Ultrafast nonthermal photo-magnetic recording in a transparent medium View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-02

AUTHORS

A. Stupakiewicz, K. Szerenos, D. Afanasiev, A. Kirilyuk, A.V. Kimel

ABSTRACT

Discovering ways to control the magnetic state of media with the lowest possible production of heat and at the fastest possible speeds is important in the study of fundamental magnetism, with clear practical potential. In metals, it is possible to switch the magnetization between two stable states (and thus to record magnetic bits) using femtosecond circularly polarized laser pulses. However, the switching mechanisms in these materials are directly related to laser-induced heating close to the Curie temperature. Although several possible routes for achieving all-optical switching in magnetic dielectrics have been discussed, no recording has hitherto been demonstrated. Here we describe ultrafast all-optical photo-magnetic recording in transparent films of the dielectric cobalt-substituted garnet. A single linearly polarized femtosecond laser pulse resonantly pumps specific d-d transitions in the cobalt ions, breaking the degeneracy between metastable magnetic states. By changing the polarization of the laser pulse, we deterministically steer the net magnetization in the garnet, thus writing '0' and '1' magnetic bits at will. This mechanism outperforms existing alternatives in terms of the speed of the write-read magnetic recording event (less than 20 picoseconds) and the unprecedentedly low heat load (less than 6 joules per cubic centimetre). More... »

PAGES

71

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature20807

DOI

http://dx.doi.org/10.1038/nature20807

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035044686

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/28099412


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bia\u0142ystok", 
          "id": "https://www.grid.ac/institutes/grid.25588.32", 
          "name": [
            "Laboratory of Magnetism, Faculty of Physics, University of Bialystok, ul. Ciolkowskiego 1L, 15-245 Bialystok, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stupakiewicz", 
        "givenName": "A.", 
        "id": "sg:person.014372372637.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372372637.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bia\u0142ystok", 
          "id": "https://www.grid.ac/institutes/grid.25588.32", 
          "name": [
            "Laboratory of Magnetism, Faculty of Physics, University of Bialystok, ul. Ciolkowskiego 1L, 15-245 Bialystok, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Szerenos", 
        "givenName": "K.", 
        "id": "sg:person.010573304403.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010573304403.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Afanasiev", 
        "givenName": "D.", 
        "id": "sg:person.01306437511.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306437511.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirilyuk", 
        "givenName": "A.", 
        "id": "sg:person.01104550232.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104550232.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kimel", 
        "givenName": "A.V.", 
        "id": "sg:person.01151244177.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151244177.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/revmodphys.82.2731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001406063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.82.2731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001406063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4945660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001418967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35050040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006678613", 
          "https://doi.org/10.1038/35050040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35050040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006678613", 
          "https://doi.org/10.1038/35050040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-85600-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018182561", 
          "https://doi.org/10.1007/978-0-387-85600-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-85600-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018182561", 
          "https://doi.org/10.1007/978-0-387-85600-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.117201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018184333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.117201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018184333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2015.04.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023163803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026224499", 
          "https://doi.org/10.1038/ncomms1666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.127205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026814620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.127205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026814620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01590483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029190410", 
          "https://doi.org/10.1007/bf01590483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/46/7/074003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033435848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035520234", 
          "https://doi.org/10.1038/nmat3864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(90)90656-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041431662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(90)90656-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041431662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aab1031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047976650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1841263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057826897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3681297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057999688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4773508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058065939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.110.1341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060420304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.110.1341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060420304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.14366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.57.14366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060587568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.184407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.63.184407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060599598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.064405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060600361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.064405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060600361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.214440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.214440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.140404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.140404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060640108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.047402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.047402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.047601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.047601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasc.2013.2244634", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061511549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1136629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062455054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1253493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469965"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mascot.2008.4770567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094874311"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "Discovering ways to control the magnetic state of media with the lowest possible production of heat and at the fastest possible speeds is important in the study of fundamental magnetism, with clear practical potential. In metals, it is possible to switch the magnetization between two stable states (and thus to record magnetic bits) using femtosecond circularly polarized laser pulses. However, the switching mechanisms in these materials are directly related to laser-induced heating close to the Curie temperature. Although several possible routes for achieving all-optical switching in magnetic dielectrics have been discussed, no recording has hitherto been demonstrated. Here we describe ultrafast all-optical photo-magnetic recording in transparent films of the dielectric cobalt-substituted garnet. A single linearly polarized femtosecond laser pulse resonantly pumps specific d-d transitions in the cobalt ions, breaking the degeneracy between metastable magnetic states. By changing the polarization of the laser pulse, we deterministically steer the net magnetization in the garnet, thus writing '0' and '1' magnetic bits at will. This mechanism outperforms existing alternatives in terms of the speed of the write-read magnetic recording event (less than 20 picoseconds) and the unprecedentedly low heat load (less than 6 joules per cubic centimetre).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature20807", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4890214", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3787025", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7639", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "542"
      }
    ], 
    "name": "Ultrafast nonthermal photo-magnetic recording in a transparent medium", 
    "pagination": "71", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a6f099250f17c57608320bcc2015527e9d796ef7685628216debc3b0945ac2b4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "28099412"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature20807"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035044686"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature20807", 
      "https://app.dimensions.ai/details/publication/pub.1035044686"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature20807"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature20807'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature20807'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature20807'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature20807'


 

This table displays all metadata directly associated to this object as RDF triples.

193 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature20807 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Nfe4403d8fc9547a0986460bd23eeaf36
4 schema:citation sg:pub.10.1007/978-0-387-85600-1
5 sg:pub.10.1007/bf01590483
6 sg:pub.10.1038/35050040
7 sg:pub.10.1038/ncomms1666
8 sg:pub.10.1038/nmat3864
9 https://doi.org/10.1016/0304-8853(90)90656-b
10 https://doi.org/10.1016/j.nanoen.2015.04.028
11 https://doi.org/10.1063/1.1841263
12 https://doi.org/10.1063/1.3681297
13 https://doi.org/10.1063/1.4773508
14 https://doi.org/10.1063/1.4945660
15 https://doi.org/10.1088/0022-3727/46/7/074003
16 https://doi.org/10.1103/physrev.110.1341
17 https://doi.org/10.1103/physrevb.57.14366
18 https://doi.org/10.1103/physrevb.63.184407
19 https://doi.org/10.1103/physrevb.64.064405
20 https://doi.org/10.1103/physrevb.81.214440
21 https://doi.org/10.1103/physrevb.86.140404
22 https://doi.org/10.1103/physrevlett.103.117201
23 https://doi.org/10.1103/physrevlett.108.127205
24 https://doi.org/10.1103/physrevlett.95.047402
25 https://doi.org/10.1103/physrevlett.99.047601
26 https://doi.org/10.1103/revmodphys.82.2731
27 https://doi.org/10.1109/mascot.2008.4770567
28 https://doi.org/10.1109/tasc.2013.2244634
29 https://doi.org/10.1126/science.1136629
30 https://doi.org/10.1126/science.1253493
31 https://doi.org/10.1126/science.aab1031
32 schema:datePublished 2017-02
33 schema:datePublishedReg 2017-02-01
34 schema:description Discovering ways to control the magnetic state of media with the lowest possible production of heat and at the fastest possible speeds is important in the study of fundamental magnetism, with clear practical potential. In metals, it is possible to switch the magnetization between two stable states (and thus to record magnetic bits) using femtosecond circularly polarized laser pulses. However, the switching mechanisms in these materials are directly related to laser-induced heating close to the Curie temperature. Although several possible routes for achieving all-optical switching in magnetic dielectrics have been discussed, no recording has hitherto been demonstrated. Here we describe ultrafast all-optical photo-magnetic recording in transparent films of the dielectric cobalt-substituted garnet. A single linearly polarized femtosecond laser pulse resonantly pumps specific d-d transitions in the cobalt ions, breaking the degeneracy between metastable magnetic states. By changing the polarization of the laser pulse, we deterministically steer the net magnetization in the garnet, thus writing '0' and '1' magnetic bits at will. This mechanism outperforms existing alternatives in terms of the speed of the write-read magnetic recording event (less than 20 picoseconds) and the unprecedentedly low heat load (less than 6 joules per cubic centimetre).
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf Nc029d81c45554b549a2b8e0703db1a5f
39 Ncf4477baa2ff4f09b8be889a29ec906e
40 sg:journal.1018957
41 schema:name Ultrafast nonthermal photo-magnetic recording in a transparent medium
42 schema:pagination 71
43 schema:productId N55583a9c535c46ea9797c095b8c51b3e
44 Na6c5967fccca43469adf918bca21d9e1
45 Na954c6af86b046e4bbfe159306e3b147
46 Nb5a8b3248b2c477393fd631eed31eb4a
47 Ncaa39bbdaccf48c2bae97178ddfaa718
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035044686
49 https://doi.org/10.1038/nature20807
50 schema:sdDatePublished 2019-04-10T20:34
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N0ce7b62bdafe429f9196c3d47ce93a30
53 schema:url https://www.nature.com/articles/nature20807
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N011176c2426544948a15f3f32c92eaa5 rdf:first sg:person.01306437511.17
58 rdf:rest N47244e4ea82b40beba0f5a57efd10712
59 N0ce7b62bdafe429f9196c3d47ce93a30 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N1c01f1d4d2d048a18cd5de47276dfdf5 rdf:first sg:person.01151244177.44
62 rdf:rest rdf:nil
63 N1cb25530e3e941ef8ce114dfba7102ba rdf:first sg:person.010573304403.92
64 rdf:rest N011176c2426544948a15f3f32c92eaa5
65 N47244e4ea82b40beba0f5a57efd10712 rdf:first sg:person.01104550232.66
66 rdf:rest N1c01f1d4d2d048a18cd5de47276dfdf5
67 N55583a9c535c46ea9797c095b8c51b3e schema:name dimensions_id
68 schema:value pub.1035044686
69 rdf:type schema:PropertyValue
70 Na6c5967fccca43469adf918bca21d9e1 schema:name pubmed_id
71 schema:value 28099412
72 rdf:type schema:PropertyValue
73 Na954c6af86b046e4bbfe159306e3b147 schema:name nlm_unique_id
74 schema:value 0410462
75 rdf:type schema:PropertyValue
76 Nb5a8b3248b2c477393fd631eed31eb4a schema:name doi
77 schema:value 10.1038/nature20807
78 rdf:type schema:PropertyValue
79 Nc029d81c45554b549a2b8e0703db1a5f schema:volumeNumber 542
80 rdf:type schema:PublicationVolume
81 Ncaa39bbdaccf48c2bae97178ddfaa718 schema:name readcube_id
82 schema:value a6f099250f17c57608320bcc2015527e9d796ef7685628216debc3b0945ac2b4
83 rdf:type schema:PropertyValue
84 Ncf4477baa2ff4f09b8be889a29ec906e schema:issueNumber 7639
85 rdf:type schema:PublicationIssue
86 Nfe4403d8fc9547a0986460bd23eeaf36 rdf:first sg:person.014372372637.81
87 rdf:rest N1cb25530e3e941ef8ce114dfba7102ba
88 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
89 schema:name Physical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
92 schema:name Optical Physics
93 rdf:type schema:DefinedTerm
94 sg:grant.3787025 http://pending.schema.org/fundedItem sg:pub.10.1038/nature20807
95 rdf:type schema:MonetaryGrant
96 sg:grant.4890214 http://pending.schema.org/fundedItem sg:pub.10.1038/nature20807
97 rdf:type schema:MonetaryGrant
98 sg:journal.1018957 schema:issn 0090-0028
99 1476-4687
100 schema:name Nature
101 rdf:type schema:Periodical
102 sg:person.010573304403.92 schema:affiliation https://www.grid.ac/institutes/grid.25588.32
103 schema:familyName Szerenos
104 schema:givenName K.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010573304403.92
106 rdf:type schema:Person
107 sg:person.01104550232.66 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
108 schema:familyName Kirilyuk
109 schema:givenName A.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01104550232.66
111 rdf:type schema:Person
112 sg:person.01151244177.44 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
113 schema:familyName Kimel
114 schema:givenName A.V.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01151244177.44
116 rdf:type schema:Person
117 sg:person.01306437511.17 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
118 schema:familyName Afanasiev
119 schema:givenName D.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306437511.17
121 rdf:type schema:Person
122 sg:person.014372372637.81 schema:affiliation https://www.grid.ac/institutes/grid.25588.32
123 schema:familyName Stupakiewicz
124 schema:givenName A.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014372372637.81
126 rdf:type schema:Person
127 sg:pub.10.1007/978-0-387-85600-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018182561
128 https://doi.org/10.1007/978-0-387-85600-1
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf01590483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029190410
131 https://doi.org/10.1007/bf01590483
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/35050040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006678613
134 https://doi.org/10.1038/35050040
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/ncomms1666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026224499
137 https://doi.org/10.1038/ncomms1666
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nmat3864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035520234
140 https://doi.org/10.1038/nmat3864
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0304-8853(90)90656-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1041431662
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.nanoen.2015.04.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023163803
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.1841263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057826897
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.3681297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057999688
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.4773508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058065939
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.4945660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001418967
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1088/0022-3727/46/7/074003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033435848
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrev.110.1341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060420304
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevb.57.14366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060587568
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevb.63.184407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060599598
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.64.064405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060600361
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.81.214440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632793
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.86.140404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060640108
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.103.117201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018184333
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevlett.108.127205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026814620
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.95.047402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830651
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.99.047601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834383
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/revmodphys.82.2731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001406063
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/mascot.2008.4770567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094874311
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tasc.2013.2244634 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061511549
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1136629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062455054
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1253493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469965
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.aab1031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047976650
187 rdf:type schema:CreativeWork
188 https://www.grid.ac/institutes/grid.25588.32 schema:alternateName University of Białystok
189 schema:name Laboratory of Magnetism, Faculty of Physics, University of Bialystok, ul. Ciolkowskiego 1L, 15-245 Bialystok, Poland
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
192 schema:name Radboud University, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
193 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...