Change of carrier density at the pseudogap critical point of a cuprate superconductor View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-03

AUTHORS

S. Badoux, W. Tabis, F. Laliberté, G. Grissonnanche, B. Vignolle, D. Vignolles, J. Béard, D. A. Bonn, W. N. Hardy, R. Liang, N. Doiron-Leyraud, Louis Taillefer, Cyril Proust

ABSTRACT

The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked. More... »

PAGES

210

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature16983

DOI

http://dx.doi.org/10.1038/nature16983

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052674325

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26901870


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Sherbrooke", 
          "id": "https://www.grid.ac/institutes/grid.86715.3d", 
          "name": [
            "D\u00e9partement de physique, Regroupement Qu\u00e9b\u00e9cois sur les Mat\u00e9riaux de Pointe, Universit\u00e9 de Sherbrooke, Sherbrooke, Qu\u00e9bec J1K 2R1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Badoux", 
        "givenName": "S.", 
        "id": "sg:person.01227447722.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227447722.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AGH University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.9922.0", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse 31400, France", 
            "AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krakow, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tabis", 
        "givenName": "W.", 
        "id": "sg:person.01201224244.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201224244.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse 31400, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lalibert\u00e9", 
        "givenName": "F.", 
        "id": "sg:person.01331134054.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331134054.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Sherbrooke", 
          "id": "https://www.grid.ac/institutes/grid.86715.3d", 
          "name": [
            "D\u00e9partement de physique, Regroupement Qu\u00e9b\u00e9cois sur les Mat\u00e9riaux de Pointe, Universit\u00e9 de Sherbrooke, Sherbrooke, Qu\u00e9bec J1K 2R1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grissonnanche", 
        "givenName": "G.", 
        "id": "sg:person.01242475072.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242475072.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse 31400, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vignolle", 
        "givenName": "B.", 
        "id": "sg:person.01327204657.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327204657.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse 31400, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vignolles", 
        "givenName": "D.", 
        "id": "sg:person.015624012501.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624012501.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "French National High Magnetic Field Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.462694.b", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse 31400, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e9ard", 
        "givenName": "J.", 
        "id": "sg:person.01052506133.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052506133.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canadian Institute for Advanced Research", 
          "id": "https://www.grid.ac/institutes/grid.440050.5", 
          "name": [
            "Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada", 
            "Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonn", 
        "givenName": "D. A.", 
        "id": "sg:person.014750051122.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750051122.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canadian Institute for Advanced Research", 
          "id": "https://www.grid.ac/institutes/grid.440050.5", 
          "name": [
            "Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada", 
            "Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hardy", 
        "givenName": "W. N.", 
        "id": "sg:person.014620555757.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014620555757.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canadian Institute for Advanced Research", 
          "id": "https://www.grid.ac/institutes/grid.440050.5", 
          "name": [
            "Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada", 
            "Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "R.", 
        "id": "sg:person.0751756405.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751756405.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Sherbrooke", 
          "id": "https://www.grid.ac/institutes/grid.86715.3d", 
          "name": [
            "D\u00e9partement de physique, Regroupement Qu\u00e9b\u00e9cois sur les Mat\u00e9riaux de Pointe, Universit\u00e9 de Sherbrooke, Sherbrooke, Qu\u00e9bec J1K 2R1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doiron-Leyraud", 
        "givenName": "N.", 
        "id": "sg:person.01316313757.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316313757.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canadian Institute for Advanced Research", 
          "id": "https://www.grid.ac/institutes/grid.440050.5", 
          "name": [
            "D\u00e9partement de physique, Regroupement Qu\u00e9b\u00e9cois sur les Mat\u00e9riaux de Pointe, Universit\u00e9 de Sherbrooke, Sherbrooke, Qu\u00e9bec J1K 2R1, Canada", 
            "Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taillefer", 
        "givenName": "Louis", 
        "id": "sg:person.01252052313.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252052313.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Canadian Institute for Advanced Research", 
          "id": "https://www.grid.ac/institutes/grid.440050.5", 
          "name": [
            "Laboratoire National des Champs Magn\u00e9tiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse 31400, France", 
            "Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Proust", 
        "givenName": "Cyril", 
        "id": "sg:person.01205726457.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205726457.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.89.224513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002141850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.224513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002141850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1248783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003648801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.197001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005104283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.197001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005104283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005585698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.110.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005585698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006521670", 
          "https://doi.org/10.1038/nature05872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.126401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008201453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.126401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008201453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.054506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008436483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.054506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008436483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.054514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008641111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.054514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008641111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008842996", 
          "https://doi.org/10.1038/nature07323"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.054513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009240658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.054513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009240658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019850812", 
          "https://doi.org/10.1038/ncomms3113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aaa4990", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020706736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.104521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021340803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.104521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021340803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.224510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.224510", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022959711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14786435.2012.669065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024973401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-070909-104117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025419158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.167001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025961742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.167001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025961742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027607896", 
          "https://doi.org/10.1038/nature01890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027607896", 
          "https://doi.org/10.1038/nature01890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.245136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027659631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.90.245136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027659631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/75/1/016502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033076469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.064501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034144191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.064501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034144191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035778153", 
          "https://doi.org/10.1038/nature10345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2003-00059-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036529259", 
          "https://doi.org/10.1140/epjb/e2003-00059-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018730500459906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039262121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/10/105006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039586478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/12/10/105006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039586478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys2456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041283820", 
          "https://doi.org/10.1038/nphys2456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/20/12/123201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044074092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.180505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047507181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.180505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047507181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050678758", 
          "https://doi.org/10.1038/nphys1763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1248221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051267709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-4534(00)01524-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051524861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.11019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.11019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060562564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.3458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.3458", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.5848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.5848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.017004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.017004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.5294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.5294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1223532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062466776"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-03", 
    "datePublishedReg": "2016-03-01", 
    "description": "The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p\u2009=\u20090.16 that is distinctly lower than the pseudogap critical point p*\u2009=\u20090.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n\u2009=\u20091\u2009+\u2009p in the conventional metal at high doping (ref. 12) to n\u2009=\u2009p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature16983", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7593", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "531"
      }
    ], 
    "name": "Change of carrier density at the pseudogap critical point of a cuprate superconductor", 
    "pagination": "210", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fae77f2c38d4cf726535b5ff9fccf88bc34cf90e21232b0f4e0e279d6337ab90"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26901870"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature16983"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052674325"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature16983", 
      "https://app.dimensions.ai/details/publication/pub.1052674325"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature16983"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature16983'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature16983'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature16983'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature16983'


 

This table displays all metadata directly associated to this object as RDF triples.

288 TRIPLES      21 PREDICATES      67 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature16983 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N363c1775158f4c4899b4a30f72587e76
4 schema:citation sg:pub.10.1038/nature01890
5 sg:pub.10.1038/nature05872
6 sg:pub.10.1038/nature07323
7 sg:pub.10.1038/nature10345
8 sg:pub.10.1038/ncomms3113
9 sg:pub.10.1038/nphys1763
10 sg:pub.10.1038/nphys2456
11 sg:pub.10.1140/epjb/e2003-00059-9
12 https://doi.org/10.1016/s0921-4534(00)01524-0
13 https://doi.org/10.1080/00018730500459906
14 https://doi.org/10.1080/14786435.2012.669065
15 https://doi.org/10.1088/0034-4885/75/1/016502
16 https://doi.org/10.1088/0953-8984/20/12/123201
17 https://doi.org/10.1088/1367-2630/12/10/105006
18 https://doi.org/10.1103/physrevb.46.11019
19 https://doi.org/10.1103/physrevb.50.3458
20 https://doi.org/10.1103/physrevb.53.5848
21 https://doi.org/10.1103/physrevb.69.104521
22 https://doi.org/10.1103/physrevb.73.180505
23 https://doi.org/10.1103/physrevb.74.224510
24 https://doi.org/10.1103/physrevb.80.064501
25 https://doi.org/10.1103/physrevb.83.054506
26 https://doi.org/10.1103/physrevb.89.224513
27 https://doi.org/10.1103/physrevb.90.054513
28 https://doi.org/10.1103/physrevb.90.054514
29 https://doi.org/10.1103/physrevb.90.245136
30 https://doi.org/10.1103/physrevlett.102.017004
31 https://doi.org/10.1103/physrevlett.110.187001
32 https://doi.org/10.1103/physrevlett.76.122
33 https://doi.org/10.1103/physrevlett.79.5294
34 https://doi.org/10.1103/physrevlett.92.126401
35 https://doi.org/10.1103/physrevlett.92.167001
36 https://doi.org/10.1103/physrevlett.92.197001
37 https://doi.org/10.1126/science.1223532
38 https://doi.org/10.1126/science.1248221
39 https://doi.org/10.1126/science.1248783
40 https://doi.org/10.1126/science.aaa4990
41 https://doi.org/10.1146/annurev-conmatphys-070909-104117
42 schema:datePublished 2016-03
43 schema:datePublishedReg 2016-03-01
44 schema:description The pseudogap is a partial gap in the electronic density of states that opens in the normal (non-superconducting) state of cuprate superconductors and whose origin is a long-standing puzzle. Its connection to the Mott insulator phase at low doping (hole concentration, p) remains ambiguous and its relation to the charge order that reconstructs the Fermi surface at intermediate doping is still unclear. Here we use measurements of the Hall coefficient in magnetic fields up to 88 tesla to show that Fermi-surface reconstruction by charge order in the cuprate YBa2Cu3Oy ends sharply at a critical doping p = 0.16 that is distinctly lower than the pseudogap critical point p* = 0.19 (ref. 11). This shows that the pseudogap and charge order are separate phenomena. We find that the change in carrier density n from n = 1 + p in the conventional metal at high doping (ref. 12) to n = p at low doping (ref. 13) starts at the pseudogap critical point. This shows that the pseudogap and the antiferromagnetic Mott insulator are linked.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree true
48 schema:isPartOf N1cdf644161134ac497f946db1a82c47f
49 N9ab40397a9ec473f9cec335db407dcf5
50 sg:journal.1018957
51 schema:name Change of carrier density at the pseudogap critical point of a cuprate superconductor
52 schema:pagination 210
53 schema:productId N1983414740b546f583df3cb3755475f3
54 N49064bb102ec45159faa0b3163b13e4c
55 N79be1361f6354c799d3dea9247e478d0
56 N7c7d5578429c44a1a07dac527f68f3d3
57 Ne6b6cdb59709415b885d13c0f60041b2
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052674325
59 https://doi.org/10.1038/nature16983
60 schema:sdDatePublished 2019-04-10T18:57
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N582e7ed7971846a6964d8fe2d22e4374
63 schema:url https://www.nature.com/articles/nature16983
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N0e8372fe294945f09a72aa046eab8727 rdf:first sg:person.014620555757.49
68 rdf:rest N6b28a9ddd99f4357ba958f412de0eb23
69 N1983414740b546f583df3cb3755475f3 schema:name dimensions_id
70 schema:value pub.1052674325
71 rdf:type schema:PropertyValue
72 N1a914d5333d44cc8a02448e0f5218b0d rdf:first sg:person.01316313757.19
73 rdf:rest Ne6bfaff99d2c4b1ebbc4e389d4855c93
74 N1cdf644161134ac497f946db1a82c47f schema:issueNumber 7593
75 rdf:type schema:PublicationIssue
76 N21ba1e00794041648d735d5cdec9c2d0 rdf:first sg:person.01327204657.50
77 rdf:rest N75b2f1dc52ec4f81abc3502daaf799d3
78 N2758d69c900d48579bba1f6f27e777f1 rdf:first sg:person.01331134054.54
79 rdf:rest N7fa54d75ec32407a9180af2d44b9968e
80 N363c1775158f4c4899b4a30f72587e76 rdf:first sg:person.01227447722.17
81 rdf:rest Nfe576dc374484cc58b178eab9a0996e5
82 N49064bb102ec45159faa0b3163b13e4c schema:name pubmed_id
83 schema:value 26901870
84 rdf:type schema:PropertyValue
85 N4b14cbdebd4243caafc7cf9b3da865f6 rdf:first sg:person.01052506133.72
86 rdf:rest Nf6d23dc9f83b4260a091390623237d08
87 N582e7ed7971846a6964d8fe2d22e4374 schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N6b28a9ddd99f4357ba958f412de0eb23 rdf:first sg:person.0751756405.45
90 rdf:rest N1a914d5333d44cc8a02448e0f5218b0d
91 N75b2f1dc52ec4f81abc3502daaf799d3 rdf:first sg:person.015624012501.69
92 rdf:rest N4b14cbdebd4243caafc7cf9b3da865f6
93 N79be1361f6354c799d3dea9247e478d0 schema:name doi
94 schema:value 10.1038/nature16983
95 rdf:type schema:PropertyValue
96 N7c7d5578429c44a1a07dac527f68f3d3 schema:name nlm_unique_id
97 schema:value 0410462
98 rdf:type schema:PropertyValue
99 N7fa54d75ec32407a9180af2d44b9968e rdf:first sg:person.01242475072.50
100 rdf:rest N21ba1e00794041648d735d5cdec9c2d0
101 N9ab40397a9ec473f9cec335db407dcf5 schema:volumeNumber 531
102 rdf:type schema:PublicationVolume
103 Nab449870b216415482fd60620f9173c3 rdf:first sg:person.01205726457.21
104 rdf:rest rdf:nil
105 Ne6b6cdb59709415b885d13c0f60041b2 schema:name readcube_id
106 schema:value fae77f2c38d4cf726535b5ff9fccf88bc34cf90e21232b0f4e0e279d6337ab90
107 rdf:type schema:PropertyValue
108 Ne6bfaff99d2c4b1ebbc4e389d4855c93 rdf:first sg:person.01252052313.26
109 rdf:rest Nab449870b216415482fd60620f9173c3
110 Nf6d23dc9f83b4260a091390623237d08 rdf:first sg:person.014750051122.60
111 rdf:rest N0e8372fe294945f09a72aa046eab8727
112 Nfe576dc374484cc58b178eab9a0996e5 rdf:first sg:person.01201224244.65
113 rdf:rest N2758d69c900d48579bba1f6f27e777f1
114 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
115 schema:name Engineering
116 rdf:type schema:DefinedTerm
117 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
118 schema:name Materials Engineering
119 rdf:type schema:DefinedTerm
120 sg:journal.1018957 schema:issn 0090-0028
121 1476-4687
122 schema:name Nature
123 rdf:type schema:Periodical
124 sg:person.01052506133.72 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
125 schema:familyName Béard
126 schema:givenName J.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052506133.72
128 rdf:type schema:Person
129 sg:person.01201224244.65 schema:affiliation https://www.grid.ac/institutes/grid.9922.0
130 schema:familyName Tabis
131 schema:givenName W.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01201224244.65
133 rdf:type schema:Person
134 sg:person.01205726457.21 schema:affiliation https://www.grid.ac/institutes/grid.440050.5
135 schema:familyName Proust
136 schema:givenName Cyril
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01205726457.21
138 rdf:type schema:Person
139 sg:person.01227447722.17 schema:affiliation https://www.grid.ac/institutes/grid.86715.3d
140 schema:familyName Badoux
141 schema:givenName S.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227447722.17
143 rdf:type schema:Person
144 sg:person.01242475072.50 schema:affiliation https://www.grid.ac/institutes/grid.86715.3d
145 schema:familyName Grissonnanche
146 schema:givenName G.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01242475072.50
148 rdf:type schema:Person
149 sg:person.01252052313.26 schema:affiliation https://www.grid.ac/institutes/grid.440050.5
150 schema:familyName Taillefer
151 schema:givenName Louis
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01252052313.26
153 rdf:type schema:Person
154 sg:person.01316313757.19 schema:affiliation https://www.grid.ac/institutes/grid.86715.3d
155 schema:familyName Doiron-Leyraud
156 schema:givenName N.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316313757.19
158 rdf:type schema:Person
159 sg:person.01327204657.50 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
160 schema:familyName Vignolle
161 schema:givenName B.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327204657.50
163 rdf:type schema:Person
164 sg:person.01331134054.54 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
165 schema:familyName Laliberté
166 schema:givenName F.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01331134054.54
168 rdf:type schema:Person
169 sg:person.014620555757.49 schema:affiliation https://www.grid.ac/institutes/grid.440050.5
170 schema:familyName Hardy
171 schema:givenName W. N.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014620555757.49
173 rdf:type schema:Person
174 sg:person.014750051122.60 schema:affiliation https://www.grid.ac/institutes/grid.440050.5
175 schema:familyName Bonn
176 schema:givenName D. A.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014750051122.60
178 rdf:type schema:Person
179 sg:person.015624012501.69 schema:affiliation https://www.grid.ac/institutes/grid.462694.b
180 schema:familyName Vignolles
181 schema:givenName D.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015624012501.69
183 rdf:type schema:Person
184 sg:person.0751756405.45 schema:affiliation https://www.grid.ac/institutes/grid.440050.5
185 schema:familyName Liang
186 schema:givenName R.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0751756405.45
188 rdf:type schema:Person
189 sg:pub.10.1038/nature01890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027607896
190 https://doi.org/10.1038/nature01890
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/nature05872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006521670
193 https://doi.org/10.1038/nature05872
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/nature07323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008842996
196 https://doi.org/10.1038/nature07323
197 rdf:type schema:CreativeWork
198 sg:pub.10.1038/nature10345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035778153
199 https://doi.org/10.1038/nature10345
200 rdf:type schema:CreativeWork
201 sg:pub.10.1038/ncomms3113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019850812
202 https://doi.org/10.1038/ncomms3113
203 rdf:type schema:CreativeWork
204 sg:pub.10.1038/nphys1763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050678758
205 https://doi.org/10.1038/nphys1763
206 rdf:type schema:CreativeWork
207 sg:pub.10.1038/nphys2456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041283820
208 https://doi.org/10.1038/nphys2456
209 rdf:type schema:CreativeWork
210 sg:pub.10.1140/epjb/e2003-00059-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036529259
211 https://doi.org/10.1140/epjb/e2003-00059-9
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/s0921-4534(00)01524-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051524861
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1080/00018730500459906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039262121
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1080/14786435.2012.669065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024973401
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1088/0034-4885/75/1/016502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033076469
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1088/0953-8984/20/12/123201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044074092
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1088/1367-2630/12/10/105006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039586478
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevb.46.11019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060562564
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevb.50.3458 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573743
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevb.53.5848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060580429
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physrevb.69.104521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021340803
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1103/physrevb.73.180505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047507181
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1103/physrevb.74.224510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022959711
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1103/physrevb.80.064501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034144191
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1103/physrevb.83.054506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008436483
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1103/physrevb.89.224513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002141850
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1103/physrevb.90.054513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009240658
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1103/physrevb.90.054514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008641111
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1103/physrevb.90.245136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027659631
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1103/physrevlett.102.017004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754619
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1103/physrevlett.110.187001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005585698
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1103/physrevlett.76.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812564
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1103/physrevlett.79.5294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816497
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1103/physrevlett.92.126401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008201453
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1103/physrevlett.92.167001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025961742
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1103/physrevlett.92.197001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005104283
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1126/science.1223532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062466776
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1126/science.1248221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051267709
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1126/science.1248783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003648801
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1126/science.aaa4990 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020706736
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1146/annurev-conmatphys-070909-104117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025419158
272 rdf:type schema:CreativeWork
273 https://www.grid.ac/institutes/grid.440050.5 schema:alternateName Canadian Institute for Advanced Research
274 schema:name Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
275 Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
276 Département de physique, Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
277 Laboratoire National des Champs Magnétiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse 31400, France
278 rdf:type schema:Organization
279 https://www.grid.ac/institutes/grid.462694.b schema:alternateName French National High Magnetic Field Laboratory
280 schema:name Laboratoire National des Champs Magnétiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse 31400, France
281 rdf:type schema:Organization
282 https://www.grid.ac/institutes/grid.86715.3d schema:alternateName Université de Sherbrooke
283 schema:name Département de physique, Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
284 rdf:type schema:Organization
285 https://www.grid.ac/institutes/grid.9922.0 schema:alternateName AGH University of Science and Technology
286 schema:name AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krakow, Poland
287 Laboratoire National des Champs Magnétiques Intenses (CNRS, EMFL, INSA, UGA, UPS), Toulouse 31400, France
288 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...