.02
66 rdf:rest N491c9f2bfad94f6797471236dc2e0a57
67 N3b2983f1a1704a68860cd18ccee98005 rdf:first sg:person.01221247162.04
68 rdf:rest N080533e6639d4d95a87261cc871cafe6
69 N42dfd232c34b45b1ae89e852e1c4c444 rdf:first sg:person.01144272307.18
70 rdf:rest Nc0bd1b4753a7434b8e8db35be7c637e0
71 N48e9c8bc2d584c19894ec37549310570 schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 N491460d4de6c431d951fb883c16a306a rdf:first sg:person.01174257270.98
74 rdf:rest Nb5f7bab4701e4a7580a439185509b24c
75 N491c9f2bfad94f6797471236dc2e0a57 rdf:first sg:person.0734577100.55
76 rdf:rest N491460d4de6c431d951fb883c16a306a
77 N4ee3b9719c2d4d0fbd7075df1d2444e6 schema:name pubmed_id
78 schema:value 28726829
79 rdf:type schema:PropertyValue
80 N61f2946560fd42be836144ecbab806ad rdf:first sg:person.016514770541.46
81 rdf:rest Nfd5f332e91a341569226d6325d1fea6c
82 N64a86fc9e92e447a893ece3e6a2352ac rdf:first sg:person.01051315016.69
83 rdf:rest N88095058d15c4ab88e661eafcd20e48b
84 N78eef64b5c8b42939f675a4c19fb8c0e schema:issueNumber 7663
85 rdf:type schema:PublicationIssue
86 N88095058d15c4ab88e661eafcd20e48b rdf:first sg:person.01172516647.43
87 rdf:rest rdf:nil
88 Nb3a3f89b40f444f69782e3edae58c044 rdf:first sg:person.0710676154.01
89 rdf:rest N64a86fc9e92e447a893ece3e6a2352ac
90 Nb4b32cc378864513b739dee122c14408 schema:name dimensions_id
91 schema:value pub.1090775029
92 rdf:type schema:PropertyValue
93 Nb5f7bab4701e4a7580a439185509b24c rdf:first sg:person.01156673757.75
94 rdf:rest N42dfd232c34b45b1ae89e852e1c4c444
95 Nc0bd1b4753a7434b8e8db35be7c637e0 rdf:first sg:person.0774246666.63
96 rdf:rest Nb3a3f89b40f444f69782e3edae58c044
97 Nc51a1b3f858e4e83898dfa5805ad88b1 rdf:first sg:person.0765667601.28
98 rdf:rest N61f2946560fd42be836144ecbab806ad
99 Nd5206eb788ac47feb62ac09f6601ce3d schema:name readcube_id
100 schema:value 5c52ee8bdade6a649275fe1ea24263e9d404c280ab3652c4657110df9bdfaf6b
101 rdf:type schema:PropertyValue
102 Ne3db13479c0744b7b2834c9397463ff4 schema:name nlm_unique_id
103 schema:value 0410462
104 rdf:type schema:PropertyValue
105 Nec7cc7a9832a4b3baa6545ca07449bce schema:volumeNumber 547
106 rdf:type schema:PublicationVolume
107 Nf2c63a74164749398639bfcfa54e25dc schema:name doi
108 schema:value 10.1038/nature23005
109 rdf:type schema:PropertyValue
110 Nfd5f332e91a341569226d6325d1fea6c rdf:first sg:person.013301230437.76
111 rdf:rest Nfddb8712c6264fed94b602c0061aa98a
112 Nfddb8712c6264fed94b602c0061aa98a rdf:first sg:person.014746655255.66
113 rdf:rest N3b2983f1a1704a68860cd18ccee98005
114 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
115 schema:name Physical Sciences
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
118 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
119 rdf:type schema:DefinedTerm
120 sg:grant.3941087 http://pending.schema.org/fundedItem sg:pub.10.1038/nature23005
121 rdf:type schema:MonetaryGrant
122 sg:journal.1018957 schema:issn 0090-0028
123 1476-4687
124 schema:name Nature
125 rdf:type schema:Periodical
126 sg:person.01051315016.69 schema:affiliation https://www.grid.ac/institutes/grid.13992.30
127 schema:familyName Yan
128 schema:givenName Binghai
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051315016.69
130 rdf:type schema:Person
131 sg:person.01144272307.18 schema:affiliation https://www.grid.ac/institutes/grid.14841.38
132 schema:familyName Hühne
133 schema:givenName Ruben
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144272307.18
135 rdf:type schema:Person
136 sg:person.01156673757.75 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
137 schema:familyName Süß
138 schema:givenName Vicky
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156673757.75
140 rdf:type schema:Person
141 sg:person.01162065351.42 schema:affiliation https://www.grid.ac/institutes/grid.410387.9
142 schema:familyName Gotsmann
143 schema:givenName Bernd
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162065351.42
145 rdf:type schema:Person
146 sg:person.01172516647.43 schema:affiliation https://www.grid.ac/institutes/grid.14841.38
147 schema:familyName Nielsch
148 schema:givenName Kornelius
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172516647.43
150 rdf:type schema:Person
151 sg:person.01174257270.98 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
152 schema:familyName Shekhar
153 schema:givenName Chandra
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174257270.98
155 rdf:type schema:Person
156 sg:person.01221247162.04 schema:affiliation https://www.grid.ac/institutes/grid.5515.4
157 schema:familyName Landsteiner
158 schema:givenName Karl
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221247162.04
160 rdf:type schema:Person
161 sg:person.013301230437.76 schema:affiliation https://www.grid.ac/institutes/grid.4488.0
162 schema:familyName Meng
163 schema:givenName Tobias
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013301230437.76
165 rdf:type schema:Person
166 sg:person.014746655255.66 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
167 schema:familyName Grushin
168 schema:givenName Adolfo G.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014746655255.66
170 rdf:type schema:Person
171 sg:person.016514770541.46 schema:affiliation https://www.grid.ac/institutes/grid.14841.38
172 schema:familyName Niemann
173 schema:givenName Anna C.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016514770541.46
175 rdf:type schema:Person
176 sg:person.0710676154.01 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
177 schema:familyName Felser
178 schema:givenName Claudia
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710676154.01
180 rdf:type schema:Person
181 sg:person.0734577100.55 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
182 schema:familyName Schmidt
183 schema:givenName Marcus
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734577100.55
185 rdf:type schema:Person
186 sg:person.0765667601.28 schema:affiliation https://www.grid.ac/institutes/grid.410387.9
187 schema:familyName Gooth
188 schema:givenName Johannes
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765667601.28
190 rdf:type schema:Person
191 sg:person.0774246666.63 schema:affiliation https://www.grid.ac/institutes/grid.14841.38
192 schema:familyName Rellinghaus
193 schema:givenName Bernd
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774246666.63
195 rdf:type schema:Person
196 sg:person.0777523551.02 schema:affiliation https://www.grid.ac/institutes/grid.410387.9
197 schema:familyName Menges
198 schema:givenName Fabian
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777523551.02
200 rdf:type schema:Person
201 sg:pub.10.1007/978-3-642-37305-3_17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001667745
202 https://doi.org/10.1007/978-3-642-37305-3_17
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/bf02823296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012901556
205 https://doi.org/10.1007/bf02823296
206 rdf:type schema:CreativeWork
207 sg:pub.10.1007/jhep02(2013)088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011440270
208 https://doi.org/10.1007/jhep02(2013)088
209 rdf:type schema:CreativeWork
210 sg:pub.10.1007/jhep05(2016)105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018990272
211 https://doi.org/10.1007/jhep05(2016)105
212 rdf:type schema:CreativeWork
213 sg:pub.10.1007/jhep09(2011)121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009726384
214 https://doi.org/10.1007/jhep09(2011)121
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/ncomms10301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041075027
217 https://doi.org/10.1038/ncomms10301
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/ncomms11615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021091120
220 https://doi.org/10.1038/ncomms11615
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/ncomms3696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029680711
223 https://doi.org/10.1038/ncomms3696
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/ncomms8373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032808151
226 https://doi.org/10.1038/ncomms8373
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/nmat4684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016952109
229 https://doi.org/10.1038/nmat4684
230 rdf:type schema:CreativeWork
231 sg:pub.10.1038/nphys3372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014314134
232 https://doi.org/10.1038/nphys3372
233 rdf:type schema:CreativeWork
234 sg:pub.10.1038/nphys3437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002042648
235 https://doi.org/10.1038/nphys3437
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/srep33859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032232594
238 https://doi.org/10.1038/srep33859
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/srep43394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084131350
241 https://doi.org/10.1038/srep43394
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1016/0370-2693(72)90825-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013289930
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1016/0370-2693(83)91529-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009993034
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1016/0550-3213(81)90361-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003426861
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1016/0550-3213(84)90066-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014517690
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.physletb.2016.06.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018807263
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1073/pnas.1608881113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020802117
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1093/acprof:oso/9780198507628.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098729012
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1103/physrev.177.2426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060440460
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1103/physrevb.88.104412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037744625
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1103/physrevb.90.121108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036896747
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1103/physrevb.90.165115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007905061
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1103/physrevb.93.035116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060648597
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1103/physrevb.93.085107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060649139
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1103/physrevlett.107.021601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052645624
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1103/physrevlett.113.247203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008985347
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1103/physrevlett.37.1251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060780605
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1103/physrevx.5.031023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010845176
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1126/science.aaa9297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044122552
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1126/science.aac6089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003730190
280 rdf:type schema:CreativeWork
281 https://doi.org/10.5506/aphyspolb.47.2617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072930025
282 rdf:type schema:CreativeWork
283 https://www.grid.ac/institutes/grid.13992.30 schema:alternateName Weizmann Institute of Science
284 schema:name Department of Condensed Matter Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel
285 Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
286 rdf:type schema:Organization
287 https://www.grid.ac/institutes/grid.14841.38 schema:alternateName Leibniz Institute for Solid State and Materials Research
288 schema:name Institute of Nanostructure and Solid State Physics, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg, Germany
289 Leibniz Institute for Solid State and Materials Research Dresden, Institute for Metallic Materials, Helmholtzstraße 20, 01069 Dresden, Germany
290 rdf:type schema:Organization
291 https://www.grid.ac/institutes/grid.410387.9 schema:alternateName IBM Research - Zurich
292 schema:name IBM Research -Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
293 Institute of Nanostructure and Solid State Physics, Universität Hamburg, Jungiusstraße 11, 20355 Hamburg, Germany
294 rdf:type schema:Organization
295 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
296 schema:name Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
297 rdf:type schema:Organization
298 https://www.grid.ac/institutes/grid.4488.0 schema:alternateName TU Dresden
299 schema:name Institute for Theoretical Physics, Technical University Dresden, Zellescher Weg 17, 01062 Dresden, Germany
300 rdf:type schema:Organization
301 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
302 schema:name Department of Physics, University of California, Berkeley, California 94720, USA
303 rdf:type schema:Organization
304 https://www.grid.ac/institutes/grid.5515.4 schema:alternateName Autonomous University of Madrid
305 schema:name Instituto de Física Teórica UAM/CSIC, Nicolás Cabrera 13–15, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
306 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...