Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-11-26

AUTHORS

Michael Ghidiu, Maria R. Lukatskaya, Meng-Qiang Zhao, Yury Gogotsi, Michel W. Barsoum

ABSTRACT

Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid. More... »

PAGES

78

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature13970

DOI

http://dx.doi.org/10.1038/nature13970

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021223236

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25470044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghidiu", 
        "givenName": "Michael", 
        "id": "sg:person.013400277615.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400277615.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lukatskaya", 
        "givenName": "Maria R.", 
        "id": "sg:person.01007264261.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007264261.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Meng-Qiang", 
        "id": "sg:person.0701233211.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701233211.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gogotsi", 
        "givenName": "Yury", 
        "id": "sg:person.0712214226.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712214226.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barsoum", 
        "givenName": "Michel W.", 
        "id": "sg:person.01175654403.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175654403.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/ja500506k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001751874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201470041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005939335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201304138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007174781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1239089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008550617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010365371", 
          "https://doi.org/10.1038/nmat3601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1253793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010510485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201400815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010582235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010990533", 
          "https://doi.org/10.1038/ncomms2664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1241488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011967252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2013.07.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016623717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp074464w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016800028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp074464w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016800028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2013.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017556952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8019938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018066446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8019938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018066446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-1317(89)90005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019643249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-1317(89)90005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019643249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2050077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024737451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027492146", 
          "https://doi.org/10.1038/srep02975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm500641a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027582854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp026228l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp026228l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nr02080d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034504584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja308463r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035040448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201102306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040502530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040777413", 
          "https://doi.org/10.1007/978-1-4757-3058-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040777413", 
          "https://doi.org/10.1007/978-1-4757-3058-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1226419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041741023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2013.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045856112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1249625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047586251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047825494", 
          "https://doi.org/10.1038/nmat2297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201301243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049450692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2013.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053479588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0264883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056051111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0264883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056051111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1213003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465595"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11-26", 
    "datePublishedReg": "2014-11-26", 
    "description": "Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature13970", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3005134", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7529", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "516"
      }
    ], 
    "name": "Conductive two-dimensional titanium carbide \u2018clay\u2019 with high volumetric capacitance", 
    "pagination": "78", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "651e3ff6e2504f5ba2c77e3af97af6f94dfb95a041ac759a83a4ab9605abc8a5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25470044"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature13970"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021223236"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature13970", 
      "https://app.dimensions.ai/details/publication/pub.1021223236"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature13970"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature13970'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature13970'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature13970'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature13970'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      58 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature13970 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Neb75a02030eb4db88514fdd28ab21a1d
4 schema:citation sg:pub.10.1007/978-1-4757-3058-6
5 sg:pub.10.1038/ncomms2664
6 sg:pub.10.1038/nmat2297
7 sg:pub.10.1038/nmat3601
8 sg:pub.10.1038/srep02975
9 https://doi.org/10.1002/adma.201102306
10 https://doi.org/10.1002/adma.201301243
11 https://doi.org/10.1002/adma.201304138
12 https://doi.org/10.1002/adma.201470041
13 https://doi.org/10.1002/aenm.201400815
14 https://doi.org/10.1016/0169-1317(89)90005-7
15 https://doi.org/10.1016/j.jssc.2013.09.010
16 https://doi.org/10.1016/j.matchemphys.2013.01.008
17 https://doi.org/10.1016/j.matlet.2013.07.102
18 https://doi.org/10.1016/j.nanoen.2013.01.007
19 https://doi.org/10.1021/cm500641a
20 https://doi.org/10.1021/ja308463r
21 https://doi.org/10.1021/ja500506k
22 https://doi.org/10.1021/jp026228l
23 https://doi.org/10.1021/jp0264883
24 https://doi.org/10.1021/jp074464w
25 https://doi.org/10.1021/nl8019938
26 https://doi.org/10.1039/c4nr02080d
27 https://doi.org/10.1126/science.1213003
28 https://doi.org/10.1126/science.1226419
29 https://doi.org/10.1126/science.1239089
30 https://doi.org/10.1126/science.1241488
31 https://doi.org/10.1126/science.1249625
32 https://doi.org/10.1126/science.1253793
33 https://doi.org/10.1149/1.2050077
34 schema:datePublished 2014-11-26
35 schema:datePublishedReg 2014-11-26
36 schema:description Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N7112ce3efefb405385e1275e93f8e853
41 N888aaabcc7dd4989bdf53f4736b1f28c
42 sg:journal.1018957
43 schema:name Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance
44 schema:pagination 78
45 schema:productId N2ed0c8c044144604970a6ded5de1ae77
46 N80c5fc721ecc432fb8c4d5212356f6d5
47 Nb40fac5dbbec43dba469b3e9a75adc18
48 Nd461bfba0dec4478a255170fc78cae74
49 Nfe2aaf9057664d7f80d0dae1843a5ce3
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021223236
51 https://doi.org/10.1038/nature13970
52 schema:sdDatePublished 2019-04-11T01:46
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N9b962a3784b14866b39329ada8654345
55 schema:url https://www.nature.com/articles/nature13970
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N2ed0c8c044144604970a6ded5de1ae77 schema:name dimensions_id
60 schema:value pub.1021223236
61 rdf:type schema:PropertyValue
62 N414ffe9e03684c22b47156814f669378 rdf:first sg:person.0712214226.42
63 rdf:rest Nd48154cc1c2a40ad9bb0d5d4d3809a4a
64 N60389a312b884b2dbfd22946925da09b rdf:first sg:person.01007264261.50
65 rdf:rest Nb80998515b094829a5504967c994651a
66 N7112ce3efefb405385e1275e93f8e853 schema:issueNumber 7529
67 rdf:type schema:PublicationIssue
68 N80c5fc721ecc432fb8c4d5212356f6d5 schema:name pubmed_id
69 schema:value 25470044
70 rdf:type schema:PropertyValue
71 N888aaabcc7dd4989bdf53f4736b1f28c schema:volumeNumber 516
72 rdf:type schema:PublicationVolume
73 N9b962a3784b14866b39329ada8654345 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nb40fac5dbbec43dba469b3e9a75adc18 schema:name readcube_id
76 schema:value 651e3ff6e2504f5ba2c77e3af97af6f94dfb95a041ac759a83a4ab9605abc8a5
77 rdf:type schema:PropertyValue
78 Nb80998515b094829a5504967c994651a rdf:first sg:person.0701233211.41
79 rdf:rest N414ffe9e03684c22b47156814f669378
80 Nd461bfba0dec4478a255170fc78cae74 schema:name doi
81 schema:value 10.1038/nature13970
82 rdf:type schema:PropertyValue
83 Nd48154cc1c2a40ad9bb0d5d4d3809a4a rdf:first sg:person.01175654403.14
84 rdf:rest rdf:nil
85 Neb75a02030eb4db88514fdd28ab21a1d rdf:first sg:person.013400277615.70
86 rdf:rest N60389a312b884b2dbfd22946925da09b
87 Nfe2aaf9057664d7f80d0dae1843a5ce3 schema:name nlm_unique_id
88 schema:value 0410462
89 rdf:type schema:PropertyValue
90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
91 schema:name Engineering
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
94 schema:name Materials Engineering
95 rdf:type schema:DefinedTerm
96 sg:grant.3005134 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13970
97 rdf:type schema:MonetaryGrant
98 sg:journal.1018957 schema:issn 0090-0028
99 1476-4687
100 schema:name Nature
101 rdf:type schema:Periodical
102 sg:person.01007264261.50 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
103 schema:familyName Lukatskaya
104 schema:givenName Maria R.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007264261.50
106 rdf:type schema:Person
107 sg:person.01175654403.14 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
108 schema:familyName Barsoum
109 schema:givenName Michel W.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175654403.14
111 rdf:type schema:Person
112 sg:person.013400277615.70 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
113 schema:familyName Ghidiu
114 schema:givenName Michael
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400277615.70
116 rdf:type schema:Person
117 sg:person.0701233211.41 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
118 schema:familyName Zhao
119 schema:givenName Meng-Qiang
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701233211.41
121 rdf:type schema:Person
122 sg:person.0712214226.42 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
123 schema:familyName Gogotsi
124 schema:givenName Yury
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712214226.42
126 rdf:type schema:Person
127 sg:pub.10.1007/978-1-4757-3058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040777413
128 https://doi.org/10.1007/978-1-4757-3058-6
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/ncomms2664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010990533
131 https://doi.org/10.1038/ncomms2664
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmat2297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047825494
134 https://doi.org/10.1038/nmat2297
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nmat3601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010365371
137 https://doi.org/10.1038/nmat3601
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/srep02975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027492146
140 https://doi.org/10.1038/srep02975
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/adma.201102306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040502530
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/adma.201301243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049450692
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/adma.201304138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007174781
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/adma.201470041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005939335
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/aenm.201400815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010582235
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0169-1317(89)90005-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019643249
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jssc.2013.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479588
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.matchemphys.2013.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017556952
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.matlet.2013.07.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016623717
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.nanoen.2013.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045856112
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/cm500641a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027582854
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/ja308463r schema:sameAs https://app.dimensions.ai/details/publication/pub.1035040448
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/ja500506k schema:sameAs https://app.dimensions.ai/details/publication/pub.1001751874
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/jp026228l schema:sameAs https://app.dimensions.ai/details/publication/pub.1031398722
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/jp0264883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056051111
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/jp074464w schema:sameAs https://app.dimensions.ai/details/publication/pub.1016800028
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/nl8019938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018066446
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1039/c4nr02080d schema:sameAs https://app.dimensions.ai/details/publication/pub.1034504584
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1126/science.1213003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465595
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.1226419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041741023
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1239089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008550617
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1241488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011967252
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.1249625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047586251
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1253793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010510485
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1149/1.2050077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024737451
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.166341.7 schema:alternateName Drexel University
193 schema:name Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...