Deep learning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-05

AUTHORS

Yann LeCun, Yoshua Bengio, Geoffrey Hinton

ABSTRACT

Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. More... »

PAGES

436

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature14539

DOI

http://dx.doi.org/10.1038/nature14539

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010020120

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/26017442


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Artificial Intelligence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Language", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neural Networks (Computer)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Facebook AI Research, 770 Broadway, New York, New York 10003 USA.", 
            "New York University, 715 Broadway, New York, New York 10003, USA."
          ], 
          "type": "Organization"
        }, 
        "familyName": "LeCun", 
        "givenName": "Yann", 
        "id": "sg:person.0765036655.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765036655.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Montreal", 
          "id": "https://www.grid.ac/institutes/grid.14848.31", 
          "name": [
            "Department of Computer Science and Operations Research Universit\u00e9 de Montr\u00e9al, Pavillon Andr\u00e9-Aisenstadt, PO Box 6128 Centre-Ville STN Montr\u00e9al, Quebec H3C 3J7, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bengio", 
        "givenName": "Yoshua", 
        "id": "sg:person.01303456133.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303456133.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Toronto", 
          "id": "https://www.grid.ac/institutes/grid.17063.33", 
          "name": [
            "Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.", 
            "Department of Computer Science, University of Toronto, 6 King's College Road, Toronto, Ontario M5S 3G4, Canada."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hinton", 
        "givenName": "Geoffrey", 
        "id": "sg:person.0615147542.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615147542.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10994-013-5335-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001526130", 
          "https://doi.org/10.1007/s10994-013-5335-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10994-013-5335-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001526130", 
          "https://doi.org/10.1007/s10994-013-5335-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2012.231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003742061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1127647", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004607132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2006.18.7.1527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004707137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci500747n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009305026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1553374.1553486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009965121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/1.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010907577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/1.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010907577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11957959_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014409254", 
          "https://doi.org/10.1007/11957959_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11957959_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014409254", 
          "https://doi.org/10.1007/11957959_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rob.20276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015049608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/323533a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018367015", 
          "https://doi.org/10.1038/323533a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019338075", 
          "https://doi.org/10.1038/nature12346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neunet.2012.02.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020596221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020903388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/368/1/012030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024695009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.csl.2006.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024950155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/1.1.1-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027684606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature14236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030517994", 
          "https://doi.org/10.1038/nature14236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.2009.10-08-881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033296596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1390156.1390294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034603392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1962.sp006837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037811822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/neco.1997.9.8.1735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038140272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btu277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039689554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(82)90024-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043194917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(82)90024-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043194917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1254806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052757843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052782426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-vis:19941301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056860333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/29.21701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061144393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/4.104196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061164716"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.726791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.279181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/72.554195", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061218851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2012.2205597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061423808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasl.2011.2109382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061516710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tasl.2011.2134090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061516742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2005.852470", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061641212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2004.97", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2013.29", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2013.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7761831", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062649171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140957081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062871894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3065386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3065386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085642448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093208464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/asru.2011.6163930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093464216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2015.7298664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093715844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2013.6639347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094334987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094727707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2013.6638947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095157363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095420134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095420134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/d14-1179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099110544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3115/v1/p15-1001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099115008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7208/chicago/9780226470993.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099492344"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-05", 
    "datePublishedReg": "2015-05-01", 
    "description": "Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature14539", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7553", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "521"
      }
    ], 
    "name": "Deep learning", 
    "pagination": "436", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2fbc9ecc14f74b962cbe7563b075c6f579134ab30382cc2e8eaea1901b00a388"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "26017442"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature14539"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010020120"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature14539", 
      "https://app.dimensions.ai/details/publication/pub.1010020120"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000429.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature14539"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature14539'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature14539'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature14539'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature14539'


 

This table displays all metadata directly associated to this object as RDF triples.

272 TRIPLES      21 PREDICATES      86 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature14539 schema:about N06d48048d72b4e538a75f68f6a17c1b9
2 N20de57cea37249d9a8963dd71fe66367
3 N450f82e5403e4e60b73a9ce288ba72c9
4 N8226bbec3e2b46b3bb805815b21d7b08
5 Nb7e598ea3b8f4fbdb066cc26e5f2fcd3
6 anzsrc-for:08
7 anzsrc-for:0801
8 schema:author N63169194848a4ceeba70bd9517bcbdc8
9 schema:citation sg:pub.10.1007/11957959_10
10 sg:pub.10.1007/s10994-013-5335-x
11 sg:pub.10.1038/323533a0
12 sg:pub.10.1038/nature12346
13 sg:pub.10.1038/nature14236
14 https://doi.org/10.1002/rob.20276
15 https://doi.org/10.1016/0031-3203(82)90024-3
16 https://doi.org/10.1016/j.csl.2006.09.003
17 https://doi.org/10.1016/j.neunet.2012.02.023
18 https://doi.org/10.1021/ci500747n
19 https://doi.org/10.1049/ip-vis:19941301
20 https://doi.org/10.1088/1742-6596/368/1/012030
21 https://doi.org/10.1093/bioinformatics/btu277
22 https://doi.org/10.1093/cercor/1.1.1
23 https://doi.org/10.1093/cercor/1.1.1-a
24 https://doi.org/10.1109/29.21701
25 https://doi.org/10.1109/4.104196
26 https://doi.org/10.1109/5.726791
27 https://doi.org/10.1109/72.279181
28 https://doi.org/10.1109/72.554195
29 https://doi.org/10.1109/asru.2011.6163930
30 https://doi.org/10.1109/cvpr.2013.465
31 https://doi.org/10.1109/cvpr.2014.220
32 https://doi.org/10.1109/cvpr.2014.81
33 https://doi.org/10.1109/cvpr.2015.7298664
34 https://doi.org/10.1109/cvpr.2015.7298935
35 https://doi.org/10.1109/icassp.2013.6638947
36 https://doi.org/10.1109/icassp.2013.6639347
37 https://doi.org/10.1109/msp.2012.2205597
38 https://doi.org/10.1109/tasl.2011.2109382
39 https://doi.org/10.1109/tasl.2011.2134090
40 https://doi.org/10.1109/tip.2005.852470
41 https://doi.org/10.1109/tpami.2004.97
42 https://doi.org/10.1109/tpami.2012.231
43 https://doi.org/10.1109/tpami.2013.29
44 https://doi.org/10.1109/tpami.2013.50
45 https://doi.org/10.1113/jphysiol.1962.sp006837
46 https://doi.org/10.1126/science.1127647
47 https://doi.org/10.1126/science.1254806
48 https://doi.org/10.1126/science.7761831
49 https://doi.org/10.1137/140957081
50 https://doi.org/10.1145/1390156.1390294
51 https://doi.org/10.1145/1553374.1553486
52 https://doi.org/10.1145/3065386
53 https://doi.org/10.1162/neco.1997.9.8.1735
54 https://doi.org/10.1162/neco.2006.18.7.1527
55 https://doi.org/10.1162/neco.2009.10-08-881
56 https://doi.org/10.1371/journal.pcbi.1003963
57 https://doi.org/10.3115/v1/d14-1067
58 https://doi.org/10.3115/v1/d14-1179
59 https://doi.org/10.3115/v1/p15-1001
60 https://doi.org/10.7208/chicago/9780226470993.001.0001
61 schema:datePublished 2015-05
62 schema:datePublishedReg 2015-05-01
63 schema:description Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.
64 schema:genre research_article
65 schema:inLanguage en
66 schema:isAccessibleForFree false
67 schema:isPartOf N01cddd9273474687a9ce423311e80205
68 N2610033929504780890d7e8fc164eca1
69 sg:journal.1018957
70 schema:name Deep learning
71 schema:pagination 436
72 schema:productId N79868580a8684a629a7b96294aadaacc
73 N8846b99ae3d54812b2705ab85bcd6d49
74 N9f97deb56534401b8f74db75eb620d16
75 Na22119336f424284a7323d2c7a2f7c3f
76 Nd89f2768a1254739aa9792ec909e802b
77 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010020120
78 https://doi.org/10.1038/nature14539
79 schema:sdDatePublished 2019-04-11T01:47
80 schema:sdLicense https://scigraph.springernature.com/explorer/license/
81 schema:sdPublisher Ne6d95569011d405c868af519df00f3d3
82 schema:url https://www.nature.com/articles/nature14539
83 sgo:license sg:explorer/license/
84 sgo:sdDataset articles
85 rdf:type schema:ScholarlyArticle
86 N01cddd9273474687a9ce423311e80205 schema:volumeNumber 521
87 rdf:type schema:PublicationVolume
88 N06d48048d72b4e538a75f68f6a17c1b9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Artificial Intelligence
90 rdf:type schema:DefinedTerm
91 N20de57cea37249d9a8963dd71fe66367 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Neural Networks (Computer)
93 rdf:type schema:DefinedTerm
94 N2610033929504780890d7e8fc164eca1 schema:issueNumber 7553
95 rdf:type schema:PublicationIssue
96 N450f82e5403e4e60b73a9ce288ba72c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Algorithms
98 rdf:type schema:DefinedTerm
99 N63169194848a4ceeba70bd9517bcbdc8 rdf:first sg:person.0765036655.42
100 rdf:rest N6e82779bffa54f4ab36a4572adbc98e3
101 N6e82779bffa54f4ab36a4572adbc98e3 rdf:first sg:person.01303456133.13
102 rdf:rest Nbcab173d9d674914b05c8c1ecf48ff0a
103 N79868580a8684a629a7b96294aadaacc schema:name readcube_id
104 schema:value 2fbc9ecc14f74b962cbe7563b075c6f579134ab30382cc2e8eaea1901b00a388
105 rdf:type schema:PropertyValue
106 N8226bbec3e2b46b3bb805815b21d7b08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Computers
108 rdf:type schema:DefinedTerm
109 N8846b99ae3d54812b2705ab85bcd6d49 schema:name doi
110 schema:value 10.1038/nature14539
111 rdf:type schema:PropertyValue
112 N9f97deb56534401b8f74db75eb620d16 schema:name dimensions_id
113 schema:value pub.1010020120
114 rdf:type schema:PropertyValue
115 Na22119336f424284a7323d2c7a2f7c3f schema:name nlm_unique_id
116 schema:value 0410462
117 rdf:type schema:PropertyValue
118 Nb7e598ea3b8f4fbdb066cc26e5f2fcd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Language
120 rdf:type schema:DefinedTerm
121 Nbcab173d9d674914b05c8c1ecf48ff0a rdf:first sg:person.0615147542.17
122 rdf:rest rdf:nil
123 Nd89f2768a1254739aa9792ec909e802b schema:name pubmed_id
124 schema:value 26017442
125 rdf:type schema:PropertyValue
126 Ne6d95569011d405c868af519df00f3d3 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
129 schema:name Information and Computing Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
132 schema:name Artificial Intelligence and Image Processing
133 rdf:type schema:DefinedTerm
134 sg:journal.1018957 schema:issn 0090-0028
135 1476-4687
136 schema:name Nature
137 rdf:type schema:Periodical
138 sg:person.01303456133.13 schema:affiliation https://www.grid.ac/institutes/grid.14848.31
139 schema:familyName Bengio
140 schema:givenName Yoshua
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303456133.13
142 rdf:type schema:Person
143 sg:person.0615147542.17 schema:affiliation https://www.grid.ac/institutes/grid.17063.33
144 schema:familyName Hinton
145 schema:givenName Geoffrey
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615147542.17
147 rdf:type schema:Person
148 sg:person.0765036655.42 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
149 schema:familyName LeCun
150 schema:givenName Yann
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765036655.42
152 rdf:type schema:Person
153 sg:pub.10.1007/11957959_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014409254
154 https://doi.org/10.1007/11957959_10
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s10994-013-5335-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001526130
157 https://doi.org/10.1007/s10994-013-5335-x
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/323533a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018367015
160 https://doi.org/10.1038/323533a0
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature12346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019338075
163 https://doi.org/10.1038/nature12346
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature14236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030517994
166 https://doi.org/10.1038/nature14236
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1002/rob.20276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015049608
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/0031-3203(82)90024-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043194917
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.csl.2006.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024950155
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.neunet.2012.02.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020596221
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/ci500747n schema:sameAs https://app.dimensions.ai/details/publication/pub.1009305026
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1049/ip-vis:19941301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056860333
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/1742-6596/368/1/012030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024695009
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1093/bioinformatics/btu277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039689554
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/cercor/1.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010907577
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/cercor/1.1.1-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027684606
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1109/29.21701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061144393
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1109/4.104196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061164716
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1109/5.726791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179979
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1109/72.279181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218416
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1109/72.554195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061218851
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1109/asru.2011.6163930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093464216
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/cvpr.2013.465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095420134
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/cvpr.2014.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052782426
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/cvpr.2014.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094727707
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/cvpr.2015.7298664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093715844
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1109/cvpr.2015.7298935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093208464
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1109/icassp.2013.6638947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095157363
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1109/icassp.2013.6639347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094334987
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1109/msp.2012.2205597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061423808
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1109/tasl.2011.2109382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061516710
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1109/tasl.2011.2134090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061516742
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1109/tip.2005.852470 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061641212
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1109/tpami.2004.97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742770
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1109/tpami.2012.231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003742061
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1109/tpami.2013.29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744564
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1109/tpami.2013.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744581
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1113/jphysiol.1962.sp006837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037811822
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1126/science.1127647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004607132
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1126/science.1254806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052757843
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1126/science.7761831 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062649171
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1137/140957081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871894
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1145/1390156.1390294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034603392
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1145/1553374.1553486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009965121
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1145/3065386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085642448
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1162/neco.1997.9.8.1735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038140272
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1162/neco.2006.18.7.1527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004707137
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1162/neco.2009.10-08-881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033296596
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1371/journal.pcbi.1003963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020903388
253 rdf:type schema:CreativeWork
254 https://doi.org/10.3115/v1/d14-1067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110511
255 rdf:type schema:CreativeWork
256 https://doi.org/10.3115/v1/d14-1179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099110544
257 rdf:type schema:CreativeWork
258 https://doi.org/10.3115/v1/p15-1001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099115008
259 rdf:type schema:CreativeWork
260 https://doi.org/10.7208/chicago/9780226470993.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099492344
261 rdf:type schema:CreativeWork
262 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
263 schema:name Facebook AI Research, 770 Broadway, New York, New York 10003 USA.
264 New York University, 715 Broadway, New York, New York 10003, USA.
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.14848.31 schema:alternateName University of Montreal
267 schema:name Department of Computer Science and Operations Research Université de Montréal, Pavillon André-Aisenstadt, PO Box 6128 Centre-Ville STN Montréal, Quebec H3C 3J7, Canada.
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.17063.33 schema:alternateName University of Toronto
270 schema:name Department of Computer Science, University of Toronto, 6 King's College Road, Toronto, Ontario M5S 3G4, Canada.
271 Google, 1600 Amphitheatre Parkway, Mountain View, California 94043, USA.
272 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...