Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-12-10

AUTHORS

Silvana Konermann, Mark D. Brigham, Alexandro E. Trevino, Julia Joung, Omar O. Abudayyeh, Clea Barcena, Patrick D. Hsu, Naomi Habib, Jonathan S. Gootenberg, Hiroshi Nishimasu, Osamu Nureki, Feng Zhang

ABSTRACT

Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology. More... »

PAGES

583-588

References to SciGraph publications

  • 2012-03-28. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity in NATURE
  • 2007-02. G-protein-coupled receptors and cancer in NATURE REVIEWS CANCER
  • 2013-08-01. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering in NATURE BIOTECHNOLOGY
  • 2009-10-21. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 in NATURE
  • 2013-08-23. Optical control of mammalian endogenous transcription and epigenetic states in NATURE
  • 2011-01-19. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription in NATURE BIOTECHNOLOGY
  • 2014-07-27. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease in NATURE
  • 2010-11-24. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation in NATURE
  • 2013-11-03. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition in NATURE
  • 2012-03-04. Fast gapped-read alignment with Bowtie 2 in NATURE METHODS
  • 2012-01-26. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR in NATURE
  • 2011-08-04. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome in BMC BIOINFORMATICS
  • 2010-12-31. G protein-coupled receptors: novel targets for drug discovery in cancer in NATURE REVIEWS DRUG DISCOVERY
  • 2013-07-25. RNA-guided gene activation by CRISPR-Cas9–based transcription factors in NATURE METHODS
  • 2014-04-20. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells in NATURE BIOTECHNOLOGY
  • 2010-01. Integrins in cancer: biological implications and therapeutic opportunities in NATURE REVIEWS CANCER
  • 2013-03-17. Barcoding cells using cell-surface programmable DNA-binding domains in NATURE METHODS
  • 2013-07-21. DNA targeting specificity of RNA-guided Cas9 nucleases in NATURE BIOTECHNOLOGY
  • 2009-09-01. Biological determinants of endocrine resistance in breast cancer in NATURE REVIEWS CANCER
  • 2010-11-24. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation in NATURE
  • 2013-07-25. CRISPR RNA–guided activation of endogenous human genes in NATURE METHODS
  • 2008-10-27. PI3K/Akt: getting it right matters in ONCOGENE
  • 2004-03. A large-scale RNAi screen in human cells identifies new components of the p53 pathway in NATURE
  • Journal

    TITLE

    Nature

    ISSUE

    7536

    VOLUME

    517

    Related Patents

  • Compositions And Methods For Enhancing Cell Transplantation Efficacy
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Artificial Transcription Factors And Uses Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Crispr-Based Genome Modification And Regulation
  • Activation Of Taste Receptor Genes In Mammalian Cells Using Crispr-Cas-9
  • Crispr Having Or Associated With Destabilization Domains
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Detecting And Modulating Microenvironment Gene Signatures From The Csf Of Metastasis Patients
  • Modified Crispr Rna And Modified Single Crispr Rna And Uses Thereof
  • Systems, Methods, And Compositions For Targeted Nucleic Acid Editing
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Optochemical Control Of Crispr-Cas9
  • Compositions And Methods For The Treatment Of Hemoglobinopathies
  • Methods Of Making And Using Guide Rna For Use With Cas9 Systems
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Novel Cas12b Enzymes And Systems
  • New Crispr Assays
  • Gene Expression Switch Based On Red Light And Far-Red Light Regulation, And Construction Method And Application Thereof
  • Targeted Modification Of Rat Genome
  • Compositions And Methods Of Improving Specificity In Genomic Engineering Using Rna-Guided Endonucleases
  • Methods And Compositions For Modifying A Targeted Locus
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Aav Delivery Of Nucleobase Editors
  • Methods And Compositions For Modulating Microenvironment
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • The Volume-Regulated Anion Channel Protein Lrrc8a For Use In Altering Epidermal Keratinocyte Differentiation
  • Compositions And Methods For Epigenome Editing
  • Activation Of Taste Receptor Genes In Mammalian Cells Using Crispr-Cas-9
  • Modified Guide Rnas, Crispr-Ribonucleotprotein Complexes And Methods Of Use
  • Crispr/Cas Global Regulator Screening Platform
  • Using Nucleosome Interacting Protein Domains To Enhance Targeted Genome Modification
  • Gene Editing Based Cancer Treatment
  • Compositions And Methods For Detecting And Treating Diabetes
  • Crispr-Based Methods And Products For Increasing Frataxin Levels And Uses Thereof
  • Lipid Composition For The Delivery Of Therapeutic Cargos
  • Methods For Producing A Mouse Xy Embryonic (Es) Cell Line Capable Of Producing A Fertile Xy Female Mouse In An F0 Generation
  • Nuclease-Independent Targeted Gene Editing Platform And Uses Thereof
  • Crispr-Cas Systems Having Destabilization Domain
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Functional Screening With Optimized Functional Crispr-Cas Systems
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Use And Production Of Chd8+/− Transgenic Animals With Behavioral Phenotypes Characteristic Of Autism Spectrum Disorder
  • Precise Gene Activation Via Novel Designed Proteins Mediating Epigenetic Remodeling
  • Methods For Treating Metabolic Disorders By Targeting Adcy5
  • Lentiviral-Based Vectors And Related Systems And Methods For Eukaryotic Gene Editing
  • Sequencing-Based Proteomics
  • Active Targeting Of Cells By Monosized Protocells
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Cell Sorting
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Compounds And Methods For Crispr/Cas-Based Genome Editing By Homologous Recombination
  • Targeted Transcriptional Regulation Using Synthetic Transcription Factors
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Modulation Of Novel Immune Checkpoint Targets
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Selection By Means Of Artificial Transactivators
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Activation Of Taste Receptor Genes In Mammalian Cells Using Crispr-Cas-9
  • Expanded Pore Particles And Delivery Methods Thereof
  • A Method Of Using Cut&Run Or Cut&Tag To Validate Crispr-Cas Targeting
  • Methods And Compositions For Multiplexing Single Cell And Single Nuclei Sequencing
  • Functional Genomics Using Crispr-Cas Systems For Saturating Mutagenesis Of Non-Coding Elements, Compositions, Methods, Libraries And Applications Thereof
  • Methods And Compositions For Modifying A Targeted Locus
  • Novel Delivery Of Large Payloads
  • Activation Of Taste Receptor Genes In Mammalian Cells Using Crispr-Cas-9
  • Assays For Massively Combinatorial Perturbation Profiling And Cellular Circuit Reconstruction
  • Methods And Compositions For Generating Or Maintaining Pluripotent Cells
  • Methods And Compositions For Targeted Genetic Modification Using Paired Guide Rnas
  • Methods For Identifying And Modulating Co-Occurant Cellular Phenotypes
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Cpf1 Based Transcription Regulation Systems In Plants
  • Protected Guide Rnas (Pgrnas)
  • Materials And Methods For Treatment Of Merosin-Deficient Cogenital Muscular Dystrophy (Mdcmd) And Other Laminin, Alpha 2 (Lama2) Gene Related Conditions Or Disorders
  • Crispr/Cas Screening Platform To Identify Genetic Modifiers Of Tau Seeding Or Aggregation
  • Strategy To Increase Anti-Viral, Anti-Microbial, And Anti-Fungal Defense
  • High Efficiency Base Editors Comprising Gam
  • High-Throughput Gene-Editing Technique
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Drug-Target Identification By Rapid Selection Of Drug Resistance Mutations
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Materials And Methods For Treatment Of Transthyretin Amyloidosis
  • Genome Editing Using Reverse Transcriptase Enabled And Fully Active Crispr Complexes
  • Analysis Of Crispr-Cas Binding And Cleavage Sites Followed By High-Throughput Sequencing (Abc-Seq)
  • Methods For Identifying And Modulating Co-Occurant Cellular Phenotypes
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Nucleobase Editors Comprising Nucleic Acid Programmable Dna Binding Proteins
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Crispr Effector System Based Diagnostics
  • Methods For Identifying And Modulating Co-Occurant Cellular Phenotypes
  • Crispr Enzymes And Systems
  • Crispr Enzymes And Systems
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods For Identifying And Modulating Immune Phenotypes
  • Crispr-Based Genome Modification And Regulation
  • Methods For Identifying And Modulating Co-Occurant Cellular Phenotypes
  • Crispr Enzymes And Systems
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Novel Crispr Enzymes And Systems
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Method Of Identifying And Treating A Person Having A Predisposition To Or Afflicted With A Cardiometabolic Disease
  • Methods And Compositions For The Targeted Modification Of A Mouse Embryonic Stem Cell Genome
  • Compositions And Methods For The Treatment Of Hemoglobinopathies
  • Methods And Compositions For Targeted Genetic Modification Through Single-Step Multiple Targeting
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods For Identifying And Treating Hemoglobinopathies
  • Protected Guide Rnas (Pgrnas)
  • Method For Treating Muscular Dystrophy By Targeting Lama1 Gene
  • Crispr/Cas Dropout Screening Platform To Reveal Genetic Vulnerabilities Associated With Tau Aggregation
  • Novel Crispr Enzymes And Systems
  • Transcription Modulation In Animals Using Crispr/Cas Systems
  • Novel Type Vi Crispr Enzymes And Systems
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Prime Editing Nucleotide Sequences
  • Crispr/Cas9-Mediated Means And Methods For Cell Reprogramming
  • Combination Therapies Using Cdk2 And Cdc25a Inhibitors
  • Random Crispr-Cas Deletion Mutant
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Targeted Genetic Modifications And Methods Of Use
  • Crispr Enzymes And Systems
  • Compositions And Methods For Epigenome Editing
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Variant Cas9
  • Degradation Domain Modifications For Spatio-Temporal Control Of Rna-Guided Nucleases
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Multimodal Readouts For Quantifying And Sequencing Nucleic Acids In Single Cells
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Base Editors With Improved Precision And Specificity
  • Escorted And Functionalized Guides For Crispr-Cas Systems
  • Type Vi Crispr Orthologs And Systems
  • Synthetic Rnas And Methods Of Use
  • Switchable Cas9 Nucleases And Uses Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods For Measuring And Improving Crispr Reagent Function
  • Treatment Of Chronic Pain
  • Cell Sorting
  • Methods For Identification And Modification Of Lncrna Associated With Target Genotypes And Phenotypes
  • Novel Cas13b Orthologues Crispr Enzymes And Systems
  • Modulation Of Novel Immune Checkpoint Targets
  • Crispr/Cas Fusion Proteins And Systems
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Method For Generating A Gene Editing Vector With Fixed Guide Rna Pairs
  • Delivery, Engineering And Optimization Of Systems, Methods And Compositions For Sequence Manipulation And Therapeutic Applications
  • Crispr Enzymes And Systems
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Respiratory And Sweat Gland Ionocytes
  • Compositions For Detecting Secretion And Methods Of Use
  • Methods For Screening And Using Crispr/Cas9 Guidance Rna Sequence From Hiv Provirus Genome
  • Gene Editing Based Cancer Treatment
  • High-Throughput Screening Of Regulatory Element Function With Epigenome Editing Technologies
  • Crispr-Associated Transposase Systems And Methods Of Use Thereof
  • Targeted Modification Of Rat Genome
  • Endogenous Gag-Based Capsids And Uses Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Crispr-Associated Transposase Systems And Methods Of Use Thereof
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Genome Engineering With Type I Crispr Systems In Eukaryotic Cells
  • High-Throughput Screening Of Regulatory Element Function With Epigenome Editing Technologies
  • Crispr Having Or Associated With Destabilization Domains
  • Novel Type Vi Crispr Orthologs And Systems
  • Therapeutics For The Treatment Of Fshd
  • Activation Of Taste Receptor Genes In Mammalian Cells Using Crispr-Cas-9
  • Nuclease-Mediated Genome Editing
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Novel Nucleic Acid Modifier
  • Method For Generating A Gene Editing Vector With Fixed Guide Rna Pairs
  • Directed Editing Of Cellular Rna Via Nuclear Delivery Of Crispr/Cas9
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Using Programmable Dna Binding Proteins To Enhance Targeted Genome Modification
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Inhibitors Of Rna-Guided Nuclease Target Binding And Uses Thereof
  • Methods And Compositions Or Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Controlling Cardiac Fibrosis And Remodeling
  • Methods And Compositions For Targeting Rna Polymerases And Non-Coding Rna Biogenesis To Specific Loci
  • Methods For Screening For Cancer Targets
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Methods For Identifying Neoantigens
  • Delivery, Use And Therapeutic Applications Of The Crispr-Cas Systems And Compositions For Modeling Mutations In Leukocytes
  • Non-Class I Multi-Component Nucleic Acid Targeting Systems
  • Methods And Compositions For The Targeted Modification Of A Mouse Es Cell Genome
  • Methods And Compositions For Rna-Directed Target Dna Modification And For Rna-Directed Modulation Of Transcription
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature14136

    DOI

    http://dx.doi.org/10.1038/nature14136

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1048954459

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25494202


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Associated Proteins", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "CRISPR-Cas Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Line, Tumor", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Clustered Regularly Interspaced Short Palindromic Repeats", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA, Complementary", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Drug Resistance, Neoplasm", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Expression Regulation, Neoplastic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Gene Library", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Loci", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genetic Testing", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Indoles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Melanoma", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Proto-Oncogene Proteins B-raf", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "RNA, Untranslated", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sulfonamides", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcriptional Activation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Up-Regulation", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA", 
                "McGovern Institute for Brain Research, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Konermann", 
            "givenName": "Silvana", 
            "id": "sg:person.0710737745.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710737745.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA", 
                "McGovern Institute for Brain Research, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brigham", 
            "givenName": "Mark D.", 
            "id": "sg:person.01310452777.04", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310452777.04"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA", 
                "McGovern Institute for Brain Research, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trevino", 
            "givenName": "Alexandro E.", 
            "id": "sg:person.0703437462.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703437462.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA", 
                "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Joung", 
            "givenName": "Julia", 
            "id": "sg:person.01306536534.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306536534.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA", 
                "McGovern Institute for Brain Research, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Abudayyeh", 
            "givenName": "Omar O.", 
            "id": "sg:person.01354651734.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354651734.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA", 
                "McGovern Institute for Brain Research, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barcena", 
            "givenName": "Clea", 
            "id": "sg:person.01006452354.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006452354.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA", 
                "McGovern Institute for Brain Research, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsu", 
            "givenName": "Patrick D.", 
            "id": "sg:person.01070077535.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070077535.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.66859.34", 
              "name": [
                "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Habib", 
            "givenName": "Naomi", 
            "id": "sg:person.01250324566.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250324566.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Systems Biology, Harvard Medical School, 02115, Boston, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA", 
                "McGovern Institute for Brain Research, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Systems Biology, Harvard Medical School, 02115, Boston, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gootenberg", 
            "givenName": "Jonathan S.", 
            "id": "sg:person.0642624545.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642624545.14"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "JST, PRESTO 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan", 
              "id": "http://www.grid.ac/institutes/grid.419082.6", 
              "name": [
                "Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan", 
                "JST, PRESTO 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nishimasu", 
            "givenName": "Hiroshi", 
            "id": "sg:person.0617555127.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617555127.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nureki", 
            "givenName": "Osamu", 
            "id": "sg:person.01043223704.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043223704.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA", 
                "McGovern Institute for Brain Research, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
                "Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Feng", 
            "id": "sg:person.0703626237.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703626237.20"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nrc2748", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013028814", 
              "https://doi.org/10.1038/nrc2748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005907434", 
              "https://doi.org/10.1038/nature09627"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12688", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036241928", 
              "https://doi.org/10.1038/nature12688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-12-323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021902674", 
              "https://doi.org/10.1186/1471-2105-12-323"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041659759", 
              "https://doi.org/10.1038/nbt.2675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036060000", 
              "https://doi.org/10.1038/nature11003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature13579", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036390967", 
              "https://doi.org/10.1038/nature13579"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038374700", 
              "https://doi.org/10.1038/nature10868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature02371", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053454880", 
              "https://doi.org/10.1038/nature02371"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrd3320", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024318577", 
              "https://doi.org/10.1038/nrd3320"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08460", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002209653", 
              "https://doi.org/10.1038/nature08460"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2598", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049500416", 
              "https://doi.org/10.1038/nmeth.2598"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/onc.2008.313", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012598337", 
              "https://doi.org/10.1038/onc.2008.313"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2407", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006067695", 
              "https://doi.org/10.1038/nmeth.2407"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2647", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012543463", 
              "https://doi.org/10.1038/nbt.2647"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.2889", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043519930", 
              "https://doi.org/10.1038/nbt.2889"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.1923", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006541515", 
              "https://doi.org/10.1038/nmeth.1923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc2069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033550821", 
              "https://doi.org/10.1038/nrc2069"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1775", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031104364", 
              "https://doi.org/10.1038/nbt.1775"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth.2600", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024354143", 
              "https://doi.org/10.1038/nmeth.2600"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035733152", 
              "https://doi.org/10.1038/nature09626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrc2713", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018166274", 
              "https://doi.org/10.1038/nrc2713"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038099474", 
              "https://doi.org/10.1038/nature12466"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-12-10", 
        "datePublishedReg": "2014-12-10", 
        "description": "Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature14136", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2562322", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2355012", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6142984", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2562937", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7536", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "517"
          }
        ], 
        "keywords": [
          "transcriptional activation", 
          "intergenic non-coding RNA transcripts", 
          "non-coding RNA transcripts", 
          "endogenous genomic loci", 
          "effective transcriptional activation", 
          "efficient transcriptional activation", 
          "structure-guided engineering", 
          "multiplexed activation", 
          "genomic loci", 
          "gene function", 
          "gene expression signatures", 
          "BRAF inhibitor resistance", 
          "human RefSeq", 
          "activation complex", 
          "RNA transcripts", 
          "gene expression", 
          "systematic interrogation", 
          "confer resistance", 
          "top hits", 
          "patient-derived samples", 
          "expression signatures", 
          "genes", 
          "novel candidates", 
          "cell lines", 
          "CRISPR", 
          "inhibitor resistance", 
          "activation", 
          "perturbation technology", 
          "complexes", 
          "RefSeq", 
          "Cas9", 
          "sgRNA", 
          "loci", 
          "transcripts", 
          "BRAF inhibitors", 
          "isoforms", 
          "overexpression", 
          "hits", 
          "activator", 
          "expression", 
          "resistance", 
          "inhibitors", 
          "generalizable manner", 
          "markers", 
          "library", 
          "lines", 
          "signatures", 
          "manner", 
          "function", 
          "interrogation", 
          "ability", 
          "potential", 
          "engineering", 
          "candidates", 
          "results", 
          "samples", 
          "technology", 
          "guide", 
          "rules"
        ], 
        "name": "Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex", 
        "pagination": "583-588", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1048954459"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature14136"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25494202"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature14136", 
          "https://app.dimensions.ai/details/publication/pub.1048954459"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_640.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature14136"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature14136'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature14136'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature14136'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature14136'


     

    This table displays all metadata directly associated to this object as RDF triples.

    401 TRIPLES      21 PREDICATES      128 URIs      97 LITERALS      28 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature14136 schema:about N11272914eef7495aa6713b75053335f4
    2 N32b54c8772bd4a19a6a7361a5311c80c
    3 N3f596c4fd2204f15ac13ae539936c46a
    4 N5339b5a1844e4b33a59105e9ac50562f
    5 N55a1bdb1a26d43298ed9cbd69b8ccd1c
    6 N57d8de9d33e14d8d9ec762a1c2b3fe0f
    7 N74df53c9ad5940d2a503f17ce1c74a30
    8 N77c0dba9eff04c7e93426a6c802f7e57
    9 N7d6b58ec81ca418aa352a02ceeb8cdad
    10 N7d6f86b728e34eb59955c7e6686ba160
    11 N904821e9a6344925a404a670b33d74ea
    12 N97e91d8b0ce0489195c7d0fea18e18a8
    13 Na56872edfdf248d984a87ce6d33e271f
    14 Na86de44abeba403e8604a79a1028df40
    15 Nb9822249f55148b1b050e10492e1b388
    16 Nbbcbdd2b0b2c415ebfc5e53feb779643
    17 Nd42e766398234c8f9b60c52a52217ab1
    18 Ndc588afe45b24a9e9043b5725144c261
    19 Ne51e0a917a6c411a80a395916dcee492
    20 Nec66494ea6844eb79601cf7317392f37
    21 Nef1f431707fb4a409dbe76c9feb20bef
    22 anzsrc-for:06
    23 anzsrc-for:0604
    24 schema:author Nd0dff14e877a4f4f84563ace44435c8d
    25 schema:citation sg:pub.10.1038/nature02371
    26 sg:pub.10.1038/nature08460
    27 sg:pub.10.1038/nature09626
    28 sg:pub.10.1038/nature09627
    29 sg:pub.10.1038/nature10868
    30 sg:pub.10.1038/nature11003
    31 sg:pub.10.1038/nature12466
    32 sg:pub.10.1038/nature12688
    33 sg:pub.10.1038/nature13579
    34 sg:pub.10.1038/nbt.1775
    35 sg:pub.10.1038/nbt.2647
    36 sg:pub.10.1038/nbt.2675
    37 sg:pub.10.1038/nbt.2889
    38 sg:pub.10.1038/nmeth.1923
    39 sg:pub.10.1038/nmeth.2407
    40 sg:pub.10.1038/nmeth.2598
    41 sg:pub.10.1038/nmeth.2600
    42 sg:pub.10.1038/nrc2069
    43 sg:pub.10.1038/nrc2713
    44 sg:pub.10.1038/nrc2748
    45 sg:pub.10.1038/nrd3320
    46 sg:pub.10.1038/onc.2008.313
    47 sg:pub.10.1186/1471-2105-12-323
    48 schema:datePublished 2014-12-10
    49 schema:datePublishedReg 2014-12-10
    50 schema:description Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.
    51 schema:genre article
    52 schema:isAccessibleForFree true
    53 schema:isPartOf N61d87d4675194ea9b4897a1d5e1415c3
    54 Nce8ffb735c264b4f9bbda036700dcdc9
    55 sg:journal.1018957
    56 schema:keywords BRAF inhibitor resistance
    57 BRAF inhibitors
    58 CRISPR
    59 Cas9
    60 RNA transcripts
    61 RefSeq
    62 ability
    63 activation
    64 activation complex
    65 activator
    66 candidates
    67 cell lines
    68 complexes
    69 confer resistance
    70 effective transcriptional activation
    71 efficient transcriptional activation
    72 endogenous genomic loci
    73 engineering
    74 expression
    75 expression signatures
    76 function
    77 gene expression
    78 gene expression signatures
    79 gene function
    80 generalizable manner
    81 genes
    82 genomic loci
    83 guide
    84 hits
    85 human RefSeq
    86 inhibitor resistance
    87 inhibitors
    88 intergenic non-coding RNA transcripts
    89 interrogation
    90 isoforms
    91 library
    92 lines
    93 loci
    94 manner
    95 markers
    96 multiplexed activation
    97 non-coding RNA transcripts
    98 novel candidates
    99 overexpression
    100 patient-derived samples
    101 perturbation technology
    102 potential
    103 resistance
    104 results
    105 rules
    106 samples
    107 sgRNA
    108 signatures
    109 structure-guided engineering
    110 systematic interrogation
    111 technology
    112 top hits
    113 transcriptional activation
    114 transcripts
    115 schema:name Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex
    116 schema:pagination 583-588
    117 schema:productId N2a9a8069b85e4c30bbc3681f7eb06b8d
    118 Nb21bb2e3505a4aba8fdbfb256b678876
    119 Nf3cc180af0e2411f8705bd4f29f27d1f
    120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048954459
    121 https://doi.org/10.1038/nature14136
    122 schema:sdDatePublished 2022-11-24T20:58
    123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    124 schema:sdPublisher Neaba76226e4c4bcda8689c1a564eb9af
    125 schema:url https://doi.org/10.1038/nature14136
    126 sgo:license sg:explorer/license/
    127 sgo:sdDataset articles
    128 rdf:type schema:ScholarlyArticle
    129 N055345bb62b448698fded82ca1cd8e29 rdf:first sg:person.0617555127.19
    130 rdf:rest N2711d41ed9cf448b9f9f2a7929e12fa4
    131 N11272914eef7495aa6713b75053335f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    132 schema:name Humans
    133 rdf:type schema:DefinedTerm
    134 N2711d41ed9cf448b9f9f2a7929e12fa4 rdf:first sg:person.01043223704.15
    135 rdf:rest Nab10cb45e462406c8e9ce2f0dfb77e55
    136 N2a9a8069b85e4c30bbc3681f7eb06b8d schema:name doi
    137 schema:value 10.1038/nature14136
    138 rdf:type schema:PropertyValue
    139 N32b54c8772bd4a19a6a7361a5311c80c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Transcriptional Activation
    141 rdf:type schema:DefinedTerm
    142 N3f596c4fd2204f15ac13ae539936c46a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Gene Library
    144 rdf:type schema:DefinedTerm
    145 N455711763c304f94a403a1601c5a2468 rdf:first sg:person.01250324566.26
    146 rdf:rest Ndfe55df529e94fb9973aa58e452995bb
    147 N5339b5a1844e4b33a59105e9ac50562f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Sulfonamides
    149 rdf:type schema:DefinedTerm
    150 N55a1bdb1a26d43298ed9cbd69b8ccd1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name RNA, Untranslated
    152 rdf:type schema:DefinedTerm
    153 N57d8de9d33e14d8d9ec762a1c2b3fe0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name CRISPR-Cas Systems
    155 rdf:type schema:DefinedTerm
    156 N61d87d4675194ea9b4897a1d5e1415c3 schema:issueNumber 7536
    157 rdf:type schema:PublicationIssue
    158 N74df53c9ad5940d2a503f17ce1c74a30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    159 schema:name Indoles
    160 rdf:type schema:DefinedTerm
    161 N77c0dba9eff04c7e93426a6c802f7e57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    162 schema:name Gene Expression Regulation, Neoplastic
    163 rdf:type schema:DefinedTerm
    164 N77c62c68ace84ed2b74b85c06b112abd rdf:first sg:person.01354651734.74
    165 rdf:rest Ndfb902a3d4ad41b2900d43e7a81a3908
    166 N7d6b58ec81ca418aa352a02ceeb8cdad schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name DNA, Complementary
    168 rdf:type schema:DefinedTerm
    169 N7d6f86b728e34eb59955c7e6686ba160 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Genetic Loci
    171 rdf:type schema:DefinedTerm
    172 N904821e9a6344925a404a670b33d74ea schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Genome, Human
    174 rdf:type schema:DefinedTerm
    175 N97e91d8b0ce0489195c7d0fea18e18a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Reproducibility of Results
    177 rdf:type schema:DefinedTerm
    178 Na56872edfdf248d984a87ce6d33e271f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Up-Regulation
    180 rdf:type schema:DefinedTerm
    181 Na86de44abeba403e8604a79a1028df40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Clustered Regularly Interspaced Short Palindromic Repeats
    183 rdf:type schema:DefinedTerm
    184 Nab10cb45e462406c8e9ce2f0dfb77e55 rdf:first sg:person.0703626237.20
    185 rdf:rest rdf:nil
    186 Nb04bb42ffebc4066813fa6d3a5d1ccbd rdf:first sg:person.01306536534.39
    187 rdf:rest N77c62c68ace84ed2b74b85c06b112abd
    188 Nb21bb2e3505a4aba8fdbfb256b678876 schema:name pubmed_id
    189 schema:value 25494202
    190 rdf:type schema:PropertyValue
    191 Nb9822249f55148b1b050e10492e1b388 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Drug Resistance, Neoplasm
    193 rdf:type schema:DefinedTerm
    194 Nbbcbdd2b0b2c415ebfc5e53feb779643 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name CRISPR-Associated Proteins
    196 rdf:type schema:DefinedTerm
    197 Nce8ffb735c264b4f9bbda036700dcdc9 schema:volumeNumber 517
    198 rdf:type schema:PublicationVolume
    199 Nd0dff14e877a4f4f84563ace44435c8d rdf:first sg:person.0710737745.63
    200 rdf:rest Nfeebfea1a0b047dea0b285b70a2c9e10
    201 Nd42e766398234c8f9b60c52a52217ab1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Genetic Engineering
    203 rdf:type schema:DefinedTerm
    204 Ndc588afe45b24a9e9043b5725144c261 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Genetic Testing
    206 rdf:type schema:DefinedTerm
    207 Ndfb902a3d4ad41b2900d43e7a81a3908 rdf:first sg:person.01006452354.51
    208 rdf:rest Nf6764bf59b70460a91ab4ae93c85bb63
    209 Ndfe55df529e94fb9973aa58e452995bb rdf:first sg:person.0642624545.14
    210 rdf:rest N055345bb62b448698fded82ca1cd8e29
    211 Ne51e0a917a6c411a80a395916dcee492 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    212 schema:name Cell Line, Tumor
    213 rdf:type schema:DefinedTerm
    214 Neaba76226e4c4bcda8689c1a564eb9af schema:name Springer Nature - SN SciGraph project
    215 rdf:type schema:Organization
    216 Nec66494ea6844eb79601cf7317392f37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    217 schema:name Melanoma
    218 rdf:type schema:DefinedTerm
    219 Nef1f431707fb4a409dbe76c9feb20bef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    220 schema:name Proto-Oncogene Proteins B-raf
    221 rdf:type schema:DefinedTerm
    222 Nf2b86b4d5aaf4904bc3dd8357ddffc8d rdf:first sg:person.0703437462.91
    223 rdf:rest Nb04bb42ffebc4066813fa6d3a5d1ccbd
    224 Nf3cc180af0e2411f8705bd4f29f27d1f schema:name dimensions_id
    225 schema:value pub.1048954459
    226 rdf:type schema:PropertyValue
    227 Nf6764bf59b70460a91ab4ae93c85bb63 rdf:first sg:person.01070077535.05
    228 rdf:rest N455711763c304f94a403a1601c5a2468
    229 Nfeebfea1a0b047dea0b285b70a2c9e10 rdf:first sg:person.01310452777.04
    230 rdf:rest Nf2b86b4d5aaf4904bc3dd8357ddffc8d
    231 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    232 schema:name Biological Sciences
    233 rdf:type schema:DefinedTerm
    234 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    235 schema:name Genetics
    236 rdf:type schema:DefinedTerm
    237 sg:grant.2355012 http://pending.schema.org/fundedItem sg:pub.10.1038/nature14136
    238 rdf:type schema:MonetaryGrant
    239 sg:grant.2562322 http://pending.schema.org/fundedItem sg:pub.10.1038/nature14136
    240 rdf:type schema:MonetaryGrant
    241 sg:grant.2562937 http://pending.schema.org/fundedItem sg:pub.10.1038/nature14136
    242 rdf:type schema:MonetaryGrant
    243 sg:grant.6142984 http://pending.schema.org/fundedItem sg:pub.10.1038/nature14136
    244 rdf:type schema:MonetaryGrant
    245 sg:journal.1018957 schema:issn 0028-0836
    246 1476-4687
    247 schema:name Nature
    248 schema:publisher Springer Nature
    249 rdf:type schema:Periodical
    250 sg:person.01006452354.51 schema:affiliation grid-institutes:grid.116068.8
    251 schema:familyName Barcena
    252 schema:givenName Clea
    253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006452354.51
    254 rdf:type schema:Person
    255 sg:person.01043223704.15 schema:affiliation grid-institutes:grid.26999.3d
    256 schema:familyName Nureki
    257 schema:givenName Osamu
    258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043223704.15
    259 rdf:type schema:Person
    260 sg:person.01070077535.05 schema:affiliation grid-institutes:grid.116068.8
    261 schema:familyName Hsu
    262 schema:givenName Patrick D.
    263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070077535.05
    264 rdf:type schema:Person
    265 sg:person.01250324566.26 schema:affiliation grid-institutes:grid.66859.34
    266 schema:familyName Habib
    267 schema:givenName Naomi
    268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250324566.26
    269 rdf:type schema:Person
    270 sg:person.01306536534.39 schema:affiliation grid-institutes:grid.116068.8
    271 schema:familyName Joung
    272 schema:givenName Julia
    273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306536534.39
    274 rdf:type schema:Person
    275 sg:person.01310452777.04 schema:affiliation grid-institutes:grid.116068.8
    276 schema:familyName Brigham
    277 schema:givenName Mark D.
    278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01310452777.04
    279 rdf:type schema:Person
    280 sg:person.01354651734.74 schema:affiliation grid-institutes:grid.116068.8
    281 schema:familyName Abudayyeh
    282 schema:givenName Omar O.
    283 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354651734.74
    284 rdf:type schema:Person
    285 sg:person.0617555127.19 schema:affiliation grid-institutes:grid.419082.6
    286 schema:familyName Nishimasu
    287 schema:givenName Hiroshi
    288 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617555127.19
    289 rdf:type schema:Person
    290 sg:person.0642624545.14 schema:affiliation grid-institutes:grid.38142.3c
    291 schema:familyName Gootenberg
    292 schema:givenName Jonathan S.
    293 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642624545.14
    294 rdf:type schema:Person
    295 sg:person.0703437462.91 schema:affiliation grid-institutes:grid.116068.8
    296 schema:familyName Trevino
    297 schema:givenName Alexandro E.
    298 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703437462.91
    299 rdf:type schema:Person
    300 sg:person.0703626237.20 schema:affiliation grid-institutes:grid.116068.8
    301 schema:familyName Zhang
    302 schema:givenName Feng
    303 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703626237.20
    304 rdf:type schema:Person
    305 sg:person.0710737745.63 schema:affiliation grid-institutes:grid.116068.8
    306 schema:familyName Konermann
    307 schema:givenName Silvana
    308 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710737745.63
    309 rdf:type schema:Person
    310 sg:pub.10.1038/nature02371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053454880
    311 https://doi.org/10.1038/nature02371
    312 rdf:type schema:CreativeWork
    313 sg:pub.10.1038/nature08460 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002209653
    314 https://doi.org/10.1038/nature08460
    315 rdf:type schema:CreativeWork
    316 sg:pub.10.1038/nature09626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035733152
    317 https://doi.org/10.1038/nature09626
    318 rdf:type schema:CreativeWork
    319 sg:pub.10.1038/nature09627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005907434
    320 https://doi.org/10.1038/nature09627
    321 rdf:type schema:CreativeWork
    322 sg:pub.10.1038/nature10868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038374700
    323 https://doi.org/10.1038/nature10868
    324 rdf:type schema:CreativeWork
    325 sg:pub.10.1038/nature11003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036060000
    326 https://doi.org/10.1038/nature11003
    327 rdf:type schema:CreativeWork
    328 sg:pub.10.1038/nature12466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038099474
    329 https://doi.org/10.1038/nature12466
    330 rdf:type schema:CreativeWork
    331 sg:pub.10.1038/nature12688 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036241928
    332 https://doi.org/10.1038/nature12688
    333 rdf:type schema:CreativeWork
    334 sg:pub.10.1038/nature13579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036390967
    335 https://doi.org/10.1038/nature13579
    336 rdf:type schema:CreativeWork
    337 sg:pub.10.1038/nbt.1775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031104364
    338 https://doi.org/10.1038/nbt.1775
    339 rdf:type schema:CreativeWork
    340 sg:pub.10.1038/nbt.2647 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012543463
    341 https://doi.org/10.1038/nbt.2647
    342 rdf:type schema:CreativeWork
    343 sg:pub.10.1038/nbt.2675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041659759
    344 https://doi.org/10.1038/nbt.2675
    345 rdf:type schema:CreativeWork
    346 sg:pub.10.1038/nbt.2889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043519930
    347 https://doi.org/10.1038/nbt.2889
    348 rdf:type schema:CreativeWork
    349 sg:pub.10.1038/nmeth.1923 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541515
    350 https://doi.org/10.1038/nmeth.1923
    351 rdf:type schema:CreativeWork
    352 sg:pub.10.1038/nmeth.2407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006067695
    353 https://doi.org/10.1038/nmeth.2407
    354 rdf:type schema:CreativeWork
    355 sg:pub.10.1038/nmeth.2598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049500416
    356 https://doi.org/10.1038/nmeth.2598
    357 rdf:type schema:CreativeWork
    358 sg:pub.10.1038/nmeth.2600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024354143
    359 https://doi.org/10.1038/nmeth.2600
    360 rdf:type schema:CreativeWork
    361 sg:pub.10.1038/nrc2069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033550821
    362 https://doi.org/10.1038/nrc2069
    363 rdf:type schema:CreativeWork
    364 sg:pub.10.1038/nrc2713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018166274
    365 https://doi.org/10.1038/nrc2713
    366 rdf:type schema:CreativeWork
    367 sg:pub.10.1038/nrc2748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013028814
    368 https://doi.org/10.1038/nrc2748
    369 rdf:type schema:CreativeWork
    370 sg:pub.10.1038/nrd3320 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024318577
    371 https://doi.org/10.1038/nrd3320
    372 rdf:type schema:CreativeWork
    373 sg:pub.10.1038/onc.2008.313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012598337
    374 https://doi.org/10.1038/onc.2008.313
    375 rdf:type schema:CreativeWork
    376 sg:pub.10.1186/1471-2105-12-323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021902674
    377 https://doi.org/10.1186/1471-2105-12-323
    378 rdf:type schema:CreativeWork
    379 grid-institutes:grid.116068.8 schema:alternateName Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
    380 schema:name Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA
    381 Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
    382 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
    383 McGovern Institute for Brain Research, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
    384 rdf:type schema:Organization
    385 grid-institutes:grid.26999.3d schema:alternateName Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan
    386 schema:name Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan
    387 rdf:type schema:Organization
    388 grid-institutes:grid.38142.3c schema:alternateName Department of Systems Biology, Harvard Medical School, 02115, Boston, Massachusetts, USA
    389 schema:name Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA
    390 Department of Biological Engineering, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
    391 Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
    392 Department of Systems Biology, Harvard Medical School, 02115, Boston, Massachusetts, USA
    393 McGovern Institute for Brain Research, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
    394 rdf:type schema:Organization
    395 grid-institutes:grid.419082.6 schema:alternateName JST, PRESTO 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan
    396 schema:name Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan
    397 JST, PRESTO 2-11-16 Yayoi Bunkyo, Tokyo 113-0032, Japan
    398 rdf:type schema:Organization
    399 grid-institutes:grid.66859.34 schema:alternateName Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA
    400 schema:name Broad Institute of MIT and Harvard, 75 Ames Street, 02142, Cambridge, Massachusetts, USA
    401 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...