Self-assembly of tetravalent Goldberg polyhedra from 144 small components View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

Daishi Fujita, Yoshihiro Ueda, Sota Sato, Nobuhiro Mizuno, Takashi Kumasaka, Makoto Fujita

ABSTRACT

Rational control of the self-assembly of large structures is one of the key challenges in chemistry, and is believed to become increasingly difficult and ultimately impossible as the number of components involved increases. So far, it has not been possible to design a self-assembled discrete molecule made up of more than 100 components. Such molecules-for example, spherical virus capsids-are prevalent in nature, which suggests that the difficulty in designing these very large self-assembled molecules is due to a lack of understanding of the underlying design principles. For example, the targeted assembly of a series of large spherical structures containing up to 30 palladium ions coordinated by up to 60 bent organic ligands was achieved by considering their topologies. Here we report the self-assembly of a spherical structure that also contains 30 palladium ions and 60 bent ligands, but belongs to a shape family that has not previously been observed experimentally. The new structure consists of a combination of 8 triangles and 24 squares, and has the symmetry of a tetravalent Goldberg polyhedron. Platonic and Archimedean solids have previously been prepared through self-assembly, as have trivalent Goldberg polyhedra, which occur naturally in the form of virus capsids and fullerenes. But tetravalent Goldberg polyhedra have not previously been reported at the molecular level, although their topologies have been predicted using graph theory. We use graph theory to predict the self-assembly of even larger tetravalent Goldberg polyhedra, which should be more stable, enabling another member of this polyhedron family to be assembled from 144 components: 48 palladium ions and 96 bent ligands. More... »

PAGES

563

References to SciGraph publications

  • 2012-01. Protein encapsulation within synthetic molecular hosts in NATURE COMMUNICATIONS
  • 2016-07. Design of a hyperstable 60-subunit protein icosahedron in NATURE
  • 2011. 4-Regular and Self-Dual Analogs of Fullerenes in THE MATHEMATICS AND TOPOLOGY OF FULLERENES
  • 2012. Principles of Virus Structural Organization in VIRAL MOLECULAR MACHINES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature20771

    DOI

    http://dx.doi.org/10.1038/nature20771

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014372732

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30905932


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0303", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Macromolecular and Materials Chemistry", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Japan Science and Technology Agency", 
              "id": "https://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan", 
                "PRESTO (Precursory Research for Embryonic Science and Technology), Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan", 
                "ACCEL, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujita", 
            "givenName": "Daishi", 
            "id": "sg:person.01150107730.46", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150107730.46"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Japan Science and Technology Agency", 
              "id": "https://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan", 
                "ACCEL, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ueda", 
            "givenName": "Yoshihiro", 
            "id": "sg:person.013741442725.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013741442725.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Japan Science and Technology Agency", 
              "id": "https://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan", 
                "ERATO, Japan Science and Technology Agency, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sato", 
            "givenName": "Sota", 
            "id": "sg:person.011744344331.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011744344331.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "SPring-8", 
              "id": "https://www.grid.ac/institutes/grid.472717.0", 
              "name": [
                "Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mizuno", 
            "givenName": "Nobuhiro", 
            "id": "sg:person.01270370511.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270370511.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "SPring-8", 
              "id": "https://www.grid.ac/institutes/grid.472717.0", 
              "name": [
                "Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kumasaka", 
            "givenName": "Takashi", 
            "id": "sg:person.01011002721.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011002721.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Japan Science and Technology Agency", 
              "id": "https://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan", 
                "ACCEL, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujita", 
            "givenName": "Makoto", 
            "id": "sg:person.01224107340.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224107340.67"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.chempr.2016.06.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002665827"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2cs35254k", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003902947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s002188980200050x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009660293"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.200461422", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011373953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s010876730706521x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011659066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cphc.200600278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011980551"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/asia.201500519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013974270"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201108731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015193764"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr200034u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020361778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr200034u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020361778"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s2053229614024218", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025313497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-007-0221-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025921392", 
              "https://doi.org/10.1007/978-94-007-0221-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.200702075", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026899690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1310939111", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027902107"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1188605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029181588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1188605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029181588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444909047337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032162623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s0907444909047337", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032162623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/wcms.1207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038287480"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jmbi.1994.1473", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039383638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4614-0980-9_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039916760", 
              "https://doi.org/10.1007/978-1-4614-0980-9_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041449927", 
              "https://doi.org/10.1038/ncomms2093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3cc43191f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043732901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1107/s2053273314026370", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046014962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature18010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046561326", 
              "https://doi.org/10.1038/nature18010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/anie.201409216", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047795776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b822311d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048074260"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr200077m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048311398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr200077m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048311398"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c2cc37776d", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049365687"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr9603800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053911806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr9603800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053911806"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar970224v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055152271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ar970224v", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055152271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci990034u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055405623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/ci990034u", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055405623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cr5005666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055420950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/sqb.1962.027.001.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060403447"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3367/ufne.0180.201006a.0561", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071210161"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-12", 
        "datePublishedReg": "2016-12-01", 
        "description": "Rational control of the self-assembly of large structures is one of the key challenges in chemistry, and is believed to become increasingly difficult and ultimately impossible as the number of components involved increases. So far, it has not been possible to design a self-assembled discrete molecule made up of more than 100 components. Such molecules-for example, spherical virus capsids-are prevalent in nature, which suggests that the difficulty in designing these very large self-assembled molecules is due to a lack of understanding of the underlying design principles. For example, the targeted assembly of a series of large spherical structures containing up to 30 palladium ions coordinated by up to 60 bent organic ligands was achieved by considering their topologies. Here we report the self-assembly of a spherical structure that also contains 30 palladium ions and 60 bent ligands, but belongs to a shape family that has not previously been observed experimentally. The new structure consists of a combination of 8 triangles and 24 squares, and has the symmetry of a tetravalent Goldberg polyhedron. Platonic and Archimedean solids have previously been prepared through self-assembly, as have trivalent Goldberg polyhedra, which occur naturally in the form of virus capsids and fullerenes. But tetravalent Goldberg polyhedra have not previously been reported at the molecular level, although their topologies have been predicted using graph theory. We use graph theory to predict the self-assembly of even larger tetravalent Goldberg polyhedra, which should be more stable, enabling another member of this polyhedron family to be assembled from 144 components: 48 palladium ions and 96 bent ligands.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature20771", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6114798", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6085701", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6116207", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7634", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "540"
          }
        ], 
        "name": "Self-assembly of tetravalent Goldberg polyhedra from 144 small components", 
        "pagination": "563", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4478738d15cbf5e117995da959a2ced55957c65e73402a2e526d870734a41f8d"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30905932"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature20771"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014372732"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature20771", 
          "https://app.dimensions.ai/details/publication/pub.1014372732"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78938_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature20771"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature20771'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature20771'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature20771'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature20771'


     

    This table displays all metadata directly associated to this object as RDF triples.

    217 TRIPLES      21 PREDICATES      61 URIs      21 LITERALS      9 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature20771 schema:about anzsrc-for:03
    2 anzsrc-for:0303
    3 schema:author Ncedecb93064c496397661ea1c7fa23be
    4 schema:citation sg:pub.10.1007/978-1-4614-0980-9_3
    5 sg:pub.10.1007/978-94-007-0221-9_6
    6 sg:pub.10.1038/nature18010
    7 sg:pub.10.1038/ncomms2093
    8 https://doi.org/10.1002/anie.200461422
    9 https://doi.org/10.1002/anie.200702075
    10 https://doi.org/10.1002/anie.201108731
    11 https://doi.org/10.1002/anie.201409216
    12 https://doi.org/10.1002/asia.201500519
    13 https://doi.org/10.1002/cphc.200600278
    14 https://doi.org/10.1002/wcms.1207
    15 https://doi.org/10.1006/jmbi.1994.1473
    16 https://doi.org/10.1016/j.chempr.2016.06.007
    17 https://doi.org/10.1021/ar970224v
    18 https://doi.org/10.1021/ci990034u
    19 https://doi.org/10.1021/cr200034u
    20 https://doi.org/10.1021/cr200077m
    21 https://doi.org/10.1021/cr5005666
    22 https://doi.org/10.1021/cr9603800
    23 https://doi.org/10.1039/b822311d
    24 https://doi.org/10.1039/c2cc37776d
    25 https://doi.org/10.1039/c2cs35254k
    26 https://doi.org/10.1039/c3cc43191f
    27 https://doi.org/10.1073/pnas.1310939111
    28 https://doi.org/10.1101/sqb.1962.027.001.005
    29 https://doi.org/10.1107/s002188980200050x
    30 https://doi.org/10.1107/s010876730706521x
    31 https://doi.org/10.1107/s0907444909047337
    32 https://doi.org/10.1107/s2053229614024218
    33 https://doi.org/10.1107/s2053273314026370
    34 https://doi.org/10.1126/science.1188605
    35 https://doi.org/10.3367/ufne.0180.201006a.0561
    36 schema:datePublished 2016-12
    37 schema:datePublishedReg 2016-12-01
    38 schema:description Rational control of the self-assembly of large structures is one of the key challenges in chemistry, and is believed to become increasingly difficult and ultimately impossible as the number of components involved increases. So far, it has not been possible to design a self-assembled discrete molecule made up of more than 100 components. Such molecules-for example, spherical virus capsids-are prevalent in nature, which suggests that the difficulty in designing these very large self-assembled molecules is due to a lack of understanding of the underlying design principles. For example, the targeted assembly of a series of large spherical structures containing up to 30 palladium ions coordinated by up to 60 bent organic ligands was achieved by considering their topologies. Here we report the self-assembly of a spherical structure that also contains 30 palladium ions and 60 bent ligands, but belongs to a shape family that has not previously been observed experimentally. The new structure consists of a combination of 8 triangles and 24 squares, and has the symmetry of a tetravalent Goldberg polyhedron. Platonic and Archimedean solids have previously been prepared through self-assembly, as have trivalent Goldberg polyhedra, which occur naturally in the form of virus capsids and fullerenes. But tetravalent Goldberg polyhedra have not previously been reported at the molecular level, although their topologies have been predicted using graph theory. We use graph theory to predict the self-assembly of even larger tetravalent Goldberg polyhedra, which should be more stable, enabling another member of this polyhedron family to be assembled from 144 components: 48 palladium ions and 96 bent ligands.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree false
    42 schema:isPartOf N6b7685be1c7e44a1bd4ed69ac3819c97
    43 N749000db783b450fa01a371e44f0f436
    44 sg:journal.1018957
    45 schema:name Self-assembly of tetravalent Goldberg polyhedra from 144 small components
    46 schema:pagination 563
    47 schema:productId N1a8e144c754049269ff71b635a8172ce
    48 N3258a296539e4bbd954b53477cf61cdb
    49 N406cb21f687049adb7e4229e7599c530
    50 N9fd5e199c37b496cab210ccfbc9cfe73
    51 Nd410906f374244218357251feb307afb
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014372732
    53 https://doi.org/10.1038/nature20771
    54 schema:sdDatePublished 2019-04-11T13:17
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N970155f3fe584721af50051e507c9716
    57 schema:url https://www.nature.com/articles/nature20771
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N1a8e144c754049269ff71b635a8172ce schema:name nlm_unique_id
    62 schema:value 0410462
    63 rdf:type schema:PropertyValue
    64 N3258a296539e4bbd954b53477cf61cdb schema:name doi
    65 schema:value 10.1038/nature20771
    66 rdf:type schema:PropertyValue
    67 N406cb21f687049adb7e4229e7599c530 schema:name dimensions_id
    68 schema:value pub.1014372732
    69 rdf:type schema:PropertyValue
    70 N59d8e49615f64f8fad95d006213dbc98 rdf:first sg:person.013741442725.08
    71 rdf:rest Ne47a77e2a4024e3387a9ab9e2bc8f7e7
    72 N60682e909baf4cf3a298016e949b9a34 rdf:first sg:person.01224107340.67
    73 rdf:rest rdf:nil
    74 N63cfd92e705d4baba78348338d32eeeb rdf:first sg:person.01011002721.10
    75 rdf:rest N60682e909baf4cf3a298016e949b9a34
    76 N6b7685be1c7e44a1bd4ed69ac3819c97 schema:issueNumber 7634
    77 rdf:type schema:PublicationIssue
    78 N749000db783b450fa01a371e44f0f436 schema:volumeNumber 540
    79 rdf:type schema:PublicationVolume
    80 N970155f3fe584721af50051e507c9716 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 N9fd5e199c37b496cab210ccfbc9cfe73 schema:name readcube_id
    83 schema:value 4478738d15cbf5e117995da959a2ced55957c65e73402a2e526d870734a41f8d
    84 rdf:type schema:PropertyValue
    85 Ncedecb93064c496397661ea1c7fa23be rdf:first sg:person.01150107730.46
    86 rdf:rest N59d8e49615f64f8fad95d006213dbc98
    87 Nd410906f374244218357251feb307afb schema:name pubmed_id
    88 schema:value 30905932
    89 rdf:type schema:PropertyValue
    90 Ne47a77e2a4024e3387a9ab9e2bc8f7e7 rdf:first sg:person.011744344331.18
    91 rdf:rest Nfd56db4695ac49b09963847385d41108
    92 Nfd56db4695ac49b09963847385d41108 rdf:first sg:person.01270370511.01
    93 rdf:rest N63cfd92e705d4baba78348338d32eeeb
    94 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Chemical Sciences
    96 rdf:type schema:DefinedTerm
    97 anzsrc-for:0303 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Macromolecular and Materials Chemistry
    99 rdf:type schema:DefinedTerm
    100 sg:grant.6085701 http://pending.schema.org/fundedItem sg:pub.10.1038/nature20771
    101 rdf:type schema:MonetaryGrant
    102 sg:grant.6114798 http://pending.schema.org/fundedItem sg:pub.10.1038/nature20771
    103 rdf:type schema:MonetaryGrant
    104 sg:grant.6116207 http://pending.schema.org/fundedItem sg:pub.10.1038/nature20771
    105 rdf:type schema:MonetaryGrant
    106 sg:journal.1018957 schema:issn 0090-0028
    107 1476-4687
    108 schema:name Nature
    109 rdf:type schema:Periodical
    110 sg:person.01011002721.10 schema:affiliation https://www.grid.ac/institutes/grid.472717.0
    111 schema:familyName Kumasaka
    112 schema:givenName Takashi
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011002721.10
    114 rdf:type schema:Person
    115 sg:person.01150107730.46 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
    116 schema:familyName Fujita
    117 schema:givenName Daishi
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01150107730.46
    119 rdf:type schema:Person
    120 sg:person.011744344331.18 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
    121 schema:familyName Sato
    122 schema:givenName Sota
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011744344331.18
    124 rdf:type schema:Person
    125 sg:person.01224107340.67 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
    126 schema:familyName Fujita
    127 schema:givenName Makoto
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01224107340.67
    129 rdf:type schema:Person
    130 sg:person.01270370511.01 schema:affiliation https://www.grid.ac/institutes/grid.472717.0
    131 schema:familyName Mizuno
    132 schema:givenName Nobuhiro
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270370511.01
    134 rdf:type schema:Person
    135 sg:person.013741442725.08 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
    136 schema:familyName Ueda
    137 schema:givenName Yoshihiro
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013741442725.08
    139 rdf:type schema:Person
    140 sg:pub.10.1007/978-1-4614-0980-9_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039916760
    141 https://doi.org/10.1007/978-1-4614-0980-9_3
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/978-94-007-0221-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025921392
    144 https://doi.org/10.1007/978-94-007-0221-9_6
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1038/nature18010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046561326
    147 https://doi.org/10.1038/nature18010
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1038/ncomms2093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041449927
    150 https://doi.org/10.1038/ncomms2093
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1002/anie.200461422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011373953
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1002/anie.200702075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026899690
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1002/anie.201108731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015193764
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1002/anie.201409216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047795776
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1002/asia.201500519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013974270
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1002/cphc.200600278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011980551
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1002/wcms.1207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038287480
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1006/jmbi.1994.1473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039383638
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.chempr.2016.06.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002665827
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1021/ar970224v schema:sameAs https://app.dimensions.ai/details/publication/pub.1055152271
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1021/ci990034u schema:sameAs https://app.dimensions.ai/details/publication/pub.1055405623
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1021/cr200034u schema:sameAs https://app.dimensions.ai/details/publication/pub.1020361778
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1021/cr200077m schema:sameAs https://app.dimensions.ai/details/publication/pub.1048311398
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1021/cr5005666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055420950
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1021/cr9603800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053911806
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1039/b822311d schema:sameAs https://app.dimensions.ai/details/publication/pub.1048074260
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1039/c2cc37776d schema:sameAs https://app.dimensions.ai/details/publication/pub.1049365687
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1039/c2cs35254k schema:sameAs https://app.dimensions.ai/details/publication/pub.1003902947
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1039/c3cc43191f schema:sameAs https://app.dimensions.ai/details/publication/pub.1043732901
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1073/pnas.1310939111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027902107
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1101/sqb.1962.027.001.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060403447
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1107/s002188980200050x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009660293
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1107/s010876730706521x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011659066
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1107/s0907444909047337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032162623
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1107/s2053229614024218 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025313497
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1107/s2053273314026370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046014962
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1126/science.1188605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029181588
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.3367/ufne.0180.201006a.0561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071210161
    207 rdf:type schema:CreativeWork
    208 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
    209 schema:name ACCEL, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
    210 Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
    211 Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
    212 ERATO, Japan Science and Technology Agency, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
    213 PRESTO (Precursory Research for Embryonic Science and Technology), Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
    214 rdf:type schema:Organization
    215 https://www.grid.ac/institutes/grid.472717.0 schema:alternateName SPring-8
    216 schema:name Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
    217 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...