Conformational control of DNA target cleavage by CRISPR–Cas9 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-11

AUTHORS

Samuel H. Sternberg, Benjamin LaFrance, Matias Kaplan, Jennifer A. Doudna

ABSTRACT

Cas9 is an RNA-guided DNA endonuclease that targets foreign DNA for destruction as part of a bacterial adaptive immune system mediated by clustered regularly interspaced short palindromic repeats (CRISPR). Together with single-guide RNAs, Cas9 also functions as a powerful genome engineering tool in plants and animals, and efforts are underway to increase the efficiency and specificity of DNA targeting for potential therapeutic applications. Studies of off-target effects have shown that DNA binding is far more promiscuous than DNA cleavage, yet the molecular cues that govern strand scission have not been elucidated. Here we show that the conformational state of the HNH nuclease domain directly controls DNA cleavage activity. Using intramolecular Förster resonance energy transfer experiments to detect relative orientations of the Cas9 catalytic domains when associated with on- and off-target DNA, we find that DNA cleavage efficiencies scale with the extent to which the HNH domain samples an activated conformation. We furthermore uncover a surprising mode of allosteric communication that ensures concerted firing of both Cas9 nuclease domains. Our results highlight a proofreading mechanism beyond initial protospacer adjacent motif (PAM) recognition and RNA-DNA base-pairing that serves as a final specificity checkpoint before DNA double-strand break formation. More... »

PAGES

110

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature15544

DOI

http://dx.doi.org/10.1038/nature15544

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047311922

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26524520


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Allosteric Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Pairing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CRISPR-Associated Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CRISPR-Cas Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalytic Domain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Breaks, Double-Stranded", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Cleavage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endonucleases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescence Resonance Energy Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Guide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Streptococcus pyogenes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Chemistry, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sternberg", 
        "givenName": "Samuel H.", 
        "id": "sg:person.01101567113.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101567113.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LaFrance", 
        "givenName": "Benjamin", 
        "id": "sg:person.01063206573.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063206573.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaplan", 
        "givenName": "Matias", 
        "id": "sg:person.01053417366.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053417366.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Chemistry, University of California, Berkeley, California 94720, USA", 
            "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA", 
            "Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA", 
            "Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doudna", 
        "givenName": "Jennifer A.", 
        "id": "sg:person.01147702313.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147702313.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.1501698112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001192089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004290844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004547802", 
          "https://doi.org/10.1038/nature06152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2015.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004984500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1247997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010970903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1208507109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011954581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40484-014-0030-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014529473", 
          "https://doi.org/10.1007/s40484-014-0030-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro3279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014837318", 
          "https://doi.org/10.1038/nrmicro3279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.030882.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015360819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2014.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015567429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0109213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016908281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019168198", 
          "https://doi.org/10.1038/nature14299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021849416", 
          "https://doi.org/10.1038/nbt.3117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026387524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026387524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1402597111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027756035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029053547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029053547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1258096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033404992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036390967", 
          "https://doi.org/10.1038/nature13579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037342101", 
          "https://doi.org/10.1038/nature13011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039182708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(92)11020-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039886159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2015.01.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040347869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2015.01.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040347869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1225829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041850060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aab1452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042265317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/hum.2015.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042975645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1313587110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042978468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043519930", 
          "https://doi.org/10.1038/nbt.2889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2014.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044439504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2015.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048019629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048637524", 
          "https://doi.org/10.1038/nbt.2808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049119825"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "Cas9 is an RNA-guided DNA endonuclease that targets foreign DNA for destruction as part of a bacterial adaptive immune system mediated by clustered regularly interspaced short palindromic repeats (CRISPR). Together with single-guide RNAs, Cas9 also functions as a powerful genome engineering tool in plants and animals, and efforts are underway to increase the efficiency and specificity of DNA targeting for potential therapeutic applications. Studies of off-target effects have shown that DNA binding is far more promiscuous than DNA cleavage, yet the molecular cues that govern strand scission have not been elucidated. Here we show that the conformational state of the HNH nuclease domain directly controls DNA cleavage activity. Using intramolecular F\u00f6rster resonance energy transfer experiments to detect relative orientations of the Cas9 catalytic domains when associated with on- and off-target DNA, we find that DNA cleavage efficiencies scale with the extent to which the HNH domain samples an activated conformation. We furthermore uncover a surprising mode of allosteric communication that ensures concerted firing of both Cas9 nuclease domains. Our results highlight a proofreading mechanism beyond initial protospacer adjacent motif (PAM) recognition and RNA-DNA base-pairing that serves as a final specificity checkpoint before DNA double-strand break formation. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature15544", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2683710", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7576", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "527"
      }
    ], 
    "name": "Conformational control of DNA target cleavage by CRISPR\u2013Cas9", 
    "pagination": "110", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e16130563f175474c3b2f4d7e96e0b99eb4daa11893174188d84eb270dadd3b7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26524520"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature15544"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047311922"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature15544", 
      "https://app.dimensions.ai/details/publication/pub.1047311922"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature15544"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature15544'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature15544'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature15544'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature15544'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      76 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature15544 schema:about N0a81fa39802c497eb5ca16f1cfbb00d8
2 N2ddfea1ab13e46d3b9d0e15ffc5540b2
3 N50a9ba5fcf774b49a4e41dbd1964a9d4
4 N54257ab27d1b4b8b8b5071857ef6679e
5 N568f8a66fa3046599fd0146c0b8beef8
6 N76d7dea038044db496e14e920f8ee81f
7 N8274cdd0f0724cb98336f9257fdafd77
8 N89ac64287d8044aa9dc1fc8c15ee34c3
9 Na31d3c6f516841f1ab02a02a96e912b2
10 Na4561b14228243ec8280c9bee1843523
11 Na46ab953f1994069af0890d68361e871
12 Na93997def7584237bbef29259518e77b
13 Nb50daf23307d4b3db012251ba45b089c
14 Nc3a665d094fa43da93a39c0b2591d5f3
15 Ndcf748d56f7346eeb0f4324393e62810
16 Ne07e5c34151d4bfd8b16c91958e71de7
17 anzsrc-for:06
18 anzsrc-for:0601
19 schema:author N937c708b12cc42128c77ce046dc8351c
20 schema:citation sg:pub.10.1007/s40484-014-0030-x
21 sg:pub.10.1038/nature06152
22 sg:pub.10.1038/nature13011
23 sg:pub.10.1038/nature13579
24 sg:pub.10.1038/nature14299
25 sg:pub.10.1038/nbt.2808
26 sg:pub.10.1038/nbt.2889
27 sg:pub.10.1038/nbt.3117
28 sg:pub.10.1038/nrmicro3279
29 https://doi.org/10.1016/0076-6879(92)11020-j
30 https://doi.org/10.1016/j.cell.2014.02.001
31 https://doi.org/10.1016/j.cell.2014.05.010
32 https://doi.org/10.1016/j.cell.2015.08.007
33 https://doi.org/10.1016/j.celrep.2015.01.067
34 https://doi.org/10.1016/j.jmb.2005.06.027
35 https://doi.org/10.1016/j.molcel.2014.03.011
36 https://doi.org/10.1016/j.molcel.2014.09.019
37 https://doi.org/10.1016/j.molcel.2015.02.032
38 https://doi.org/10.1073/pnas.1208507109
39 https://doi.org/10.1073/pnas.1313587110
40 https://doi.org/10.1073/pnas.1402597111
41 https://doi.org/10.1073/pnas.1501698112
42 https://doi.org/10.1089/hum.2015.074
43 https://doi.org/10.1093/nar/gkq399
44 https://doi.org/10.1093/nar/gku316
45 https://doi.org/10.1126/science.1225829
46 https://doi.org/10.1126/science.1247997
47 https://doi.org/10.1126/science.1258096
48 https://doi.org/10.1126/science.aab1452
49 https://doi.org/10.1261/rna.030882.111
50 https://doi.org/10.1371/journal.pone.0109213
51 schema:datePublished 2015-11
52 schema:datePublishedReg 2015-11-01
53 schema:description Cas9 is an RNA-guided DNA endonuclease that targets foreign DNA for destruction as part of a bacterial adaptive immune system mediated by clustered regularly interspaced short palindromic repeats (CRISPR). Together with single-guide RNAs, Cas9 also functions as a powerful genome engineering tool in plants and animals, and efforts are underway to increase the efficiency and specificity of DNA targeting for potential therapeutic applications. Studies of off-target effects have shown that DNA binding is far more promiscuous than DNA cleavage, yet the molecular cues that govern strand scission have not been elucidated. Here we show that the conformational state of the HNH nuclease domain directly controls DNA cleavage activity. Using intramolecular Förster resonance energy transfer experiments to detect relative orientations of the Cas9 catalytic domains when associated with on- and off-target DNA, we find that DNA cleavage efficiencies scale with the extent to which the HNH domain samples an activated conformation. We furthermore uncover a surprising mode of allosteric communication that ensures concerted firing of both Cas9 nuclease domains. Our results highlight a proofreading mechanism beyond initial protospacer adjacent motif (PAM) recognition and RNA-DNA base-pairing that serves as a final specificity checkpoint before DNA double-strand break formation.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N69fca9e9332c4df1a314b3138a2e43a7
58 Nd0192d9f4784476fa6cd868aa47c430c
59 sg:journal.1018957
60 schema:name Conformational control of DNA target cleavage by CRISPR–Cas9
61 schema:pagination 110
62 schema:productId N1fc8fd4b4b10410586d26c655416e338
63 N44f31a3ca1a14fefb59f93f46870cf59
64 N5d62a0499fe44e46b3e4add9bdc38382
65 N69f7eb91189c4484887b5afa6a8aa010
66 N8c7fe5b51ba74363a08ba9b90d50a9f5
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047311922
68 https://doi.org/10.1038/nature15544
69 schema:sdDatePublished 2019-04-10T21:44
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N643084920fae43399786daccbf89f16c
72 schema:url https://www.nature.com/articles/nature15544
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N014279577210478e98aee7b04928fa8d rdf:first sg:person.01063206573.29
77 rdf:rest Nab41e3cb7b5a48f1a97e37ed32d56dc7
78 N0a81fa39802c497eb5ca16f1cfbb00d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Binding Sites
80 rdf:type schema:DefinedTerm
81 N1fc8fd4b4b10410586d26c655416e338 schema:name pubmed_id
82 schema:value 26524520
83 rdf:type schema:PropertyValue
84 N2ddfea1ab13e46d3b9d0e15ffc5540b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name CRISPR-Cas Systems
86 rdf:type schema:DefinedTerm
87 N44f31a3ca1a14fefb59f93f46870cf59 schema:name doi
88 schema:value 10.1038/nature15544
89 rdf:type schema:PropertyValue
90 N50a9ba5fcf774b49a4e41dbd1964a9d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Base Pairing
92 rdf:type schema:DefinedTerm
93 N54257ab27d1b4b8b8b5071857ef6679e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name CRISPR-Associated Proteins
95 rdf:type schema:DefinedTerm
96 N568f8a66fa3046599fd0146c0b8beef8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Catalytic Domain
98 rdf:type schema:DefinedTerm
99 N5d62a0499fe44e46b3e4add9bdc38382 schema:name dimensions_id
100 schema:value pub.1047311922
101 rdf:type schema:PropertyValue
102 N605768cdacb741d09247105c6797d8b7 rdf:first sg:person.01147702313.96
103 rdf:rest rdf:nil
104 N643084920fae43399786daccbf89f16c schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 N69f7eb91189c4484887b5afa6a8aa010 schema:name nlm_unique_id
107 schema:value 0410462
108 rdf:type schema:PropertyValue
109 N69fca9e9332c4df1a314b3138a2e43a7 schema:issueNumber 7576
110 rdf:type schema:PublicationIssue
111 N76d7dea038044db496e14e920f8ee81f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name DNA Cleavage
113 rdf:type schema:DefinedTerm
114 N8274cdd0f0724cb98336f9257fdafd77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Endonucleases
116 rdf:type schema:DefinedTerm
117 N89ac64287d8044aa9dc1fc8c15ee34c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name DNA
119 rdf:type schema:DefinedTerm
120 N8c7fe5b51ba74363a08ba9b90d50a9f5 schema:name readcube_id
121 schema:value e16130563f175474c3b2f4d7e96e0b99eb4daa11893174188d84eb270dadd3b7
122 rdf:type schema:PropertyValue
123 N937c708b12cc42128c77ce046dc8351c rdf:first sg:person.01101567113.85
124 rdf:rest N014279577210478e98aee7b04928fa8d
125 Na31d3c6f516841f1ab02a02a96e912b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Bacterial Proteins
127 rdf:type schema:DefinedTerm
128 Na4561b14228243ec8280c9bee1843523 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Genetic Engineering
130 rdf:type schema:DefinedTerm
131 Na46ab953f1994069af0890d68361e871 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Fluorescence Resonance Energy Transfer
133 rdf:type schema:DefinedTerm
134 Na93997def7584237bbef29259518e77b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Models, Molecular
136 rdf:type schema:DefinedTerm
137 Nab41e3cb7b5a48f1a97e37ed32d56dc7 rdf:first sg:person.01053417366.42
138 rdf:rest N605768cdacb741d09247105c6797d8b7
139 Nb50daf23307d4b3db012251ba45b089c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Streptococcus pyogenes
141 rdf:type schema:DefinedTerm
142 Nc3a665d094fa43da93a39c0b2591d5f3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name RNA, Guide
144 rdf:type schema:DefinedTerm
145 Nd0192d9f4784476fa6cd868aa47c430c schema:volumeNumber 527
146 rdf:type schema:PublicationVolume
147 Ndcf748d56f7346eeb0f4324393e62810 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name DNA Breaks, Double-Stranded
149 rdf:type schema:DefinedTerm
150 Ne07e5c34151d4bfd8b16c91958e71de7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Allosteric Regulation
152 rdf:type schema:DefinedTerm
153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biological Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
157 schema:name Biochemistry and Cell Biology
158 rdf:type schema:DefinedTerm
159 sg:grant.2683710 http://pending.schema.org/fundedItem sg:pub.10.1038/nature15544
160 rdf:type schema:MonetaryGrant
161 sg:journal.1018957 schema:issn 0090-0028
162 1476-4687
163 schema:name Nature
164 rdf:type schema:Periodical
165 sg:person.01053417366.42 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
166 schema:familyName Kaplan
167 schema:givenName Matias
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053417366.42
169 rdf:type schema:Person
170 sg:person.01063206573.29 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
171 schema:familyName LaFrance
172 schema:givenName Benjamin
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063206573.29
174 rdf:type schema:Person
175 sg:person.01101567113.85 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
176 schema:familyName Sternberg
177 schema:givenName Samuel H.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101567113.85
179 rdf:type schema:Person
180 sg:person.01147702313.96 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
181 schema:familyName Doudna
182 schema:givenName Jennifer A.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147702313.96
184 rdf:type schema:Person
185 sg:pub.10.1007/s40484-014-0030-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014529473
186 https://doi.org/10.1007/s40484-014-0030-x
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature06152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004547802
189 https://doi.org/10.1038/nature06152
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nature13011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037342101
192 https://doi.org/10.1038/nature13011
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nature13579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036390967
195 https://doi.org/10.1038/nature13579
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nature14299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019168198
198 https://doi.org/10.1038/nature14299
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nbt.2808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048637524
201 https://doi.org/10.1038/nbt.2808
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nbt.2889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043519930
204 https://doi.org/10.1038/nbt.2889
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nbt.3117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021849416
207 https://doi.org/10.1038/nbt.3117
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nrmicro3279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014837318
210 https://doi.org/10.1038/nrmicro3279
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/0076-6879(92)11020-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1039886159
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.cell.2014.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004290844
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.cell.2014.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039182708
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.cell.2015.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004984500
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.celrep.2015.01.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040347869
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.jmb.2005.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029053547
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.molcel.2014.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044439504
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.molcel.2014.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015567429
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.molcel.2015.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048019629
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1073/pnas.1208507109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011954581
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.1313587110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042978468
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.1402597111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027756035
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1073/pnas.1501698112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001192089
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1089/hum.2015.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042975645
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/gkq399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026387524
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/gku316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049119825
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1225829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850060
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1247997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010970903
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1258096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033404992
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.aab1452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042265317
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1261/rna.030882.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015360819
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pone.0109213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016908281
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
257 schema:name Department of Chemistry, University of California, Berkeley, California 94720, USA
258 Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
259 Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
260 Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA
261 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
264 schema:name Department of Chemistry, University of California, Berkeley, California 94720, USA
265 Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
266 Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...