Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-11-26

AUTHORS

Michael Ghidiu, Maria R. Lukatskaya, Meng-Qiang Zhao, Yury Gogotsi, Michel W. Barsoum

ABSTRACT

Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid. More... »

PAGES

78

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature13970

DOI

http://dx.doi.org/10.1038/nature13970

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021223236

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25470044


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ghidiu", 
        "givenName": "Michael", 
        "id": "sg:person.013400277615.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400277615.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lukatskaya", 
        "givenName": "Maria R.", 
        "id": "sg:person.01007264261.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007264261.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Meng-Qiang", 
        "id": "sg:person.0701233211.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701233211.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gogotsi", 
        "givenName": "Yury", 
        "id": "sg:person.0712214226.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712214226.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barsoum", 
        "givenName": "Michel W.", 
        "id": "sg:person.01175654403.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175654403.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/ja500506k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001751874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201470041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005939335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201304138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007174781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1239089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008550617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010365371", 
          "https://doi.org/10.1038/nmat3601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1253793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010510485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201400815", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010582235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2664", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010990533", 
          "https://doi.org/10.1038/ncomms2664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1241488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011967252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2013.07.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016623717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp074464w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016800028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp074464w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016800028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2013.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017556952"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8019938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018066446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8019938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018066446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-1317(89)90005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019643249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-1317(89)90005-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019643249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2050077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024737451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep02975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027492146", 
          "https://doi.org/10.1038/srep02975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm500641a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027582854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp026228l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp026228l", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031398722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4nr02080d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034504584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja308463r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035040448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201102306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040502530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040777413", 
          "https://doi.org/10.1007/978-1-4757-3058-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040777413", 
          "https://doi.org/10.1007/978-1-4757-3058-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1226419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041741023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2013.01.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045856112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1249625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047586251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047825494", 
          "https://doi.org/10.1038/nmat2297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201301243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049450692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jssc.2013.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053479588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0264883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056051111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0264883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056051111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1213003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465595"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11-26", 
    "datePublishedReg": "2014-11-26", 
    "description": "Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature13970", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3005134", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7529", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "516"
      }
    ], 
    "name": "Conductive two-dimensional titanium carbide \u2018clay\u2019 with high volumetric capacitance", 
    "pagination": "78", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "651e3ff6e2504f5ba2c77e3af97af6f94dfb95a041ac759a83a4ab9605abc8a5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25470044"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature13970"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021223236"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature13970", 
      "https://app.dimensions.ai/details/publication/pub.1021223236"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature13970"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature13970'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature13970'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature13970'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature13970'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      58 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature13970 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1b80d78f2b1b4dc99a662406339d7abf
4 schema:citation sg:pub.10.1007/978-1-4757-3058-6
5 sg:pub.10.1038/ncomms2664
6 sg:pub.10.1038/nmat2297
7 sg:pub.10.1038/nmat3601
8 sg:pub.10.1038/srep02975
9 https://doi.org/10.1002/adma.201102306
10 https://doi.org/10.1002/adma.201301243
11 https://doi.org/10.1002/adma.201304138
12 https://doi.org/10.1002/adma.201470041
13 https://doi.org/10.1002/aenm.201400815
14 https://doi.org/10.1016/0169-1317(89)90005-7
15 https://doi.org/10.1016/j.jssc.2013.09.010
16 https://doi.org/10.1016/j.matchemphys.2013.01.008
17 https://doi.org/10.1016/j.matlet.2013.07.102
18 https://doi.org/10.1016/j.nanoen.2013.01.007
19 https://doi.org/10.1021/cm500641a
20 https://doi.org/10.1021/ja308463r
21 https://doi.org/10.1021/ja500506k
22 https://doi.org/10.1021/jp026228l
23 https://doi.org/10.1021/jp0264883
24 https://doi.org/10.1021/jp074464w
25 https://doi.org/10.1021/nl8019938
26 https://doi.org/10.1039/c4nr02080d
27 https://doi.org/10.1126/science.1213003
28 https://doi.org/10.1126/science.1226419
29 https://doi.org/10.1126/science.1239089
30 https://doi.org/10.1126/science.1241488
31 https://doi.org/10.1126/science.1249625
32 https://doi.org/10.1126/science.1253793
33 https://doi.org/10.1149/1.2050077
34 schema:datePublished 2014-11-26
35 schema:datePublishedReg 2014-11-26
36 schema:description Safe and powerful energy storage devices are becoming increasingly important. Charging times of seconds to minutes, with power densities exceeding those of batteries, can in principle be provided by electrochemical capacitors--in particular, pseudocapacitors. Recent research has focused mainly on improving the gravimetric performance of the electrodes of such systems, but for portable electronics and vehicles volume is at a premium. The best volumetric capacitances of carbon-based electrodes are around 300 farads per cubic centimetre; hydrated ruthenium oxide can reach capacitances of 1,000 to 1,500 farads per cubic centimetre with great cyclability, but only in thin films. Recently, electrodes made of two-dimensional titanium carbide (Ti3C2, a member of the 'MXene' family), produced by etching aluminium from titanium aluminium carbide (Ti3AlC2, a 'MAX' phase) in concentrated hydrofluoric acid, have been shown to have volumetric capacitances of over 300 farads per cubic centimetre. Here we report a method of producing this material using a solution of lithium fluoride and hydrochloric acid. The resulting hydrophilic material swells in volume when hydrated, and can be shaped like clay and dried into a highly conductive solid or rolled into films tens of micrometres thick. Additive-free films of this titanium carbide 'clay' have volumetric capacitances of up to 900 farads per cubic centimetre, with excellent cyclability and rate performances. This capacitance is almost twice that of our previous report, and our synthetic method also offers a much faster route to film production as well as the avoidance of handling hazardous concentrated hydrofluoric acid.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree true
40 schema:isPartOf N06876bb9286d43078a05a4b3fe9cbc92
41 N87c7db979f8049f980df910cb7a64b24
42 sg:journal.1018957
43 schema:name Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance
44 schema:pagination 78
45 schema:productId N39708ece384c4089b50760deda4bc50d
46 N57a355cbecf748cc9463eed40d721e9b
47 N7493d7cb78434fcb9d478ff842790771
48 Nd09e276b85fc4f3f82d382f6245b6605
49 Ne7cdae826a96439e9987ca4271d4b7ad
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021223236
51 https://doi.org/10.1038/nature13970
52 schema:sdDatePublished 2019-04-11T01:46
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N703cd385ad134bacb495f7358aae3344
55 schema:url https://www.nature.com/articles/nature13970
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N06876bb9286d43078a05a4b3fe9cbc92 schema:volumeNumber 516
60 rdf:type schema:PublicationVolume
61 N1b80d78f2b1b4dc99a662406339d7abf rdf:first sg:person.013400277615.70
62 rdf:rest Ndef301c609d64572a3eed1f1900a6a68
63 N39708ece384c4089b50760deda4bc50d schema:name pubmed_id
64 schema:value 25470044
65 rdf:type schema:PropertyValue
66 N57a355cbecf748cc9463eed40d721e9b schema:name dimensions_id
67 schema:value pub.1021223236
68 rdf:type schema:PropertyValue
69 N703cd385ad134bacb495f7358aae3344 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N7493d7cb78434fcb9d478ff842790771 schema:name readcube_id
72 schema:value 651e3ff6e2504f5ba2c77e3af97af6f94dfb95a041ac759a83a4ab9605abc8a5
73 rdf:type schema:PropertyValue
74 N87c7db979f8049f980df910cb7a64b24 schema:issueNumber 7529
75 rdf:type schema:PublicationIssue
76 Na459fedcb69a4ef188a559063cf051ff rdf:first sg:person.01175654403.14
77 rdf:rest rdf:nil
78 Na527ff22f8af4c74b8b54f050970a89d rdf:first sg:person.0701233211.41
79 rdf:rest Nf492318d65f44ce78a02bf840ffccbbc
80 Nd09e276b85fc4f3f82d382f6245b6605 schema:name nlm_unique_id
81 schema:value 0410462
82 rdf:type schema:PropertyValue
83 Ndef301c609d64572a3eed1f1900a6a68 rdf:first sg:person.01007264261.50
84 rdf:rest Na527ff22f8af4c74b8b54f050970a89d
85 Ne7cdae826a96439e9987ca4271d4b7ad schema:name doi
86 schema:value 10.1038/nature13970
87 rdf:type schema:PropertyValue
88 Nf492318d65f44ce78a02bf840ffccbbc rdf:first sg:person.0712214226.42
89 rdf:rest Na459fedcb69a4ef188a559063cf051ff
90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
91 schema:name Engineering
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
94 schema:name Materials Engineering
95 rdf:type schema:DefinedTerm
96 sg:grant.3005134 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13970
97 rdf:type schema:MonetaryGrant
98 sg:journal.1018957 schema:issn 0090-0028
99 1476-4687
100 schema:name Nature
101 rdf:type schema:Periodical
102 sg:person.01007264261.50 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
103 schema:familyName Lukatskaya
104 schema:givenName Maria R.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007264261.50
106 rdf:type schema:Person
107 sg:person.01175654403.14 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
108 schema:familyName Barsoum
109 schema:givenName Michel W.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175654403.14
111 rdf:type schema:Person
112 sg:person.013400277615.70 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
113 schema:familyName Ghidiu
114 schema:givenName Michael
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400277615.70
116 rdf:type schema:Person
117 sg:person.0701233211.41 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
118 schema:familyName Zhao
119 schema:givenName Meng-Qiang
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0701233211.41
121 rdf:type schema:Person
122 sg:person.0712214226.42 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
123 schema:familyName Gogotsi
124 schema:givenName Yury
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0712214226.42
126 rdf:type schema:Person
127 sg:pub.10.1007/978-1-4757-3058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040777413
128 https://doi.org/10.1007/978-1-4757-3058-6
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/ncomms2664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010990533
131 https://doi.org/10.1038/ncomms2664
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmat2297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047825494
134 https://doi.org/10.1038/nmat2297
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nmat3601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010365371
137 https://doi.org/10.1038/nmat3601
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/srep02975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027492146
140 https://doi.org/10.1038/srep02975
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/adma.201102306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040502530
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/adma.201301243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049450692
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/adma.201304138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007174781
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1002/adma.201470041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005939335
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1002/aenm.201400815 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010582235
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/0169-1317(89)90005-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019643249
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jssc.2013.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479588
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.matchemphys.2013.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017556952
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.matlet.2013.07.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016623717
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.nanoen.2013.01.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045856112
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/cm500641a schema:sameAs https://app.dimensions.ai/details/publication/pub.1027582854
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/ja308463r schema:sameAs https://app.dimensions.ai/details/publication/pub.1035040448
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/ja500506k schema:sameAs https://app.dimensions.ai/details/publication/pub.1001751874
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/jp026228l schema:sameAs https://app.dimensions.ai/details/publication/pub.1031398722
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/jp0264883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056051111
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/jp074464w schema:sameAs https://app.dimensions.ai/details/publication/pub.1016800028
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/nl8019938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018066446
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1039/c4nr02080d schema:sameAs https://app.dimensions.ai/details/publication/pub.1034504584
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1126/science.1213003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465595
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1126/science.1226419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041741023
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1239089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008550617
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1241488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011967252
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.1249625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047586251
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1253793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010510485
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1149/1.2050077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024737451
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.166341.7 schema:alternateName Drexel University
193 schema:name Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...