Conformational control of DNA target cleavage by CRISPR–Cas9 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2015-11

AUTHORS

Samuel H. Sternberg, Benjamin LaFrance, Matias Kaplan, Jennifer A. Doudna

ABSTRACT

Cas9 is an RNA-guided DNA endonuclease that targets foreign DNA for destruction as part of a bacterial adaptive immune system mediated by clustered regularly interspaced short palindromic repeats (CRISPR). Together with single-guide RNAs, Cas9 also functions as a powerful genome engineering tool in plants and animals, and efforts are underway to increase the efficiency and specificity of DNA targeting for potential therapeutic applications. Studies of off-target effects have shown that DNA binding is far more promiscuous than DNA cleavage, yet the molecular cues that govern strand scission have not been elucidated. Here we show that the conformational state of the HNH nuclease domain directly controls DNA cleavage activity. Using intramolecular Förster resonance energy transfer experiments to detect relative orientations of the Cas9 catalytic domains when associated with on- and off-target DNA, we find that DNA cleavage efficiencies scale with the extent to which the HNH domain samples an activated conformation. We furthermore uncover a surprising mode of allosteric communication that ensures concerted firing of both Cas9 nuclease domains. Our results highlight a proofreading mechanism beyond initial protospacer adjacent motif (PAM) recognition and RNA-DNA base-pairing that serves as a final specificity checkpoint before DNA double-strand break formation. More... »

PAGES

110

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature15544

DOI

http://dx.doi.org/10.1038/nature15544

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047311922

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26524520


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Allosteric Regulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Base Pairing", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Binding Sites", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CRISPR-Associated Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "CRISPR-Cas Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Catalytic Domain", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Breaks, Double-Stranded", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA Cleavage", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Endonucleases", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorescence Resonance Energy Transfer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA, Guide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Streptococcus pyogenes", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Chemistry, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sternberg", 
        "givenName": "Samuel H.", 
        "id": "sg:person.01101567113.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101567113.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "LaFrance", 
        "givenName": "Benjamin", 
        "id": "sg:person.01063206573.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063206573.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaplan", 
        "givenName": "Matias", 
        "id": "sg:person.01053417366.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053417366.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Chemistry, University of California, Berkeley, California 94720, USA", 
            "Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA", 
            "Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA", 
            "Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA", 
            "Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doudna", 
        "givenName": "Jennifer A.", 
        "id": "sg:person.01147702313.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147702313.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.1501698112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001192089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004290844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004547802", 
          "https://doi.org/10.1038/nature06152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2015.08.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004984500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1247997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010970903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1208507109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011954581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40484-014-0030-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014529473", 
          "https://doi.org/10.1007/s40484-014-0030-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro3279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014837318", 
          "https://doi.org/10.1038/nrmicro3279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1261/rna.030882.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015360819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2014.09.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015567429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0109213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016908281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019168198", 
          "https://doi.org/10.1038/nature14299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.3117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021849416", 
          "https://doi.org/10.1038/nbt.3117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026387524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkq399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026387524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1402597111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027756035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029053547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2005.06.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029053547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1258096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033404992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036390967", 
          "https://doi.org/10.1038/nature13579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037342101", 
          "https://doi.org/10.1038/nature13011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2014.05.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039182708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0076-6879(92)11020-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039886159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2015.01.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040347869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.celrep.2015.01.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040347869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1225829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041850060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.aab1452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042265317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/hum.2015.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042975645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1313587110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042978468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043519930", 
          "https://doi.org/10.1038/nbt.2889"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2014.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044439504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2015.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048019629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.2808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048637524", 
          "https://doi.org/10.1038/nbt.2808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gku316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049119825"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "Cas9 is an RNA-guided DNA endonuclease that targets foreign DNA for destruction as part of a bacterial adaptive immune system mediated by clustered regularly interspaced short palindromic repeats (CRISPR). Together with single-guide RNAs, Cas9 also functions as a powerful genome engineering tool in plants and animals, and efforts are underway to increase the efficiency and specificity of DNA targeting for potential therapeutic applications. Studies of off-target effects have shown that DNA binding is far more promiscuous than DNA cleavage, yet the molecular cues that govern strand scission have not been elucidated. Here we show that the conformational state of the HNH nuclease domain directly controls DNA cleavage activity. Using intramolecular F\u00f6rster resonance energy transfer experiments to detect relative orientations of the Cas9 catalytic domains when associated with on- and off-target DNA, we find that DNA cleavage efficiencies scale with the extent to which the HNH domain samples an activated conformation. We furthermore uncover a surprising mode of allosteric communication that ensures concerted firing of both Cas9 nuclease domains. Our results highlight a proofreading mechanism beyond initial protospacer adjacent motif (PAM) recognition and RNA-DNA base-pairing that serves as a final specificity checkpoint before DNA double-strand break formation. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature15544", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2683710", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7576", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "527"
      }
    ], 
    "name": "Conformational control of DNA target cleavage by CRISPR\u2013Cas9", 
    "pagination": "110", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e16130563f175474c3b2f4d7e96e0b99eb4daa11893174188d84eb270dadd3b7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26524520"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature15544"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047311922"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature15544", 
      "https://app.dimensions.ai/details/publication/pub.1047311922"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000551.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature15544"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature15544'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature15544'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature15544'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature15544'


 

This table displays all metadata directly associated to this object as RDF triples.

267 TRIPLES      21 PREDICATES      76 URIs      37 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature15544 schema:about N0d3da3b686f14eb0beea821eb9fa4425
2 N0d7cbc18cab34fb485172f528021b977
3 N3e2b25e826114d27ae56a931facfdf51
4 N53c8cec727a54e7e94f2c3c6aab4610a
5 N6522fb1d61a84991a5cb0089cda3a09f
6 N69cd656163eb4eae8464c5f07bcbb1c3
7 N6b1354076f9746ed95732b17ac9227b0
8 N77794ba8f146426ca80c5ef5963476f7
9 N79b20b61949a4948a1e3539aaecce055
10 N897e8f3b4d1744ce85015432fa607bed
11 Nb8bbce2f632c4c5885e8d662205b35c9
12 Nb95ec37168e3463ba6645770927c51cb
13 Nd47842b79f3c403da8fdcf11ef1e5c02
14 Nd762122a831f4243b611f6188703b7e3
15 Ne4ef650c2ef5444285576f36355ef846
16 Nf21b563e8276402381c12be2fa79a8a5
17 anzsrc-for:06
18 anzsrc-for:0601
19 schema:author N84daa61fa0af4bc2b0c3a43566ad4153
20 schema:citation sg:pub.10.1007/s40484-014-0030-x
21 sg:pub.10.1038/nature06152
22 sg:pub.10.1038/nature13011
23 sg:pub.10.1038/nature13579
24 sg:pub.10.1038/nature14299
25 sg:pub.10.1038/nbt.2808
26 sg:pub.10.1038/nbt.2889
27 sg:pub.10.1038/nbt.3117
28 sg:pub.10.1038/nrmicro3279
29 https://doi.org/10.1016/0076-6879(92)11020-j
30 https://doi.org/10.1016/j.cell.2014.02.001
31 https://doi.org/10.1016/j.cell.2014.05.010
32 https://doi.org/10.1016/j.cell.2015.08.007
33 https://doi.org/10.1016/j.celrep.2015.01.067
34 https://doi.org/10.1016/j.jmb.2005.06.027
35 https://doi.org/10.1016/j.molcel.2014.03.011
36 https://doi.org/10.1016/j.molcel.2014.09.019
37 https://doi.org/10.1016/j.molcel.2015.02.032
38 https://doi.org/10.1073/pnas.1208507109
39 https://doi.org/10.1073/pnas.1313587110
40 https://doi.org/10.1073/pnas.1402597111
41 https://doi.org/10.1073/pnas.1501698112
42 https://doi.org/10.1089/hum.2015.074
43 https://doi.org/10.1093/nar/gkq399
44 https://doi.org/10.1093/nar/gku316
45 https://doi.org/10.1126/science.1225829
46 https://doi.org/10.1126/science.1247997
47 https://doi.org/10.1126/science.1258096
48 https://doi.org/10.1126/science.aab1452
49 https://doi.org/10.1261/rna.030882.111
50 https://doi.org/10.1371/journal.pone.0109213
51 schema:datePublished 2015-11
52 schema:datePublishedReg 2015-11-01
53 schema:description Cas9 is an RNA-guided DNA endonuclease that targets foreign DNA for destruction as part of a bacterial adaptive immune system mediated by clustered regularly interspaced short palindromic repeats (CRISPR). Together with single-guide RNAs, Cas9 also functions as a powerful genome engineering tool in plants and animals, and efforts are underway to increase the efficiency and specificity of DNA targeting for potential therapeutic applications. Studies of off-target effects have shown that DNA binding is far more promiscuous than DNA cleavage, yet the molecular cues that govern strand scission have not been elucidated. Here we show that the conformational state of the HNH nuclease domain directly controls DNA cleavage activity. Using intramolecular Förster resonance energy transfer experiments to detect relative orientations of the Cas9 catalytic domains when associated with on- and off-target DNA, we find that DNA cleavage efficiencies scale with the extent to which the HNH domain samples an activated conformation. We furthermore uncover a surprising mode of allosteric communication that ensures concerted firing of both Cas9 nuclease domains. Our results highlight a proofreading mechanism beyond initial protospacer adjacent motif (PAM) recognition and RNA-DNA base-pairing that serves as a final specificity checkpoint before DNA double-strand break formation.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree true
57 schema:isPartOf N211452e8f7a543ff87b17b1a3aca8c58
58 Nfa7d8925ad3249e48031e1cbba9f22e3
59 sg:journal.1018957
60 schema:name Conformational control of DNA target cleavage by CRISPR–Cas9
61 schema:pagination 110
62 schema:productId N381e9418f8514acdb6ba0b3d29c6a761
63 N51cda5e4b7724231bfedf2eea9e29cfb
64 N5247cd5d472f431d93b8106f0f5bd0b4
65 N965993cd87064ad9a91beba6fb896d28
66 Nba78ef50cf614957a87b6f053c68ae6b
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047311922
68 https://doi.org/10.1038/nature15544
69 schema:sdDatePublished 2019-04-10T21:44
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N9b8f3e3f0ffe4786bfc0a0687f49a1df
72 schema:url https://www.nature.com/articles/nature15544
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N0069e2db5be74490a57715ca2f4bf891 rdf:first sg:person.01063206573.29
77 rdf:rest N99cfc958319a4bbe987c1daa403d3a37
78 N0d3da3b686f14eb0beea821eb9fa4425 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Genetic Engineering
80 rdf:type schema:DefinedTerm
81 N0d7cbc18cab34fb485172f528021b977 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name DNA Breaks, Double-Stranded
83 rdf:type schema:DefinedTerm
84 N211452e8f7a543ff87b17b1a3aca8c58 schema:issueNumber 7576
85 rdf:type schema:PublicationIssue
86 N381e9418f8514acdb6ba0b3d29c6a761 schema:name dimensions_id
87 schema:value pub.1047311922
88 rdf:type schema:PropertyValue
89 N3e2b25e826114d27ae56a931facfdf51 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name RNA, Guide
91 rdf:type schema:DefinedTerm
92 N51cda5e4b7724231bfedf2eea9e29cfb schema:name doi
93 schema:value 10.1038/nature15544
94 rdf:type schema:PropertyValue
95 N5247cd5d472f431d93b8106f0f5bd0b4 schema:name readcube_id
96 schema:value e16130563f175474c3b2f4d7e96e0b99eb4daa11893174188d84eb270dadd3b7
97 rdf:type schema:PropertyValue
98 N53c8cec727a54e7e94f2c3c6aab4610a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name CRISPR-Associated Proteins
100 rdf:type schema:DefinedTerm
101 N6522fb1d61a84991a5cb0089cda3a09f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Bacterial Proteins
103 rdf:type schema:DefinedTerm
104 N69cd656163eb4eae8464c5f07bcbb1c3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Models, Molecular
106 rdf:type schema:DefinedTerm
107 N6b1354076f9746ed95732b17ac9227b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Base Pairing
109 rdf:type schema:DefinedTerm
110 N77794ba8f146426ca80c5ef5963476f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Allosteric Regulation
112 rdf:type schema:DefinedTerm
113 N79b20b61949a4948a1e3539aaecce055 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Streptococcus pyogenes
115 rdf:type schema:DefinedTerm
116 N84daa61fa0af4bc2b0c3a43566ad4153 rdf:first sg:person.01101567113.85
117 rdf:rest N0069e2db5be74490a57715ca2f4bf891
118 N897e8f3b4d1744ce85015432fa607bed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Endonucleases
120 rdf:type schema:DefinedTerm
121 N965993cd87064ad9a91beba6fb896d28 schema:name nlm_unique_id
122 schema:value 0410462
123 rdf:type schema:PropertyValue
124 N99cfc958319a4bbe987c1daa403d3a37 rdf:first sg:person.01053417366.42
125 rdf:rest Ndad9556c3d304487a5fa3b54add625ed
126 N9b8f3e3f0ffe4786bfc0a0687f49a1df schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Nb8bbce2f632c4c5885e8d662205b35c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name DNA Cleavage
130 rdf:type schema:DefinedTerm
131 Nb95ec37168e3463ba6645770927c51cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Binding Sites
133 rdf:type schema:DefinedTerm
134 Nba78ef50cf614957a87b6f053c68ae6b schema:name pubmed_id
135 schema:value 26524520
136 rdf:type schema:PropertyValue
137 Nd47842b79f3c403da8fdcf11ef1e5c02 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name DNA
139 rdf:type schema:DefinedTerm
140 Nd762122a831f4243b611f6188703b7e3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Catalytic Domain
142 rdf:type schema:DefinedTerm
143 Ndad9556c3d304487a5fa3b54add625ed rdf:first sg:person.01147702313.96
144 rdf:rest rdf:nil
145 Ne4ef650c2ef5444285576f36355ef846 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Fluorescence Resonance Energy Transfer
147 rdf:type schema:DefinedTerm
148 Nf21b563e8276402381c12be2fa79a8a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name CRISPR-Cas Systems
150 rdf:type schema:DefinedTerm
151 Nfa7d8925ad3249e48031e1cbba9f22e3 schema:volumeNumber 527
152 rdf:type schema:PublicationVolume
153 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
154 schema:name Biological Sciences
155 rdf:type schema:DefinedTerm
156 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
157 schema:name Biochemistry and Cell Biology
158 rdf:type schema:DefinedTerm
159 sg:grant.2683710 http://pending.schema.org/fundedItem sg:pub.10.1038/nature15544
160 rdf:type schema:MonetaryGrant
161 sg:journal.1018957 schema:issn 0090-0028
162 1476-4687
163 schema:name Nature
164 rdf:type schema:Periodical
165 sg:person.01053417366.42 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
166 schema:familyName Kaplan
167 schema:givenName Matias
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053417366.42
169 rdf:type schema:Person
170 sg:person.01063206573.29 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
171 schema:familyName LaFrance
172 schema:givenName Benjamin
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01063206573.29
174 rdf:type schema:Person
175 sg:person.01101567113.85 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
176 schema:familyName Sternberg
177 schema:givenName Samuel H.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101567113.85
179 rdf:type schema:Person
180 sg:person.01147702313.96 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
181 schema:familyName Doudna
182 schema:givenName Jennifer A.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01147702313.96
184 rdf:type schema:Person
185 sg:pub.10.1007/s40484-014-0030-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014529473
186 https://doi.org/10.1007/s40484-014-0030-x
187 rdf:type schema:CreativeWork
188 sg:pub.10.1038/nature06152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004547802
189 https://doi.org/10.1038/nature06152
190 rdf:type schema:CreativeWork
191 sg:pub.10.1038/nature13011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037342101
192 https://doi.org/10.1038/nature13011
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nature13579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036390967
195 https://doi.org/10.1038/nature13579
196 rdf:type schema:CreativeWork
197 sg:pub.10.1038/nature14299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019168198
198 https://doi.org/10.1038/nature14299
199 rdf:type schema:CreativeWork
200 sg:pub.10.1038/nbt.2808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048637524
201 https://doi.org/10.1038/nbt.2808
202 rdf:type schema:CreativeWork
203 sg:pub.10.1038/nbt.2889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043519930
204 https://doi.org/10.1038/nbt.2889
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nbt.3117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021849416
207 https://doi.org/10.1038/nbt.3117
208 rdf:type schema:CreativeWork
209 sg:pub.10.1038/nrmicro3279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014837318
210 https://doi.org/10.1038/nrmicro3279
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/0076-6879(92)11020-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1039886159
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/j.cell.2014.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004290844
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1016/j.cell.2014.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039182708
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1016/j.cell.2015.08.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004984500
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1016/j.celrep.2015.01.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040347869
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1016/j.jmb.2005.06.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029053547
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1016/j.molcel.2014.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044439504
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1016/j.molcel.2014.09.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015567429
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1016/j.molcel.2015.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048019629
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1073/pnas.1208507109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011954581
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1073/pnas.1313587110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042978468
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1073/pnas.1402597111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027756035
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1073/pnas.1501698112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001192089
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1089/hum.2015.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042975645
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1093/nar/gkq399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026387524
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1093/nar/gku316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049119825
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1126/science.1225829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041850060
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1247997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010970903
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1126/science.1258096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033404992
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.aab1452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042265317
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1261/rna.030882.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015360819
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1371/journal.pone.0109213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016908281
255 rdf:type schema:CreativeWork
256 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
257 schema:name Department of Chemistry, University of California, Berkeley, California 94720, USA
258 Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
259 Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
260 Innovative Genomics Initiative, University of California, Berkeley, California 94720, USA
261 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
262 rdf:type schema:Organization
263 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
264 schema:name Department of Chemistry, University of California, Berkeley, California 94720, USA
265 Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
266 Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
267 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...