New CRISPR-Cas systems from uncultivated microbes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12-22

AUTHORS

David Burstein, Lucas B Harrington, Steven C Strutt, Alexander J Probst, Karthik Anantharaman, Brian C Thomas, Jennifer A Doudna, Jillian F Banfield

ABSTRACT

CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies. More... »

PAGES

237-241

References to SciGraph publications

  • 2016-04-20. The crystal structure of Cpf1 in complex with CRISPR RNA in NATURE
  • 2008-03. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea in NATURE REVIEWS MICROBIOLOGY
  • 2016-09-08. Applications of CRISPR technologies in research and beyond in NATURE BIOTECHNOLOGY
  • 2016-05-02. Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch in NATURE BIOTECHNOLOGY
  • 2006-04-11. The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among Prokaryotes in JOURNAL OF MOLECULAR EVOLUTION
  • 2014-05-04. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2015-05-07. The Phyre2 web portal for protein modeling, prediction and analysis in NATURE PROTOCOLS
  • 2016-02-03. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems in NATURE COMMUNICATIONS
  • 2015-04-13. CRISPR adaptation biases explain preference for acquisition of foreign DNA in NATURE
  • 2011-05-19. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data in GENOME BIOLOGY
  • 2016-04-11. A new view of the tree of life in NATURE MICROBIOLOGY
  • 2015-09-28. An updated evolutionary classification of CRISPR–Cas systems in NATURE REVIEWS MICROBIOLOGY
  • 2013-07-17. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea in BMC GENOMICS
  • 2009-12-15. BLAST+: architecture and applications in BMC BIOINFORMATICS
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2009-04-12. Enzymatic assembly of DNA molecules up to several hundred kilobases in NATURE METHODS
  • 2015-06-15. Unusual biology across a group comprising more than 15% of domain Bacteria in NATURE
  • 2013-07-14. Insights into the phylogeny and coding potential of microbial dark matter in NATURE
  • 2011-03-30. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III in NATURE
  • 2013-09-29. Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing in NATURE METHODS
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2009-08-21. Community-wide analysis of microbial genome sequence signatures in GENOME BIOLOGY
  • 2014-07-27. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease in NATURE
  • 2011-12-25. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment in NATURE METHODS
  • 2015-02-27. Diverse uncultivated ultra-small bacterial cells in groundwater in NATURE COMMUNICATIONS
  • 2015-02-18. Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity in NATURE
  • 2016-10-24. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system in NATURE COMMUNICATIONS
  • 2004-01-30. Versatile and open software for comparing large genomes in GENOME BIOLOGY
  • Journal

    TITLE

    Nature

    ISSUE

    7640

    VOLUME

    542

    Related Patents

  • Regeneration Of Plants In The Presence Of Inhibitors Of The Histone Methyltransferase Ezh2
  • Nucleobase Editors Comprising Nucleic Acid Programmable Dna Binding Proteins
  • Methods For Enhancing Genome Engineering Efficiency
  • Rationally-Designed Synthetic Peptide Shuttle Agents For Delivering Polypeptide Cargos From An Extracellular Space To The Cytosol And/Or Nucleus Of A Target Eukaryotic Cell, Uses Thereof, Methods And Kits Relating To Same
  • Cas Variants For Gene Editing
  • Hybrid Nucleic Acid Sequences For Genome Engineering
  • Gene For Resistance To A Pathogen Of The Genus Heterodera
  • Regeneration Of Genetically Modified Plants
  • Cas9 Proteins Including Ligand-Dependent Inteins
  • Editing Of Ccr5 Receptor Gene To Protect Against Hiv Infection
  • Enhanced Plant Regeneration And Transformation By Using Grf1 Booster Gene
  • Using Nucleosome Interacting Protein Domains To Enhance Targeted Genome Modification
  • Regeneration Of Plants In The Presence Of Histone Deacetylase Inhibitors
  • Methods For Identifying A Target Site Of A Cas9 Nuclease
  • Targeted Transcriptional Regulation Using Synthetic Transcription Factors
  • Cpf1 Based Transcription Regulation Systems In Plants
  • Methods And Compositions For Generating Crispr Guide Rna Libraries
  • Adenosine Nucleobase Editors And Uses Thereof
  • Rna-Guided Nucleic Acid Modifying Enzymes And Methods Of Use Thereof
  • Methods And Compositions To Identify Novel Crispr Systems
  • Polypeptide-Based Shuttle Agents For Improving The Transduction Efficiency Of Polypeptide Cargos To The Cytosol Of Target Eukaryotic Cells, Uses Thereof, Methods And Kits Relating To Same
  • Improving Plant Regeneration
  • Regeneration Of Genetically Modified Plants
  • Crispr-Associated (Cas) Protein
  • Switchable Cas9 Nucleases And Uses Thereof
  • Beet Necrotic Yellow Vein Virus (Bnyvv)-Resistance Modifying Gene
  • Targeted Endonuclease Activity Of The Rna-Guided Endonuclease Casx In Eukaryotes
  • Nucleobase Editors Comprising Nucleic Acid Programmable Dna Binding Proteins
  • Methods And Compositions Of Anti-Crispr Proteins For Use In Plants
  • Methods For Enhancing Genome Engineering Efficiency
  • Regeneration Of Plants In The Presence Of Histone Deacetylase Inhibitors
  • Cancer Vaccine
  • Rna-Guided Nucleic Acid Modifying Enzymes And Methods Of Use Thereof
  • Methods For Improving Genome Engineering And Regeneration In Plant
  • New Strategies For Precision Genome Editing
  • Evaluation And Improvement Of Nuclease Cleavage Specificity
  • Methods For Improving Genome Engineering And Regeneration In Plant Ii
  • Beet Necrotic Yellow Vein Virus (Bnyvv)-Resistance Modifying Gene
  • Crispr-Associated (Cas) Protein
  • Delivery Of Negatively Charged Proteins Using Cationic Lipids
  • Optimized Plant Crispr/Cpf1 Systems
  • Regeneration Of Plants In The Presence Of Inhibitors Of The Histone Methyltransferase Ezh2
  • Using Programmable Dna Binding Proteins To Enhance Targeted Genome Modification
  • Cas9 Variants And Uses Thereof
  • Delivery System For Functional Nucleases
  • Improving Plant Regeneration
  • Use Of Crispr-Cas Endonucleases For Plant Genome Engineering
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature21059

    DOI

    http://dx.doi.org/10.1038/nature21059

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023889809

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28005056


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Associated Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Cas Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burstein", 
            "givenName": "David", 
            "id": "sg:person.01053302152.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053302152.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harrington", 
            "givenName": "Lucas B", 
            "id": "sg:person.01327122747.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327122747.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strutt", 
            "givenName": "Steven C", 
            "id": "sg:person.01132567323.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132567323.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Probst", 
            "givenName": "Alexander J", 
            "id": "sg:person.0757405471.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757405471.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anantharaman", 
            "givenName": "Karthik", 
            "id": "sg:person.0714252516.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714252516.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "Brian C", 
            "id": "sg:person.0732742066.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732742066.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.", 
                "Department of Chemistry, University of California, Berkeley, California 94720, USA.", 
                "Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.", 
                "Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA.", 
                "MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Doudna", 
            "givenName": "Jennifer A", 
            "id": "sg:person.01147702313.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147702313.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.", 
                "Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Banfield", 
            "givenName": "Jillian F", 
            "id": "sg:person.01350542775.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nsmb.2820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005186267", 
              "https://doi.org/10.1038/nsmb.2820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007792186", 
              "https://doi.org/10.1038/nature14302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010598799", 
              "https://doi.org/10.1038/nmicrobiol.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010036058", 
              "https://doi.org/10.1038/nrmicro3569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036390967", 
              "https://doi.org/10.1038/nature13579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040405189", 
              "https://doi.org/10.1038/nmeth.1318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046541356", 
              "https://doi.org/10.1038/nbt.3528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035143030", 
              "https://doi.org/10.1038/ncomms13219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017098509", 
              "https://doi.org/10.1038/nmeth.1818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2015.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001304490", 
              "https://doi.org/10.1038/nprot.2015.053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050366278", 
              "https://doi.org/10.1038/nature14237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-2-r12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022585853", 
              "https://doi.org/10.1186/gb-2004-5-2-r12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042305403", 
              "https://doi.org/10.1038/nature17944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028304735", 
              "https://doi.org/10.1038/nmeth.2681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008079037", 
              "https://doi.org/10.1038/nrmicro1793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022975138", 
              "https://doi.org/10.1038/ncomms10613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-5-r44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000326175", 
              "https://doi.org/10.1186/gb-2011-12-5-r44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029031769", 
              "https://doi.org/10.1038/nature14486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002051529", 
              "https://doi.org/10.1186/1471-2164-14-485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00239-005-0223-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033365389", 
              "https://doi.org/10.1007/s00239-005-0223-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-8-r85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014147708", 
              "https://doi.org/10.1186/gb-2009-10-8-r85"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030591890", 
              "https://doi.org/10.1038/nature09886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050579230", 
              "https://doi.org/10.1186/1471-2105-10-421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019299949", 
              "https://doi.org/10.1038/nature12352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031540291", 
              "https://doi.org/10.1038/ncomms7372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019638425", 
              "https://doi.org/10.1038/nbt.3659"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12-22", 
        "datePublishedReg": "2016-12-22", 
        "description": "CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature21059", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3480456", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7640", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "542"
          }
        ], 
        "keywords": [
          "CRISPR-Cas systems", 
          "microbial communities", 
          "Class 2 CRISPR-Cas systems", 
          "natural microbial communities", 
          "environmental microbial communities", 
          "CRISPR-Cas technology", 
          "active CRISPR-Cas systems", 
          "sequencing of DNA", 
          "short DNA sequences", 
          "archaeal domain", 
          "uncultivated organisms", 
          "uncultivated microbes", 
          "Cas9 protein", 
          "vivo RNA", 
          "foreign DNA", 
          "DNA sequences", 
          "Cas proteins", 
          "genetic material", 
          "metagenomics", 
          "unprecedented diversity", 
          "Escherichia coli", 
          "microbes", 
          "organisms", 
          "protein", 
          "DNA", 
          "adaptive immunity", 
          "huge array", 
          "interference activity", 
          "bacteria", 
          "isolated bacteria", 
          "minimal system", 
          "sequence", 
          "Nanoarchaea", 
          "functional components", 
          "genome", 
          "RNA", 
          "sequencing", 
          "diversity", 
          "vivo experiments", 
          "coli", 
          "enzyme", 
          "biotechnology", 
          "vast majority", 
          "versatile technology", 
          "community", 
          "repertoire", 
          "programmable nature", 
          "domain", 
          "spacer", 
          "immunity", 
          "activity", 
          "interrogation", 
          "Ca", 
          "components", 
          "system", 
          "array", 
          "content", 
          "majority", 
          "number", 
          "experiments", 
          "knowledge", 
          "part", 
          "nature", 
          "technology", 
          "validation", 
          "compact system", 
          "research", 
          "researchers", 
          "life", 
          "clinical research", 
          "robust", 
          "access", 
          "materials", 
          "version", 
          "unknown system", 
          "single RNA-bound Cas protein", 
          "RNA-bound Cas protein", 
          "current CRISPR-Cas technologies", 
          "divergent Cas9 protein", 
          "studied nanoarchaea", 
          "CRISPR-CasX", 
          "CRISPR-CasY", 
          "validation of robust", 
          "DNA interference activity", 
          "microbe-based biotechnologies", 
          "New CRISPR-Cas systems"
        ], 
        "name": "New CRISPR-Cas systems from uncultivated microbes", 
        "pagination": "237-241", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023889809"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature21059"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28005056"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature21059", 
          "https://app.dimensions.ai/details/publication/pub.1023889809"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_690.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature21059"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature21059'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature21059'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature21059'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature21059'


     

    This table displays all metadata directly associated to this object as RDF triples.

    386 TRIPLES      22 PREDICATES      156 URIs      118 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature21059 schema:about N0e72b98a70314cf98a327419e34278f4
    2 N1855af9bc2ea435b8dd0f2e19d5037ae
    3 N32aa445e4dec492faa34aa38c49d8305
    4 N3baa0a06100742eca3f6f169b75e5a91
    5 N5561bc8090fd4de1ab2194ef1071183e
    6 N573250c642514abdb6caa54de0a0232d
    7 N797235c695c94ae6ac4829319a1dd080
    8 N8292c74d745747a1b8e9b9bd41d8a0c7
    9 N909b5554ee564b58ab1b6d36c838f74c
    10 Na320bf4296e6410f925b5d050906a69c
    11 Nade25818e6ee4b00b46b0509dde63af2
    12 Nae45a94b7bd94712b866e2784f85ff74
    13 Nd49e3051e6ee47368b02c406589ba6cd
    14 Ndddd2a3a29bc4ce3abc73a091382930c
    15 anzsrc-for:06
    16 anzsrc-for:0601
    17 anzsrc-for:0604
    18 anzsrc-for:0605
    19 schema:author Na2f9a33684c44b8daabe82fdcdc06972
    20 schema:citation sg:pub.10.1007/s00239-005-0223-z
    21 sg:pub.10.1038/nature09886
    22 sg:pub.10.1038/nature12352
    23 sg:pub.10.1038/nature13579
    24 sg:pub.10.1038/nature14237
    25 sg:pub.10.1038/nature14302
    26 sg:pub.10.1038/nature14486
    27 sg:pub.10.1038/nature17944
    28 sg:pub.10.1038/nbt.3528
    29 sg:pub.10.1038/nbt.3659
    30 sg:pub.10.1038/ncomms10613
    31 sg:pub.10.1038/ncomms13219
    32 sg:pub.10.1038/ncomms7372
    33 sg:pub.10.1038/nmeth.1318
    34 sg:pub.10.1038/nmeth.1818
    35 sg:pub.10.1038/nmeth.1923
    36 sg:pub.10.1038/nmeth.2681
    37 sg:pub.10.1038/nmicrobiol.2016.48
    38 sg:pub.10.1038/nprot.2015.053
    39 sg:pub.10.1038/nrmicro1793
    40 sg:pub.10.1038/nrmicro3569
    41 sg:pub.10.1038/nsmb.2820
    42 sg:pub.10.1186/1471-2105-10-421
    43 sg:pub.10.1186/1471-2105-11-119
    44 sg:pub.10.1186/1471-2164-14-485
    45 sg:pub.10.1186/gb-2004-5-2-r12
    46 sg:pub.10.1186/gb-2009-10-8-r85
    47 sg:pub.10.1186/gb-2011-12-5-r44
    48 schema:datePublished 2016-12-22
    49 schema:datePublishedReg 2016-12-22
    50 schema:description CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.
    51 schema:genre article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree true
    54 schema:isPartOf N55fe6bf50ad445fa8fbabc701e0b76a7
    55 N765cc10e76d04998bdbfb14c47344f1c
    56 sg:journal.1018957
    57 schema:keywords CRISPR-Cas systems
    58 CRISPR-Cas technology
    59 CRISPR-CasX
    60 CRISPR-CasY
    61 Ca
    62 Cas proteins
    63 Cas9 protein
    64 Class 2 CRISPR-Cas systems
    65 DNA
    66 DNA interference activity
    67 DNA sequences
    68 Escherichia coli
    69 Nanoarchaea
    70 New CRISPR-Cas systems
    71 RNA
    72 RNA-bound Cas protein
    73 access
    74 active CRISPR-Cas systems
    75 activity
    76 adaptive immunity
    77 archaeal domain
    78 array
    79 bacteria
    80 biotechnology
    81 clinical research
    82 coli
    83 community
    84 compact system
    85 components
    86 content
    87 current CRISPR-Cas technologies
    88 divergent Cas9 protein
    89 diversity
    90 domain
    91 environmental microbial communities
    92 enzyme
    93 experiments
    94 foreign DNA
    95 functional components
    96 genetic material
    97 genome
    98 huge array
    99 immunity
    100 interference activity
    101 interrogation
    102 isolated bacteria
    103 knowledge
    104 life
    105 majority
    106 materials
    107 metagenomics
    108 microbe-based biotechnologies
    109 microbes
    110 microbial communities
    111 minimal system
    112 natural microbial communities
    113 nature
    114 number
    115 organisms
    116 part
    117 programmable nature
    118 protein
    119 repertoire
    120 research
    121 researchers
    122 robust
    123 sequence
    124 sequencing
    125 sequencing of DNA
    126 short DNA sequences
    127 single RNA-bound Cas protein
    128 spacer
    129 studied nanoarchaea
    130 system
    131 technology
    132 uncultivated microbes
    133 uncultivated organisms
    134 unknown system
    135 unprecedented diversity
    136 validation
    137 validation of robust
    138 vast majority
    139 versatile technology
    140 version
    141 vivo RNA
    142 vivo experiments
    143 schema:name New CRISPR-Cas systems from uncultivated microbes
    144 schema:pagination 237-241
    145 schema:productId N256bddba11694611ade6da7fffda51b7
    146 N3c52532d025848b7aa5c4b47c704bbea
    147 N404c95c5134c4d1983302019cf5062fd
    148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023889809
    149 https://doi.org/10.1038/nature21059
    150 schema:sdDatePublished 2022-01-01T18:40
    151 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    152 schema:sdPublisher Ncbef7b827ca4428f8aa34ed4d59aef99
    153 schema:url https://doi.org/10.1038/nature21059
    154 sgo:license sg:explorer/license/
    155 sgo:sdDataset articles
    156 rdf:type schema:ScholarlyArticle
    157 N05a9a9e89dd1426193135d5f96cd2384 rdf:first sg:person.0714252516.09
    158 rdf:rest N5683718d1d9e46e9b75207a07b5d43b5
    159 N0ce56f13ecc744e092fdb1c331e9ed38 rdf:first sg:person.01147702313.96
    160 rdf:rest N9ccda215907d4010b50ed7f73ed62e5d
    161 N0e72b98a70314cf98a327419e34278f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Bacteria
    163 rdf:type schema:DefinedTerm
    164 N1855af9bc2ea435b8dd0f2e19d5037ae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Archaea
    166 rdf:type schema:DefinedTerm
    167 N1917290ad7c948b9afe3a1a2383452c1 rdf:first sg:person.0757405471.24
    168 rdf:rest N05a9a9e89dd1426193135d5f96cd2384
    169 N1ddcfc692e89496fa2b7c0b578c508d2 rdf:first sg:person.01132567323.01
    170 rdf:rest N1917290ad7c948b9afe3a1a2383452c1
    171 N256bddba11694611ade6da7fffda51b7 schema:name pubmed_id
    172 schema:value 28005056
    173 rdf:type schema:PropertyValue
    174 N32aa445e4dec492faa34aa38c49d8305 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Amino Acid Sequence
    176 rdf:type schema:DefinedTerm
    177 N3baa0a06100742eca3f6f169b75e5a91 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Biotechnology
    179 rdf:type schema:DefinedTerm
    180 N3c52532d025848b7aa5c4b47c704bbea schema:name doi
    181 schema:value 10.1038/nature21059
    182 rdf:type schema:PropertyValue
    183 N404c95c5134c4d1983302019cf5062fd schema:name dimensions_id
    184 schema:value pub.1023889809
    185 rdf:type schema:PropertyValue
    186 N5561bc8090fd4de1ab2194ef1071183e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    187 schema:name Metagenomics
    188 rdf:type schema:DefinedTerm
    189 N55fe6bf50ad445fa8fbabc701e0b76a7 schema:volumeNumber 542
    190 rdf:type schema:PublicationVolume
    191 N5683718d1d9e46e9b75207a07b5d43b5 rdf:first sg:person.0732742066.21
    192 rdf:rest N0ce56f13ecc744e092fdb1c331e9ed38
    193 N573250c642514abdb6caa54de0a0232d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    194 schema:name Genome
    195 rdf:type schema:DefinedTerm
    196 N765cc10e76d04998bdbfb14c47344f1c schema:issueNumber 7640
    197 rdf:type schema:PublicationIssue
    198 N797235c695c94ae6ac4829319a1dd080 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    199 schema:name Base Sequence
    200 rdf:type schema:DefinedTerm
    201 N8292c74d745747a1b8e9b9bd41d8a0c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name RNA, Bacterial
    203 rdf:type schema:DefinedTerm
    204 N8f6096f3caee4d468b9d4b75a9e8d310 rdf:first sg:person.01327122747.78
    205 rdf:rest N1ddcfc692e89496fa2b7c0b578c508d2
    206 N909b5554ee564b58ab1b6d36c838f74c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    207 schema:name CRISPR-Associated Proteins
    208 rdf:type schema:DefinedTerm
    209 N9ccda215907d4010b50ed7f73ed62e5d rdf:first sg:person.01350542775.47
    210 rdf:rest rdf:nil
    211 Na2f9a33684c44b8daabe82fdcdc06972 rdf:first sg:person.01053302152.33
    212 rdf:rest N8f6096f3caee4d468b9d4b75a9e8d310
    213 Na320bf4296e6410f925b5d050906a69c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    214 schema:name Reproducibility of Results
    215 rdf:type schema:DefinedTerm
    216 Nade25818e6ee4b00b46b0509dde63af2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Gene Expression Profiling
    218 rdf:type schema:DefinedTerm
    219 Nae45a94b7bd94712b866e2784f85ff74 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name DNA
    221 rdf:type schema:DefinedTerm
    222 Ncbef7b827ca4428f8aa34ed4d59aef99 schema:name Springer Nature - SN SciGraph project
    223 rdf:type schema:Organization
    224 Nd49e3051e6ee47368b02c406589ba6cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name CRISPR-Cas Systems
    226 rdf:type schema:DefinedTerm
    227 Ndddd2a3a29bc4ce3abc73a091382930c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name Escherichia coli
    229 rdf:type schema:DefinedTerm
    230 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Biological Sciences
    232 rdf:type schema:DefinedTerm
    233 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    234 schema:name Biochemistry and Cell Biology
    235 rdf:type schema:DefinedTerm
    236 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    237 schema:name Genetics
    238 rdf:type schema:DefinedTerm
    239 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    240 schema:name Microbiology
    241 rdf:type schema:DefinedTerm
    242 sg:grant.3480456 http://pending.schema.org/fundedItem sg:pub.10.1038/nature21059
    243 rdf:type schema:MonetaryGrant
    244 sg:journal.1018957 schema:issn 0028-0836
    245 1476-4687
    246 schema:name Nature
    247 schema:publisher Springer Nature
    248 rdf:type schema:Periodical
    249 sg:person.01053302152.33 schema:affiliation grid-institutes:grid.47840.3f
    250 schema:familyName Burstein
    251 schema:givenName David
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053302152.33
    253 rdf:type schema:Person
    254 sg:person.01132567323.01 schema:affiliation grid-institutes:grid.47840.3f
    255 schema:familyName Strutt
    256 schema:givenName Steven C
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132567323.01
    258 rdf:type schema:Person
    259 sg:person.01147702313.96 schema:affiliation grid-institutes:grid.184769.5
    260 schema:familyName Doudna
    261 schema:givenName Jennifer A
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147702313.96
    263 rdf:type schema:Person
    264 sg:person.01327122747.78 schema:affiliation grid-institutes:grid.47840.3f
    265 schema:familyName Harrington
    266 schema:givenName Lucas B
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327122747.78
    268 rdf:type schema:Person
    269 sg:person.01350542775.47 schema:affiliation grid-institutes:grid.47840.3f
    270 schema:familyName Banfield
    271 schema:givenName Jillian F
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47
    273 rdf:type schema:Person
    274 sg:person.0714252516.09 schema:affiliation grid-institutes:grid.47840.3f
    275 schema:familyName Anantharaman
    276 schema:givenName Karthik
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714252516.09
    278 rdf:type schema:Person
    279 sg:person.0732742066.21 schema:affiliation grid-institutes:grid.47840.3f
    280 schema:familyName Thomas
    281 schema:givenName Brian C
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732742066.21
    283 rdf:type schema:Person
    284 sg:person.0757405471.24 schema:affiliation grid-institutes:grid.47840.3f
    285 schema:familyName Probst
    286 schema:givenName Alexander J
    287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757405471.24
    288 rdf:type schema:Person
    289 sg:pub.10.1007/s00239-005-0223-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033365389
    290 https://doi.org/10.1007/s00239-005-0223-z
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nature09886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030591890
    293 https://doi.org/10.1038/nature09886
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nature12352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019299949
    296 https://doi.org/10.1038/nature12352
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/nature13579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036390967
    299 https://doi.org/10.1038/nature13579
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/nature14237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050366278
    302 https://doi.org/10.1038/nature14237
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nature14302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007792186
    305 https://doi.org/10.1038/nature14302
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nature14486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029031769
    308 https://doi.org/10.1038/nature14486
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nature17944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042305403
    311 https://doi.org/10.1038/nature17944
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/nbt.3528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046541356
    314 https://doi.org/10.1038/nbt.3528
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nbt.3659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019638425
    317 https://doi.org/10.1038/nbt.3659
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/ncomms10613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022975138
    320 https://doi.org/10.1038/ncomms10613
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/ncomms13219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035143030
    323 https://doi.org/10.1038/ncomms13219
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/ncomms7372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031540291
    326 https://doi.org/10.1038/ncomms7372
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/nmeth.1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040405189
    329 https://doi.org/10.1038/nmeth.1318
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/nmeth.1818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017098509
    332 https://doi.org/10.1038/nmeth.1818
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    335 https://doi.org/10.1038/nmeth.1923
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/nmeth.2681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028304735
    338 https://doi.org/10.1038/nmeth.2681
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/nmicrobiol.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598799
    341 https://doi.org/10.1038/nmicrobiol.2016.48
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/nprot.2015.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001304490
    344 https://doi.org/10.1038/nprot.2015.053
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/nrmicro1793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008079037
    347 https://doi.org/10.1038/nrmicro1793
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/nrmicro3569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010036058
    350 https://doi.org/10.1038/nrmicro3569
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1038/nsmb.2820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005186267
    353 https://doi.org/10.1038/nsmb.2820
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1186/1471-2105-10-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050579230
    356 https://doi.org/10.1186/1471-2105-10-421
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    359 https://doi.org/10.1186/1471-2105-11-119
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1186/1471-2164-14-485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002051529
    362 https://doi.org/10.1186/1471-2164-14-485
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1186/gb-2004-5-2-r12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022585853
    365 https://doi.org/10.1186/gb-2004-5-2-r12
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1186/gb-2009-10-8-r85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014147708
    368 https://doi.org/10.1186/gb-2009-10-8-r85
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1186/gb-2011-12-5-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000326175
    371 https://doi.org/10.1186/gb-2011-12-5-r44
    372 rdf:type schema:CreativeWork
    373 grid-institutes:grid.184769.5 schema:alternateName MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
    374 schema:name Department of Chemistry, University of California, Berkeley, California 94720, USA.
    375 Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
    376 Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.
    377 Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA.
    378 MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
    379 rdf:type schema:Organization
    380 grid-institutes:grid.47840.3f schema:alternateName Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.
    381 Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.
    382 Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
    383 schema:name Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.
    384 Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.
    385 Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
    386 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...