Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-05

AUTHORS

Dominik Paquet, Dylan Kwart, Antonia Chen, Andrew Sproul, Samson Jacob, Shaun Teo, Kimberly Moore Olsen, Andrew Gregg, Scott Noggle, Marc Tessier-Lavigne

ABSTRACT

The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe)) and presenilin 1 (PSEN1(M146V)) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease. More... »

PAGES

125

References to SciGraph publications

  • 1995-10. The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families in NATURE GENETICS
  • 1995-12. The Swedish mutation causes early-onset Alzheimer's disease by β-secretase cleavage within the secretory pathway in NATURE MEDICINE
  • 2015-05. Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining in NATURE BIOTECHNOLOGY
  • 2014-03. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library in NATURE BIOTECHNOLOGY
  • 2013-09. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells in NATURE BIOTECHNOLOGY
  • 2014-06. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing in NATURE BIOTECHNOLOGY
  • 2013-03. RNA-guided editing of bacterial genomes using CRISPR-Cas systems in NATURE BIOTECHNOLOGY
  • 2012-02. Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells in NATURE
  • 2012-08. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline in NATURE
  • 2015-04. Inducible in vivo genome editing with CRISPR-Cas9 in NATURE BIOTECHNOLOGY
  • 2015-05. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells in NATURE BIOTECHNOLOGY
  • 2012-10. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks in NATURE PROTOCOLS
  • 2015-05. Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system in SCIENTIFIC REPORTS
  • 2015-06-22. Engineered CRISPR-Cas9 nucleases with altered PAM specificities in NATURE
  • 2010-08. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences in GENOME BIOLOGY
  • 2008-07. Animal models of Alzheimer's disease and frontotemporal dementia in NATURE REVIEWS NEUROSCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature17664

    DOI

    http://dx.doi.org/10.1038/nature17664

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049125654

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/27120160


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adolescent", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Age of Onset", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alzheimer Disease", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Amyloid beta-Protein Precursor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Base Sequence", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Cas Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Breaks, Double-Stranded", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Cleavage", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Repair", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genes, Dominant", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Association Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Heterozygote", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Homozygote", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Induced Pluripotent Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mice", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutagenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Mutation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Presenilins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Guide", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Homology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Substrate Specificity", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Templates, Genetic", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Rockefeller University", 
              "id": "https://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Paquet", 
            "givenName": "Dominik", 
            "id": "sg:person.01016244635.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016244635.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rockefeller University", 
              "id": "https://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kwart", 
            "givenName": "Dylan", 
            "id": "sg:person.0756626226.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756626226.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rockefeller University", 
              "id": "https://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Antonia", 
            "id": "sg:person.01332565003.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332565003.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "New York Stem Cell Foundation", 
              "id": "https://www.grid.ac/institutes/grid.430819.7", 
              "name": [
                "The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sproul", 
            "givenName": "Andrew", 
            "id": "sg:person.01234363400.62", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234363400.62"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "New York Stem Cell Foundation", 
              "id": "https://www.grid.ac/institutes/grid.430819.7", 
              "name": [
                "The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jacob", 
            "givenName": "Samson", 
            "id": "sg:person.01166250200.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166250200.27"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rockefeller University", 
              "id": "https://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Teo", 
            "givenName": "Shaun", 
            "id": "sg:person.0723407303.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723407303.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rockefeller University", 
              "id": "https://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Olsen", 
            "givenName": "Kimberly Moore", 
            "id": "sg:person.01153015347.21", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153015347.21"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Cornell University", 
              "id": "https://www.grid.ac/institutes/grid.5386.8", 
              "name": [
                "Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA", 
                "Weill Cornell Graduate School of Medical Sciences, The Rockefeller University and Sloan-Kettering Institute Tri-institutional MD-PhD Program, 1300 York Avenue, New York, New York 10065, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gregg", 
            "givenName": "Andrew", 
            "id": "sg:person.01037635703.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037635703.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "New York Stem Cell Foundation", 
              "id": "https://www.grid.ac/institutes/grid.430819.7", 
              "name": [
                "The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Noggle", 
            "givenName": "Scott", 
            "id": "sg:person.01137705454.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137705454.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Rockefeller University", 
              "id": "https://www.grid.ac/institutes/grid.134907.8", 
              "name": [
                "Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tessier-Lavigne", 
            "givenName": "Marc", 
            "id": "sg:person.0743137454.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743137454.16"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ng1095-219", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000696522", 
              "https://doi.org/10.1038/ng1095-219"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2013.08.021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002481722"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddu064", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004726667"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/b978-0-12-801185-0.00011-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005546359"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.18.1.93", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005846865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7554/elife.04766", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006900934"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008895789", 
              "https://doi.org/10.1038/nbt.3198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009511624", 
              "https://doi.org/10.1038/nbt.2623"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btt593", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010435278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep05396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011163022", 
              "https://doi.org/10.1038/srep05396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btp698", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012031985"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkt555", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012243466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2908", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012868720", 
              "https://doi.org/10.1038/nbt.2908"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2013.04.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013935649"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3155", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016529049", 
              "https://doi.org/10.1038/nbt.3155"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0129308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016569755"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nm1295-1291", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016670609", 
              "https://doi.org/10.1038/nm1295-1291"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2015.01.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017147972"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.112.005439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017242928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1534/g3.112.005439", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017242928"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.3190", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017538548", 
              "https://doi.org/10.1038/nbt.3190"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1231143", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019873131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019888616", 
              "https://doi.org/10.1038/nbt.2508"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrn2420", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020855200", 
              "https://doi.org/10.1038/nrn2420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0096483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021098831"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.celrep.2013.10.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021397530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.09.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021453389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1232033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022072971"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmsr040330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022304644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471142727.mb1910s89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029131223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471142727.mb1910s89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029131223"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/geno.1997.4995", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029283905"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10821", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030397851", 
              "https://doi.org/10.1038/nature10821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2013.08.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034724285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1074/jbc.m114.564625", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035370902"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.stem.2013.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037274297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2014.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039182708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/dvdy.24183", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039714647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041802825", 
              "https://doi.org/10.1038/nbt.2800"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2012.116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043421085", 
              "https://doi.org/10.1038/nprot.2012.116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1128/mcb.17.11.6386", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044248484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/mtna.2014.64", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044531709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btq281", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044636881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11283", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045345318", 
              "https://doi.org/10.1038/nature11283"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0084547", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045923379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2010-11-8-r86", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046347776", 
              "https://doi.org/10.1186/gb-2010-11-8-r86"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0059867", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046559940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature14592", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047292250", 
              "https://doi.org/10.1038/nature14592"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471142727.mb2119s91", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049563565"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/hmg/ddr394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051164854"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-05", 
        "datePublishedReg": "2016-05-01", 
        "description": "The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe)) and presenilin 1 (PSEN1(M146V)) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease. ", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature17664", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2705194", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2683811", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7601", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "533"
          }
        ], 
        "name": "Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9", 
        "pagination": "125", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ea06f9bf15b4975372ab181714da6e5d17af8194046172def37ea52086d44c33"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "27120160"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature17664"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049125654"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature17664", 
          "https://app.dimensions.ai/details/publication/pub.1049125654"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T12:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000426.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature17664"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature17664'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature17664'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature17664'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature17664'


     

    This table displays all metadata directly associated to this object as RDF triples.

    415 TRIPLES      21 PREDICATES      105 URIs      49 LITERALS      37 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature17664 schema:about N00c7aefc068b48d3aba330a683381814
    2 N0be715662a194523afa9ae6138d21f6d
    3 N0fbdcea22b1846bc95692e383fa2d70a
    4 N1056d702f95c4bc9ad7ad5e9ac1393a8
    5 N18236cc5ef2443b887a2ca30488c48d0
    6 N236aa267aad14cd196403a1a4279e03b
    7 N4089b85201644b6bb5263ca6479a45b4
    8 N45734b5425f7422e97d5b459a52a2ab2
    9 N45cbe24f31ef4251bc1265a46d48f6d6
    10 N47db6fb598f549f2b7f9f140b0f16f72
    11 N482dec81ba434de7ad8444d7adfcfddc
    12 N4a507297e77744f8b81a2b7e7b24a289
    13 N4dfdb4e90d79477fab40dd7bf050cd6a
    14 N5b674101cbbd442ba944c2974ba4a9fe
    15 N85c2cbfb4196463f8ee928e53e087317
    16 N87962440bfec4c518b2b20802ee503fe
    17 Na5256cab43454188bf280df98200de47
    18 Na67f7e26a78344a38ab5ec18a10d224d
    19 Nb000fc8aca324468811abd39cab1dc23
    20 Nb412ef662e2e4b58b9045563c50cb6b9
    21 Nbf525a0672ae41c2a272b6d58ff90a27
    22 Nc24aa373d4e94388a70af917ca38614f
    23 Ncc08340b55084ca2b4e76c52213ba6a0
    24 Nd6f7047287e249b7b680a87845ba5dcc
    25 Ndc19441a59a34bd8ade9ba2de2909d1e
    26 Ne609d67f517d4e6ca63f53ed734db2b6
    27 Nedd2e1ec61714cbe98a9d67712473af5
    28 Nfaa5e6eb987b4e0ba9c8101bc2f6d0ec
    29 anzsrc-for:06
    30 anzsrc-for:0604
    31 schema:author N33dca871d696456fa29542514262452d
    32 schema:citation sg:pub.10.1038/nature10821
    33 sg:pub.10.1038/nature11283
    34 sg:pub.10.1038/nature14592
    35 sg:pub.10.1038/nbt.2508
    36 sg:pub.10.1038/nbt.2623
    37 sg:pub.10.1038/nbt.2800
    38 sg:pub.10.1038/nbt.2908
    39 sg:pub.10.1038/nbt.3155
    40 sg:pub.10.1038/nbt.3190
    41 sg:pub.10.1038/nbt.3198
    42 sg:pub.10.1038/ng1095-219
    43 sg:pub.10.1038/nm1295-1291
    44 sg:pub.10.1038/nprot.2012.116
    45 sg:pub.10.1038/nrn2420
    46 sg:pub.10.1038/srep05396
    47 sg:pub.10.1186/gb-2010-11-8-r86
    48 https://doi.org/10.1002/0471142727.mb1910s89
    49 https://doi.org/10.1002/0471142727.mb2119s91
    50 https://doi.org/10.1002/dvdy.24183
    51 https://doi.org/10.1006/geno.1997.4995
    52 https://doi.org/10.1016/b978-0-12-801185-0.00011-8
    53 https://doi.org/10.1016/j.cell.2013.04.025
    54 https://doi.org/10.1016/j.cell.2013.08.021
    55 https://doi.org/10.1016/j.cell.2013.08.022
    56 https://doi.org/10.1016/j.cell.2014.05.010
    57 https://doi.org/10.1016/j.cell.2014.09.014
    58 https://doi.org/10.1016/j.celrep.2013.10.018
    59 https://doi.org/10.1016/j.stem.2013.01.009
    60 https://doi.org/10.1016/j.stem.2015.01.003
    61 https://doi.org/10.1038/mtna.2014.64
    62 https://doi.org/10.1056/nejmsr040330
    63 https://doi.org/10.1074/jbc.m114.564625
    64 https://doi.org/10.1093/bioinformatics/btp698
    65 https://doi.org/10.1093/bioinformatics/btq281
    66 https://doi.org/10.1093/bioinformatics/btt593
    67 https://doi.org/10.1093/hmg/ddr394
    68 https://doi.org/10.1093/hmg/ddu064
    69 https://doi.org/10.1093/nar/gkt555
    70 https://doi.org/10.1126/science.1231143
    71 https://doi.org/10.1126/science.1232033
    72 https://doi.org/10.1128/mcb.17.11.6386
    73 https://doi.org/10.1128/mcb.18.1.93
    74 https://doi.org/10.1371/journal.pone.0059867
    75 https://doi.org/10.1371/journal.pone.0084547
    76 https://doi.org/10.1371/journal.pone.0096483
    77 https://doi.org/10.1371/journal.pone.0129308
    78 https://doi.org/10.1534/g3.112.005439
    79 https://doi.org/10.7554/elife.04766
    80 schema:datePublished 2016-05
    81 schema:datePublishedReg 2016-05-01
    82 schema:description The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in amyloid precursor protein (APP(Swe)) and presenilin 1 (PSEN1(M146V)) and derived cortical neurons, which displayed genotype-dependent disease-associated phenotypes. Our findings enable efficient introduction of specific sequence changes with CRISPR/Cas9, facilitating study of human disease.
    83 schema:genre research_article
    84 schema:inLanguage en
    85 schema:isAccessibleForFree false
    86 schema:isPartOf N7b2765d1d4fb45209e8d9ac454666cc2
    87 Nda9055c04d65489c9097efe04707e017
    88 sg:journal.1018957
    89 schema:name Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9
    90 schema:pagination 125
    91 schema:productId N44c7e01d0e3e4e45890757f7e226ee9a
    92 N6e3a6ada5e87453bb9732e26fafe8842
    93 N8706ce474f744f3cb676847751ff2f21
    94 Nb324be819f4447fa8c178b2f3c30c39e
    95 Nc726eaf05edc42baa916dd5881de711b
    96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049125654
    97 https://doi.org/10.1038/nature17664
    98 schema:sdDatePublished 2019-04-10T12:59
    99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    100 schema:sdPublisher Ndb0cfc6020394a34ae7544a14aa94ccf
    101 schema:url https://www.nature.com/articles/nature17664
    102 sgo:license sg:explorer/license/
    103 sgo:sdDataset articles
    104 rdf:type schema:ScholarlyArticle
    105 N00c7aefc068b48d3aba330a683381814 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    106 schema:name Substrate Specificity
    107 rdf:type schema:DefinedTerm
    108 N0be715662a194523afa9ae6138d21f6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Presenilins
    110 rdf:type schema:DefinedTerm
    111 N0fbdcea22b1846bc95692e383fa2d70a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Alzheimer Disease
    113 rdf:type schema:DefinedTerm
    114 N1056d702f95c4bc9ad7ad5e9ac1393a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    115 schema:name DNA Breaks, Double-Stranded
    116 rdf:type schema:DefinedTerm
    117 N18236cc5ef2443b887a2ca30488c48d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name Mutation
    119 rdf:type schema:DefinedTerm
    120 N236aa267aad14cd196403a1a4279e03b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    121 schema:name Mutagenesis
    122 rdf:type schema:DefinedTerm
    123 N2a6d29f05e4c48e59f4ec56ac188b292 rdf:first sg:person.01153015347.21
    124 rdf:rest N8e13163682f44b3a9b4ae08b8b66b028
    125 N329d3d89142841b6a228ea32408c6150 rdf:first sg:person.0743137454.16
    126 rdf:rest rdf:nil
    127 N33dca871d696456fa29542514262452d rdf:first sg:person.01016244635.12
    128 rdf:rest Na9fa2c25c5964467bccdc06da1e7c754
    129 N3a046d096a4044cfa139d1da74297fd3 rdf:first sg:person.01166250200.27
    130 rdf:rest N843fbf57ce54459ab85570a3cc60c35d
    131 N4089b85201644b6bb5263ca6479a45b4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Heterozygote
    133 rdf:type schema:DefinedTerm
    134 N44c7e01d0e3e4e45890757f7e226ee9a schema:name doi
    135 schema:value 10.1038/nature17664
    136 rdf:type schema:PropertyValue
    137 N45734b5425f7422e97d5b459a52a2ab2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Age of Onset
    139 rdf:type schema:DefinedTerm
    140 N45cbe24f31ef4251bc1265a46d48f6d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Animals
    142 rdf:type schema:DefinedTerm
    143 N47db6fb598f549f2b7f9f140b0f16f72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Genetic Engineering
    145 rdf:type schema:DefinedTerm
    146 N482dec81ba434de7ad8444d7adfcfddc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name RNA, Guide
    148 rdf:type schema:DefinedTerm
    149 N4a507297e77744f8b81a2b7e7b24a289 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    150 schema:name Humans
    151 rdf:type schema:DefinedTerm
    152 N4dfdb4e90d79477fab40dd7bf050cd6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    153 schema:name Female
    154 rdf:type schema:DefinedTerm
    155 N5b674101cbbd442ba944c2974ba4a9fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Sequence Homology
    157 rdf:type schema:DefinedTerm
    158 N6e3a6ada5e87453bb9732e26fafe8842 schema:name nlm_unique_id
    159 schema:value 0410462
    160 rdf:type schema:PropertyValue
    161 N7b2765d1d4fb45209e8d9ac454666cc2 schema:issueNumber 7601
    162 rdf:type schema:PublicationIssue
    163 N7e8962485e644fd6ba90bdabb387571a rdf:first sg:person.01234363400.62
    164 rdf:rest N3a046d096a4044cfa139d1da74297fd3
    165 N843fbf57ce54459ab85570a3cc60c35d rdf:first sg:person.0723407303.19
    166 rdf:rest N2a6d29f05e4c48e59f4ec56ac188b292
    167 N84853c7d37d2413fb1ea8d8023c8bfea rdf:first sg:person.01137705454.73
    168 rdf:rest N329d3d89142841b6a228ea32408c6150
    169 N85c2cbfb4196463f8ee928e53e087317 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Base Sequence
    171 rdf:type schema:DefinedTerm
    172 N8706ce474f744f3cb676847751ff2f21 schema:name dimensions_id
    173 schema:value pub.1049125654
    174 rdf:type schema:PropertyValue
    175 N87962440bfec4c518b2b20802ee503fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Mice
    177 rdf:type schema:DefinedTerm
    178 N8e13163682f44b3a9b4ae08b8b66b028 rdf:first sg:person.01037635703.84
    179 rdf:rest N84853c7d37d2413fb1ea8d8023c8bfea
    180 Na5256cab43454188bf280df98200de47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Induced Pluripotent Stem Cells
    182 rdf:type schema:DefinedTerm
    183 Na67f7e26a78344a38ab5ec18a10d224d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    184 schema:name DNA Repair
    185 rdf:type schema:DefinedTerm
    186 Na737a646082b411bb5f92464f3facb90 rdf:first sg:person.01332565003.09
    187 rdf:rest N7e8962485e644fd6ba90bdabb387571a
    188 Na9fa2c25c5964467bccdc06da1e7c754 rdf:first sg:person.0756626226.96
    189 rdf:rest Na737a646082b411bb5f92464f3facb90
    190 Nb000fc8aca324468811abd39cab1dc23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    191 schema:name Genetic Association Studies
    192 rdf:type schema:DefinedTerm
    193 Nb324be819f4447fa8c178b2f3c30c39e schema:name readcube_id
    194 schema:value ea06f9bf15b4975372ab181714da6e5d17af8194046172def37ea52086d44c33
    195 rdf:type schema:PropertyValue
    196 Nb412ef662e2e4b58b9045563c50cb6b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    197 schema:name Amyloid beta-Protein Precursor
    198 rdf:type schema:DefinedTerm
    199 Nbf525a0672ae41c2a272b6d58ff90a27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    200 schema:name Homozygote
    201 rdf:type schema:DefinedTerm
    202 Nc24aa373d4e94388a70af917ca38614f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    203 schema:name DNA Cleavage
    204 rdf:type schema:DefinedTerm
    205 Nc726eaf05edc42baa916dd5881de711b schema:name pubmed_id
    206 schema:value 27120160
    207 rdf:type schema:PropertyValue
    208 Ncc08340b55084ca2b4e76c52213ba6a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    209 schema:name Templates, Genetic
    210 rdf:type schema:DefinedTerm
    211 Nd6f7047287e249b7b680a87845ba5dcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Genes, Dominant
    213 rdf:type schema:DefinedTerm
    214 Nda9055c04d65489c9097efe04707e017 schema:volumeNumber 533
    215 rdf:type schema:PublicationVolume
    216 Ndb0cfc6020394a34ae7544a14aa94ccf schema:name Springer Nature - SN SciGraph project
    217 rdf:type schema:Organization
    218 Ndc19441a59a34bd8ade9ba2de2909d1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    219 schema:name Adolescent
    220 rdf:type schema:DefinedTerm
    221 Ne609d67f517d4e6ca63f53ed734db2b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    222 schema:name Alleles
    223 rdf:type schema:DefinedTerm
    224 Nedd2e1ec61714cbe98a9d67712473af5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    225 schema:name CRISPR-Cas Systems
    226 rdf:type schema:DefinedTerm
    227 Nfaa5e6eb987b4e0ba9c8101bc2f6d0ec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    228 schema:name Male
    229 rdf:type schema:DefinedTerm
    230 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    231 schema:name Biological Sciences
    232 rdf:type schema:DefinedTerm
    233 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    234 schema:name Genetics
    235 rdf:type schema:DefinedTerm
    236 sg:grant.2683811 http://pending.schema.org/fundedItem sg:pub.10.1038/nature17664
    237 rdf:type schema:MonetaryGrant
    238 sg:grant.2705194 http://pending.schema.org/fundedItem sg:pub.10.1038/nature17664
    239 rdf:type schema:MonetaryGrant
    240 sg:journal.1018957 schema:issn 0090-0028
    241 1476-4687
    242 schema:name Nature
    243 rdf:type schema:Periodical
    244 sg:person.01016244635.12 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
    245 schema:familyName Paquet
    246 schema:givenName Dominik
    247 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016244635.12
    248 rdf:type schema:Person
    249 sg:person.01037635703.84 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
    250 schema:familyName Gregg
    251 schema:givenName Andrew
    252 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037635703.84
    253 rdf:type schema:Person
    254 sg:person.01137705454.73 schema:affiliation https://www.grid.ac/institutes/grid.430819.7
    255 schema:familyName Noggle
    256 schema:givenName Scott
    257 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01137705454.73
    258 rdf:type schema:Person
    259 sg:person.01153015347.21 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
    260 schema:familyName Olsen
    261 schema:givenName Kimberly Moore
    262 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01153015347.21
    263 rdf:type schema:Person
    264 sg:person.01166250200.27 schema:affiliation https://www.grid.ac/institutes/grid.430819.7
    265 schema:familyName Jacob
    266 schema:givenName Samson
    267 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166250200.27
    268 rdf:type schema:Person
    269 sg:person.01234363400.62 schema:affiliation https://www.grid.ac/institutes/grid.430819.7
    270 schema:familyName Sproul
    271 schema:givenName Andrew
    272 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01234363400.62
    273 rdf:type schema:Person
    274 sg:person.01332565003.09 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
    275 schema:familyName Chen
    276 schema:givenName Antonia
    277 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332565003.09
    278 rdf:type schema:Person
    279 sg:person.0723407303.19 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
    280 schema:familyName Teo
    281 schema:givenName Shaun
    282 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723407303.19
    283 rdf:type schema:Person
    284 sg:person.0743137454.16 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
    285 schema:familyName Tessier-Lavigne
    286 schema:givenName Marc
    287 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743137454.16
    288 rdf:type schema:Person
    289 sg:person.0756626226.96 schema:affiliation https://www.grid.ac/institutes/grid.134907.8
    290 schema:familyName Kwart
    291 schema:givenName Dylan
    292 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756626226.96
    293 rdf:type schema:Person
    294 sg:pub.10.1038/nature10821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030397851
    295 https://doi.org/10.1038/nature10821
    296 rdf:type schema:CreativeWork
    297 sg:pub.10.1038/nature11283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045345318
    298 https://doi.org/10.1038/nature11283
    299 rdf:type schema:CreativeWork
    300 sg:pub.10.1038/nature14592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047292250
    301 https://doi.org/10.1038/nature14592
    302 rdf:type schema:CreativeWork
    303 sg:pub.10.1038/nbt.2508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019888616
    304 https://doi.org/10.1038/nbt.2508
    305 rdf:type schema:CreativeWork
    306 sg:pub.10.1038/nbt.2623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009511624
    307 https://doi.org/10.1038/nbt.2623
    308 rdf:type schema:CreativeWork
    309 sg:pub.10.1038/nbt.2800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041802825
    310 https://doi.org/10.1038/nbt.2800
    311 rdf:type schema:CreativeWork
    312 sg:pub.10.1038/nbt.2908 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012868720
    313 https://doi.org/10.1038/nbt.2908
    314 rdf:type schema:CreativeWork
    315 sg:pub.10.1038/nbt.3155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016529049
    316 https://doi.org/10.1038/nbt.3155
    317 rdf:type schema:CreativeWork
    318 sg:pub.10.1038/nbt.3190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017538548
    319 https://doi.org/10.1038/nbt.3190
    320 rdf:type schema:CreativeWork
    321 sg:pub.10.1038/nbt.3198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008895789
    322 https://doi.org/10.1038/nbt.3198
    323 rdf:type schema:CreativeWork
    324 sg:pub.10.1038/ng1095-219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000696522
    325 https://doi.org/10.1038/ng1095-219
    326 rdf:type schema:CreativeWork
    327 sg:pub.10.1038/nm1295-1291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016670609
    328 https://doi.org/10.1038/nm1295-1291
    329 rdf:type schema:CreativeWork
    330 sg:pub.10.1038/nprot.2012.116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043421085
    331 https://doi.org/10.1038/nprot.2012.116
    332 rdf:type schema:CreativeWork
    333 sg:pub.10.1038/nrn2420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020855200
    334 https://doi.org/10.1038/nrn2420
    335 rdf:type schema:CreativeWork
    336 sg:pub.10.1038/srep05396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011163022
    337 https://doi.org/10.1038/srep05396
    338 rdf:type schema:CreativeWork
    339 sg:pub.10.1186/gb-2010-11-8-r86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046347776
    340 https://doi.org/10.1186/gb-2010-11-8-r86
    341 rdf:type schema:CreativeWork
    342 https://doi.org/10.1002/0471142727.mb1910s89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029131223
    343 rdf:type schema:CreativeWork
    344 https://doi.org/10.1002/0471142727.mb2119s91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049563565
    345 rdf:type schema:CreativeWork
    346 https://doi.org/10.1002/dvdy.24183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039714647
    347 rdf:type schema:CreativeWork
    348 https://doi.org/10.1006/geno.1997.4995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029283905
    349 rdf:type schema:CreativeWork
    350 https://doi.org/10.1016/b978-0-12-801185-0.00011-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005546359
    351 rdf:type schema:CreativeWork
    352 https://doi.org/10.1016/j.cell.2013.04.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013935649
    353 rdf:type schema:CreativeWork
    354 https://doi.org/10.1016/j.cell.2013.08.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002481722
    355 rdf:type schema:CreativeWork
    356 https://doi.org/10.1016/j.cell.2013.08.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034724285
    357 rdf:type schema:CreativeWork
    358 https://doi.org/10.1016/j.cell.2014.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039182708
    359 rdf:type schema:CreativeWork
    360 https://doi.org/10.1016/j.cell.2014.09.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021453389
    361 rdf:type schema:CreativeWork
    362 https://doi.org/10.1016/j.celrep.2013.10.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021397530
    363 rdf:type schema:CreativeWork
    364 https://doi.org/10.1016/j.stem.2013.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037274297
    365 rdf:type schema:CreativeWork
    366 https://doi.org/10.1016/j.stem.2015.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017147972
    367 rdf:type schema:CreativeWork
    368 https://doi.org/10.1038/mtna.2014.64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044531709
    369 rdf:type schema:CreativeWork
    370 https://doi.org/10.1056/nejmsr040330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022304644
    371 rdf:type schema:CreativeWork
    372 https://doi.org/10.1074/jbc.m114.564625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035370902
    373 rdf:type schema:CreativeWork
    374 https://doi.org/10.1093/bioinformatics/btp698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031985
    375 rdf:type schema:CreativeWork
    376 https://doi.org/10.1093/bioinformatics/btq281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044636881
    377 rdf:type schema:CreativeWork
    378 https://doi.org/10.1093/bioinformatics/btt593 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010435278
    379 rdf:type schema:CreativeWork
    380 https://doi.org/10.1093/hmg/ddr394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051164854
    381 rdf:type schema:CreativeWork
    382 https://doi.org/10.1093/hmg/ddu064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004726667
    383 rdf:type schema:CreativeWork
    384 https://doi.org/10.1093/nar/gkt555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012243466
    385 rdf:type schema:CreativeWork
    386 https://doi.org/10.1126/science.1231143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019873131
    387 rdf:type schema:CreativeWork
    388 https://doi.org/10.1126/science.1232033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022072971
    389 rdf:type schema:CreativeWork
    390 https://doi.org/10.1128/mcb.17.11.6386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044248484
    391 rdf:type schema:CreativeWork
    392 https://doi.org/10.1128/mcb.18.1.93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005846865
    393 rdf:type schema:CreativeWork
    394 https://doi.org/10.1371/journal.pone.0059867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046559940
    395 rdf:type schema:CreativeWork
    396 https://doi.org/10.1371/journal.pone.0084547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045923379
    397 rdf:type schema:CreativeWork
    398 https://doi.org/10.1371/journal.pone.0096483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021098831
    399 rdf:type schema:CreativeWork
    400 https://doi.org/10.1371/journal.pone.0129308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016569755
    401 rdf:type schema:CreativeWork
    402 https://doi.org/10.1534/g3.112.005439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017242928
    403 rdf:type schema:CreativeWork
    404 https://doi.org/10.7554/elife.04766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006900934
    405 rdf:type schema:CreativeWork
    406 https://www.grid.ac/institutes/grid.134907.8 schema:alternateName Rockefeller University
    407 schema:name Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
    408 rdf:type schema:Organization
    409 https://www.grid.ac/institutes/grid.430819.7 schema:alternateName New York Stem Cell Foundation
    410 schema:name The New York Stem Cell Foundation Research Institute, New York, New York 10032, USA
    411 rdf:type schema:Organization
    412 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
    413 schema:name Laboratory of Brain Development and Repair, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA
    414 Weill Cornell Graduate School of Medical Sciences, The Rockefeller University and Sloan-Kettering Institute Tri-institutional MD-PhD Program, 1300 York Avenue, New York, New York 10065, USA
    415 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...