New CRISPR-Cas systems from uncultivated microbes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-12-22

AUTHORS

David Burstein, Lucas B Harrington, Steven C Strutt, Alexander J Probst, Karthik Anantharaman, Brian C Thomas, Jennifer A Doudna, Jillian F Banfield

ABSTRACT

CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies. More... »

PAGES

237-241

References to SciGraph publications

  • 2016-04-20. The crystal structure of Cpf1 in complex with CRISPR RNA in NATURE
  • 2008-03. CRISPR — a widespread system that provides acquired resistance against phages in bacteria and archaea in NATURE REVIEWS MICROBIOLOGY
  • 2016-09-08. Applications of CRISPR technologies in research and beyond in NATURE BIOTECHNOLOGY
  • 2016-05-02. Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch in NATURE BIOTECHNOLOGY
  • 2006-04-11. The Repetitive DNA Elements Called CRISPRs and Their Associated Genes: Evidence of Horizontal Transfer Among Prokaryotes in JOURNAL OF MOLECULAR EVOLUTION
  • 2014-05-04. Cas1–Cas2 complex formation mediates spacer acquisition during CRISPR–Cas adaptive immunity in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2015-05-07. The Phyre2 web portal for protein modeling, prediction and analysis in NATURE PROTOCOLS
  • 2016-02-03. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems in NATURE COMMUNICATIONS
  • 2015-04-13. CRISPR adaptation biases explain preference for acquisition of foreign DNA in NATURE
  • 2011-05-19. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data in GENOME BIOLOGY
  • 2016-04-11. A new view of the tree of life in NATURE MICROBIOLOGY
  • 2015-09-28. An updated evolutionary classification of CRISPR–Cas systems in NATURE REVIEWS MICROBIOLOGY
  • 2013-07-17. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea in BMC GENOMICS
  • 2009-12-15. BLAST+: architecture and applications in BMC BIOINFORMATICS
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2009-04-12. Enzymatic assembly of DNA molecules up to several hundred kilobases in NATURE METHODS
  • 2015-06-15. Unusual biology across a group comprising more than 15% of domain Bacteria in NATURE
  • 2013-07-14. Insights into the phylogeny and coding potential of microbial dark matter in NATURE
  • 2011-03-30. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III in NATURE
  • 2013-09-29. Orthogonal Cas9 Proteins for RNA-Guided Gene Regulation and Editing in NATURE METHODS
  • 2010-03-08. Prodigal: prokaryotic gene recognition and translation initiation site identification in BMC BIOINFORMATICS
  • 2009-08-21. Community-wide analysis of microbial genome sequence signatures in GENOME BIOLOGY
  • 2014-07-27. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease in NATURE
  • 2011-12-25. HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment in NATURE METHODS
  • 2015-02-27. Diverse uncultivated ultra-small bacterial cells in groundwater in NATURE COMMUNICATIONS
  • 2015-02-18. Integrase-mediated spacer acquisition during CRISPR–Cas adaptive immunity in NATURE
  • 2016-10-24. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system in NATURE COMMUNICATIONS
  • 2004-01-30. Versatile and open software for comparing large genomes in GENOME BIOLOGY
  • Journal

    TITLE

    Nature

    ISSUE

    7640

    VOLUME

    542

    Related Patents

  • Gene For Resistance To A Pathogen Of The Genus Heterodera
  • Methods For Enhancing Genome Engineering Efficiency
  • Rationally-Designed Synthetic Peptide Shuttle Agents For Delivering Polypeptide Cargos From An Extracellular Space To The Cytosol And/Or Nucleus Of A Target Eukaryotic Cell, Uses Thereof, Methods And Kits Relating To Same
  • Hybrid Nucleic Acid Sequences For Genome Engineering
  • Regeneration Of Plants In The Presence Of Inhibitors Of The Histone Methyltransferase Ezh2
  • Cas9 Proteins Including Ligand-Dependent Inteins
  • Enhanced Plant Regeneration And Transformation By Using Grf1 Booster Gene
  • Using Nucleosome Interacting Protein Domains To Enhance Targeted Genome Modification
  • Regeneration Of Genetically Modified Plants
  • Editing Of Ccr5 Receptor Gene To Protect Against Hiv Infection
  • Cas Variants For Gene Editing
  • Nucleobase Editors Comprising Nucleic Acid Programmable Dna Binding Proteins
  • Regeneration Of Plants In The Presence Of Histone Deacetylase Inhibitors
  • Cpf1 Based Transcription Regulation Systems In Plants
  • Rna-Guided Nucleic Acid Modifying Enzymes And Methods Of Use Thereof
  • Methods And Compositions To Identify Novel Crispr Systems
  • Polypeptide-Based Shuttle Agents For Improving The Transduction Efficiency Of Polypeptide Cargos To The Cytosol Of Target Eukaryotic Cells, Uses Thereof, Methods And Kits Relating To Same
  • Methods And Compositions For Generating Crispr Guide Rna Libraries
  • Methods For Identifying A Target Site Of A Cas9 Nuclease
  • Adenosine Nucleobase Editors And Uses Thereof
  • Targeted Transcriptional Regulation Using Synthetic Transcription Factors
  • Improving Plant Regeneration
  • Regeneration Of Plants In The Presence Of Histone Deacetylase Inhibitors
  • Methods And Compositions Of Anti-Crispr Proteins For Use In Plants
  • Regeneration Of Genetically Modified Plants
  • Cancer Vaccine
  • Methods For Enhancing Genome Engineering Efficiency
  • Nucleobase Editors Comprising Nucleic Acid Programmable Dna Binding Proteins
  • Switchable Cas9 Nucleases And Uses Thereof
  • Beet Necrotic Yellow Vein Virus (Bnyvv)-Resistance Modifying Gene
  • Targeted Endonuclease Activity Of The Rna-Guided Endonuclease Casx In Eukaryotes
  • Crispr-Associated (Cas) Protein
  • Rna-Guided Nucleic Acid Modifying Enzymes And Methods Of Use Thereof
  • Evaluation And Improvement Of Nuclease Cleavage Specificity
  • New Strategies For Precision Genome Editing
  • Methods For Improving Genome Engineering And Regeneration In Plant
  • Beet Necrotic Yellow Vein Virus (Bnyvv)-Resistance Modifying Gene
  • Methods For Improving Genome Engineering And Regeneration In Plant Ii
  • Delivery Of Negatively Charged Proteins Using Cationic Lipids
  • Crispr-Associated (Cas) Protein
  • Optimized Plant Crispr/Cpf1 Systems
  • Regeneration Of Plants In The Presence Of Inhibitors Of The Histone Methyltransferase Ezh2
  • Improving Plant Regeneration
  • Cas9 Variants And Uses Thereof
  • Using Programmable Dna Binding Proteins To Enhance Targeted Genome Modification
  • Delivery System For Functional Nucleases
  • Use Of Crispr-Cas Endonucleases For Plant Genome Engineering
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature21059

    DOI

    http://dx.doi.org/10.1038/nature21059

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023889809

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/28005056


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Microbiology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amino Acid Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Archaea", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Bacteria", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biotechnology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Associated Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Cas Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Escherichia coli", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Profiling", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Metagenomics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Bacterial", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Burstein", 
            "givenName": "David", 
            "id": "sg:person.01053302152.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053302152.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harrington", 
            "givenName": "Lucas B", 
            "id": "sg:person.01327122747.78", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327122747.78"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Strutt", 
            "givenName": "Steven C", 
            "id": "sg:person.01132567323.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132567323.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Probst", 
            "givenName": "Alexander J", 
            "id": "sg:person.0757405471.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757405471.24"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Anantharaman", 
            "givenName": "Karthik", 
            "id": "sg:person.0714252516.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714252516.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomas", 
            "givenName": "Brian C", 
            "id": "sg:person.0732742066.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732742066.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.184769.5", 
              "name": [
                "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.", 
                "Department of Chemistry, University of California, Berkeley, California 94720, USA.", 
                "Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.", 
                "Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA.", 
                "MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Doudna", 
            "givenName": "Jennifer A", 
            "id": "sg:person.01147702313.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147702313.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.", 
              "id": "http://www.grid.ac/institutes/grid.47840.3f", 
              "name": [
                "Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.", 
                "Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA."
              ], 
              "type": "Organization"
            }, 
            "familyName": "Banfield", 
            "givenName": "Jillian F", 
            "id": "sg:person.01350542775.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth.1818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017098509", 
              "https://doi.org/10.1038/nmeth.1818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro1793", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008079037", 
              "https://doi.org/10.1038/nrmicro1793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmicrobiol.2016.48", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010598799", 
              "https://doi.org/10.1038/nmicrobiol.2016.48"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14237", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050366278", 
              "https://doi.org/10.1038/nature14237"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040405189", 
              "https://doi.org/10.1038/nmeth.1318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature17944", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042305403", 
              "https://doi.org/10.1038/nature17944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms13219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035143030", 
              "https://doi.org/10.1038/ncomms13219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029031769", 
              "https://doi.org/10.1038/nature14486"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrmicro3569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010036058", 
              "https://doi.org/10.1038/nrmicro3569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036390967", 
              "https://doi.org/10.1038/nature13579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007792186", 
              "https://doi.org/10.1038/nature14302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-14-485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002051529", 
              "https://doi.org/10.1186/1471-2164-14-485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005186267", 
              "https://doi.org/10.1038/nsmb.2820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-11-119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026423599", 
              "https://doi.org/10.1186/1471-2105-11-119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12352", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019299949", 
              "https://doi.org/10.1038/nature12352"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms7372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031540291", 
              "https://doi.org/10.1038/ncomms7372"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2011-12-5-r44", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000326175", 
              "https://doi.org/10.1186/gb-2011-12-5-r44"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00239-005-0223-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033365389", 
              "https://doi.org/10.1007/s00239-005-0223-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2015.053", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001304490", 
              "https://doi.org/10.1038/nprot.2015.053"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-10-421", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050579230", 
              "https://doi.org/10.1186/1471-2105-10-421"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms10613", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022975138", 
              "https://doi.org/10.1038/ncomms10613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2681", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028304735", 
              "https://doi.org/10.1038/nmeth.2681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2009-10-8-r85", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014147708", 
              "https://doi.org/10.1186/gb-2009-10-8-r85"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09886", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030591890", 
              "https://doi.org/10.1038/nature09886"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3528", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046541356", 
              "https://doi.org/10.1038/nbt.3528"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3659", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019638425", 
              "https://doi.org/10.1038/nbt.3659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2004-5-2-r12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022585853", 
              "https://doi.org/10.1186/gb-2004-5-2-r12"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12-22", 
        "datePublishedReg": "2016-12-22", 
        "description": "CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature21059", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.3480456", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7640", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "542"
          }
        ], 
        "keywords": [
          "CRISPR-Cas systems", 
          "microbial communities", 
          "Class 2 CRISPR-Cas systems", 
          "natural microbial communities", 
          "environmental microbial communities", 
          "CRISPR-Cas technology", 
          "active CRISPR-Cas systems", 
          "sequencing of DNA", 
          "short DNA sequences", 
          "archaeal domain", 
          "uncultivated organisms", 
          "uncultivated microbes", 
          "Cas9 protein", 
          "vivo RNA", 
          "foreign DNA", 
          "DNA sequences", 
          "Cas proteins", 
          "genetic material", 
          "metagenomics", 
          "unprecedented diversity", 
          "Escherichia coli", 
          "microbes", 
          "organisms", 
          "protein", 
          "DNA", 
          "adaptive immunity", 
          "huge array", 
          "interference activity", 
          "bacteria", 
          "isolated bacteria", 
          "minimal system", 
          "sequence", 
          "Nanoarchaea", 
          "functional components", 
          "genome", 
          "RNA", 
          "sequencing", 
          "diversity", 
          "vivo experiments", 
          "coli", 
          "enzyme", 
          "biotechnology", 
          "vast majority", 
          "versatile technology", 
          "community", 
          "repertoire", 
          "programmable nature", 
          "domain", 
          "spacer", 
          "immunity", 
          "activity", 
          "interrogation", 
          "Ca", 
          "components", 
          "system", 
          "array", 
          "content", 
          "majority", 
          "number", 
          "experiments", 
          "knowledge", 
          "part", 
          "nature", 
          "technology", 
          "validation", 
          "compact system", 
          "research", 
          "researchers", 
          "life", 
          "clinical research", 
          "robust", 
          "access", 
          "materials", 
          "version", 
          "unknown system", 
          "single RNA-bound Cas protein", 
          "RNA-bound Cas protein", 
          "current CRISPR-Cas technologies", 
          "divergent Cas9 protein", 
          "studied nanoarchaea", 
          "CRISPR-CasX", 
          "CRISPR-CasY", 
          "validation of robust", 
          "DNA interference activity", 
          "microbe-based biotechnologies", 
          "New CRISPR-Cas systems"
        ], 
        "name": "New CRISPR-Cas systems from uncultivated microbes", 
        "pagination": "237-241", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023889809"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature21059"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "28005056"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature21059", 
          "https://app.dimensions.ai/details/publication/pub.1023889809"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-12-01T19:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_713.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature21059"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature21059'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature21059'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature21059'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature21059'


     

    This table displays all metadata directly associated to this object as RDF triples.

    386 TRIPLES      22 PREDICATES      156 URIs      118 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature21059 schema:about N283db25ada984d7bb992e5698a328dd9
    2 N393b4902501a473d85fa50b16be7b53c
    3 N5d717ab24a944a508d3a5e43c30059ba
    4 N5fde08f3a19946c4859c9f3f5c10f0bd
    5 N69f8cc664bd141baaf45969db76933bc
    6 N977b755287cc4d7e8685892ecd184180
    7 Naa906a533dce4727bf3ced10fa3e85e9
    8 Nb4d4f4a2b9344483b4d3c19f52b5d368
    9 Nd20c5d6f2bc3418d8dd14aed329f37c2
    10 Nd36f8335f71a489eacb745190a48b1d8
    11 Ne76b8478e61f4289ab1d2a0021420136
    12 Ned36942d57ec4f4295db06b96ba4d5ab
    13 Nf95b34a214a647618c3fea84d086fb23
    14 Nf9c5c70fcec241a4851bffd969b66379
    15 anzsrc-for:06
    16 anzsrc-for:0601
    17 anzsrc-for:0604
    18 anzsrc-for:0605
    19 schema:author N7b31adc4eea9408c8a912b044b517f97
    20 schema:citation sg:pub.10.1007/s00239-005-0223-z
    21 sg:pub.10.1038/nature09886
    22 sg:pub.10.1038/nature12352
    23 sg:pub.10.1038/nature13579
    24 sg:pub.10.1038/nature14237
    25 sg:pub.10.1038/nature14302
    26 sg:pub.10.1038/nature14486
    27 sg:pub.10.1038/nature17944
    28 sg:pub.10.1038/nbt.3528
    29 sg:pub.10.1038/nbt.3659
    30 sg:pub.10.1038/ncomms10613
    31 sg:pub.10.1038/ncomms13219
    32 sg:pub.10.1038/ncomms7372
    33 sg:pub.10.1038/nmeth.1318
    34 sg:pub.10.1038/nmeth.1818
    35 sg:pub.10.1038/nmeth.1923
    36 sg:pub.10.1038/nmeth.2681
    37 sg:pub.10.1038/nmicrobiol.2016.48
    38 sg:pub.10.1038/nprot.2015.053
    39 sg:pub.10.1038/nrmicro1793
    40 sg:pub.10.1038/nrmicro3569
    41 sg:pub.10.1038/nsmb.2820
    42 sg:pub.10.1186/1471-2105-10-421
    43 sg:pub.10.1186/1471-2105-11-119
    44 sg:pub.10.1186/1471-2164-14-485
    45 sg:pub.10.1186/gb-2004-5-2-r12
    46 sg:pub.10.1186/gb-2009-10-8-r85
    47 sg:pub.10.1186/gb-2011-12-5-r44
    48 schema:datePublished 2016-12-22
    49 schema:datePublishedReg 2016-12-22
    50 schema:description CRISPR-Cas systems provide microbes with adaptive immunity by employing short DNA sequences, termed spacers, that guide Cas proteins to cleave foreign DNA. Class 2 CRISPR-Cas systems are streamlined versions, in which a single RNA-bound Cas protein recognizes and cleaves target sequences. The programmable nature of these minimal systems has enabled researchers to repurpose them into a versatile technology that is broadly revolutionizing biological and clinical research. However, current CRISPR-Cas technologies are based solely on systems from isolated bacteria, leaving the vast majority of enzymes from organisms that have not been cultured untapped. Metagenomics, the sequencing of DNA extracted directly from natural microbial communities, provides access to the genetic material of a huge array of uncultivated organisms. Here, using genome-resolved metagenomics, we identify a number of CRISPR-Cas systems, including the first reported Cas9 in the archaeal domain of life, to our knowledge. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, we discovered two previously unknown systems, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. Notably, all required functional components were identified by metagenomics, enabling validation of robust in vivo RNA-guided DNA interference activity in Escherichia coli. Interrogation of environmental microbial communities combined with in vivo experiments allows us to access an unprecedented diversity of genomes, the content of which will expand the repertoire of microbe-based biotechnologies.
    51 schema:genre article
    52 schema:inLanguage en
    53 schema:isAccessibleForFree true
    54 schema:isPartOf Nca53ca50fb0042f78ee3fac8245f6f3c
    55 Neda7612a26354bd6a9e52a63cf78c06f
    56 sg:journal.1018957
    57 schema:keywords CRISPR-Cas systems
    58 CRISPR-Cas technology
    59 CRISPR-CasX
    60 CRISPR-CasY
    61 Ca
    62 Cas proteins
    63 Cas9 protein
    64 Class 2 CRISPR-Cas systems
    65 DNA
    66 DNA interference activity
    67 DNA sequences
    68 Escherichia coli
    69 Nanoarchaea
    70 New CRISPR-Cas systems
    71 RNA
    72 RNA-bound Cas protein
    73 access
    74 active CRISPR-Cas systems
    75 activity
    76 adaptive immunity
    77 archaeal domain
    78 array
    79 bacteria
    80 biotechnology
    81 clinical research
    82 coli
    83 community
    84 compact system
    85 components
    86 content
    87 current CRISPR-Cas technologies
    88 divergent Cas9 protein
    89 diversity
    90 domain
    91 environmental microbial communities
    92 enzyme
    93 experiments
    94 foreign DNA
    95 functional components
    96 genetic material
    97 genome
    98 huge array
    99 immunity
    100 interference activity
    101 interrogation
    102 isolated bacteria
    103 knowledge
    104 life
    105 majority
    106 materials
    107 metagenomics
    108 microbe-based biotechnologies
    109 microbes
    110 microbial communities
    111 minimal system
    112 natural microbial communities
    113 nature
    114 number
    115 organisms
    116 part
    117 programmable nature
    118 protein
    119 repertoire
    120 research
    121 researchers
    122 robust
    123 sequence
    124 sequencing
    125 sequencing of DNA
    126 short DNA sequences
    127 single RNA-bound Cas protein
    128 spacer
    129 studied nanoarchaea
    130 system
    131 technology
    132 uncultivated microbes
    133 uncultivated organisms
    134 unknown system
    135 unprecedented diversity
    136 validation
    137 validation of robust
    138 vast majority
    139 versatile technology
    140 version
    141 vivo RNA
    142 vivo experiments
    143 schema:name New CRISPR-Cas systems from uncultivated microbes
    144 schema:pagination 237-241
    145 schema:productId N18c27c1666934b9d8b413a0819810abd
    146 Naf7df4c6f5684693b92ec170939ae368
    147 Nea5d076716b74a0b9e0f6cef7071f8c5
    148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023889809
    149 https://doi.org/10.1038/nature21059
    150 schema:sdDatePublished 2021-12-01T19:36
    151 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    152 schema:sdPublisher Na002fbb4944c47c480bb388458026d20
    153 schema:url https://doi.org/10.1038/nature21059
    154 sgo:license sg:explorer/license/
    155 sgo:sdDataset articles
    156 rdf:type schema:ScholarlyArticle
    157 N18c27c1666934b9d8b413a0819810abd schema:name pubmed_id
    158 schema:value 28005056
    159 rdf:type schema:PropertyValue
    160 N19573111fdfa469086a7192f2c7aeed5 rdf:first sg:person.01350542775.47
    161 rdf:rest rdf:nil
    162 N283db25ada984d7bb992e5698a328dd9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    163 schema:name CRISPR-Cas Systems
    164 rdf:type schema:DefinedTerm
    165 N393b4902501a473d85fa50b16be7b53c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    166 schema:name Escherichia coli
    167 rdf:type schema:DefinedTerm
    168 N4a4057f6a76c4edd94105a61430035c4 rdf:first sg:person.0714252516.09
    169 rdf:rest N98afd0ca52fd4b5c9e501056732d4854
    170 N52c2a68cc803430fa19b1e1f7460e1fb rdf:first sg:person.01147702313.96
    171 rdf:rest N19573111fdfa469086a7192f2c7aeed5
    172 N5d717ab24a944a508d3a5e43c30059ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Metagenomics
    174 rdf:type schema:DefinedTerm
    175 N5fde08f3a19946c4859c9f3f5c10f0bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name CRISPR-Associated Proteins
    177 rdf:type schema:DefinedTerm
    178 N69f8cc664bd141baaf45969db76933bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name DNA
    180 rdf:type schema:DefinedTerm
    181 N7009bcfa31c347bbbd9b86102bba84b2 rdf:first sg:person.01132567323.01
    182 rdf:rest Nfcf20db01d8548139dd0c6835e2f1948
    183 N7b31adc4eea9408c8a912b044b517f97 rdf:first sg:person.01053302152.33
    184 rdf:rest N7d863d82de944a9e940e37183eb766a4
    185 N7d863d82de944a9e940e37183eb766a4 rdf:first sg:person.01327122747.78
    186 rdf:rest N7009bcfa31c347bbbd9b86102bba84b2
    187 N977b755287cc4d7e8685892ecd184180 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    188 schema:name RNA, Bacterial
    189 rdf:type schema:DefinedTerm
    190 N98afd0ca52fd4b5c9e501056732d4854 rdf:first sg:person.0732742066.21
    191 rdf:rest N52c2a68cc803430fa19b1e1f7460e1fb
    192 Na002fbb4944c47c480bb388458026d20 schema:name Springer Nature - SN SciGraph project
    193 rdf:type schema:Organization
    194 Naa906a533dce4727bf3ced10fa3e85e9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Biotechnology
    196 rdf:type schema:DefinedTerm
    197 Naf7df4c6f5684693b92ec170939ae368 schema:name dimensions_id
    198 schema:value pub.1023889809
    199 rdf:type schema:PropertyValue
    200 Nb4d4f4a2b9344483b4d3c19f52b5d368 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    201 schema:name Base Sequence
    202 rdf:type schema:DefinedTerm
    203 Nca53ca50fb0042f78ee3fac8245f6f3c schema:issueNumber 7640
    204 rdf:type schema:PublicationIssue
    205 Nd20c5d6f2bc3418d8dd14aed329f37c2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    206 schema:name Reproducibility of Results
    207 rdf:type schema:DefinedTerm
    208 Nd36f8335f71a489eacb745190a48b1d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Archaea
    210 rdf:type schema:DefinedTerm
    211 Ne76b8478e61f4289ab1d2a0021420136 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Amino Acid Sequence
    213 rdf:type schema:DefinedTerm
    214 Nea5d076716b74a0b9e0f6cef7071f8c5 schema:name doi
    215 schema:value 10.1038/nature21059
    216 rdf:type schema:PropertyValue
    217 Ned36942d57ec4f4295db06b96ba4d5ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    218 schema:name Gene Expression Profiling
    219 rdf:type schema:DefinedTerm
    220 Neda7612a26354bd6a9e52a63cf78c06f schema:volumeNumber 542
    221 rdf:type schema:PublicationVolume
    222 Nf95b34a214a647618c3fea84d086fb23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    223 schema:name Genome
    224 rdf:type schema:DefinedTerm
    225 Nf9c5c70fcec241a4851bffd969b66379 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    226 schema:name Bacteria
    227 rdf:type schema:DefinedTerm
    228 Nfcf20db01d8548139dd0c6835e2f1948 rdf:first sg:person.0757405471.24
    229 rdf:rest N4a4057f6a76c4edd94105a61430035c4
    230 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Biological Sciences
    232 rdf:type schema:DefinedTerm
    233 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    234 schema:name Biochemistry and Cell Biology
    235 rdf:type schema:DefinedTerm
    236 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    237 schema:name Genetics
    238 rdf:type schema:DefinedTerm
    239 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
    240 schema:name Microbiology
    241 rdf:type schema:DefinedTerm
    242 sg:grant.3480456 http://pending.schema.org/fundedItem sg:pub.10.1038/nature21059
    243 rdf:type schema:MonetaryGrant
    244 sg:journal.1018957 schema:issn 0028-0836
    245 1476-4687
    246 schema:name Nature
    247 schema:publisher Springer Nature
    248 rdf:type schema:Periodical
    249 sg:person.01053302152.33 schema:affiliation grid-institutes:grid.47840.3f
    250 schema:familyName Burstein
    251 schema:givenName David
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053302152.33
    253 rdf:type schema:Person
    254 sg:person.01132567323.01 schema:affiliation grid-institutes:grid.47840.3f
    255 schema:familyName Strutt
    256 schema:givenName Steven C
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01132567323.01
    258 rdf:type schema:Person
    259 sg:person.01147702313.96 schema:affiliation grid-institutes:grid.184769.5
    260 schema:familyName Doudna
    261 schema:givenName Jennifer A
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147702313.96
    263 rdf:type schema:Person
    264 sg:person.01327122747.78 schema:affiliation grid-institutes:grid.47840.3f
    265 schema:familyName Harrington
    266 schema:givenName Lucas B
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327122747.78
    268 rdf:type schema:Person
    269 sg:person.01350542775.47 schema:affiliation grid-institutes:grid.47840.3f
    270 schema:familyName Banfield
    271 schema:givenName Jillian F
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350542775.47
    273 rdf:type schema:Person
    274 sg:person.0714252516.09 schema:affiliation grid-institutes:grid.47840.3f
    275 schema:familyName Anantharaman
    276 schema:givenName Karthik
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0714252516.09
    278 rdf:type schema:Person
    279 sg:person.0732742066.21 schema:affiliation grid-institutes:grid.47840.3f
    280 schema:familyName Thomas
    281 schema:givenName Brian C
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732742066.21
    283 rdf:type schema:Person
    284 sg:person.0757405471.24 schema:affiliation grid-institutes:grid.47840.3f
    285 schema:familyName Probst
    286 schema:givenName Alexander J
    287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757405471.24
    288 rdf:type schema:Person
    289 sg:pub.10.1007/s00239-005-0223-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033365389
    290 https://doi.org/10.1007/s00239-005-0223-z
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1038/nature09886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030591890
    293 https://doi.org/10.1038/nature09886
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1038/nature12352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019299949
    296 https://doi.org/10.1038/nature12352
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1038/nature13579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036390967
    299 https://doi.org/10.1038/nature13579
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1038/nature14237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050366278
    302 https://doi.org/10.1038/nature14237
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1038/nature14302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007792186
    305 https://doi.org/10.1038/nature14302
    306 rdf:type schema:CreativeWork
    307 sg:pub.10.1038/nature14486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029031769
    308 https://doi.org/10.1038/nature14486
    309 rdf:type schema:CreativeWork
    310 sg:pub.10.1038/nature17944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042305403
    311 https://doi.org/10.1038/nature17944
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/nbt.3528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046541356
    314 https://doi.org/10.1038/nbt.3528
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nbt.3659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019638425
    317 https://doi.org/10.1038/nbt.3659
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/ncomms10613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022975138
    320 https://doi.org/10.1038/ncomms10613
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/ncomms13219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035143030
    323 https://doi.org/10.1038/ncomms13219
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/ncomms7372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031540291
    326 https://doi.org/10.1038/ncomms7372
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/nmeth.1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040405189
    329 https://doi.org/10.1038/nmeth.1318
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/nmeth.1818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017098509
    332 https://doi.org/10.1038/nmeth.1818
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    335 https://doi.org/10.1038/nmeth.1923
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/nmeth.2681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028304735
    338 https://doi.org/10.1038/nmeth.2681
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/nmicrobiol.2016.48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010598799
    341 https://doi.org/10.1038/nmicrobiol.2016.48
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/nprot.2015.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001304490
    344 https://doi.org/10.1038/nprot.2015.053
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/nrmicro1793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008079037
    347 https://doi.org/10.1038/nrmicro1793
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/nrmicro3569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010036058
    350 https://doi.org/10.1038/nrmicro3569
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1038/nsmb.2820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005186267
    353 https://doi.org/10.1038/nsmb.2820
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1186/1471-2105-10-421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050579230
    356 https://doi.org/10.1186/1471-2105-10-421
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1186/1471-2105-11-119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026423599
    359 https://doi.org/10.1186/1471-2105-11-119
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1186/1471-2164-14-485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002051529
    362 https://doi.org/10.1186/1471-2164-14-485
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1186/gb-2004-5-2-r12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022585853
    365 https://doi.org/10.1186/gb-2004-5-2-r12
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1186/gb-2009-10-8-r85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014147708
    368 https://doi.org/10.1186/gb-2009-10-8-r85
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1186/gb-2011-12-5-r44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000326175
    371 https://doi.org/10.1186/gb-2011-12-5-r44
    372 rdf:type schema:CreativeWork
    373 grid-institutes:grid.184769.5 schema:alternateName MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
    374 schema:name Department of Chemistry, University of California, Berkeley, California 94720, USA.
    375 Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
    376 Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA.
    377 Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA.
    378 MBIB Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
    379 rdf:type schema:Organization
    380 grid-institutes:grid.47840.3f schema:alternateName Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.
    381 Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.
    382 Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
    383 schema:name Department of Earth and Planetary Sciences, University of California, Berkeley, California 94720, USA.
    384 Department of Environmental Science, Policy, and Management, University of California, Berkeley, California 94720, USA.
    385 Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA.
    386 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...