Probing excitonic dark states in single-layer tungsten disulphide View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-08-27

AUTHORS

Ziliang Ye, Ting Cao, Kevin O’Brien, Hanyu Zhu, Xiaobo Yin, Yuan Wang, Steven G. Louie, Xiang Zhang

ABSTRACT

Transition metal dichalcogenide (TMDC) monolayers have recently emerged as an important class of two-dimensional semiconductors with potential for electronic and optoelectronic devices. Unlike semi-metallic graphene, layered TMDCs have a sizeable bandgap. More interestingly, when thinned down to a monolayer, TMDCs transform from indirect-bandgap to direct-bandgap semiconductors, exhibiting a number of intriguing optical phenomena such as valley-selective circular dichroism, doping-dependent charged excitons and strong photocurrent responses. However, the fundamental mechanism underlying such a strong light-matter interaction is still under intensive investigation. First-principles calculations have predicted a quasiparticle bandgap much larger than the measured optical gap, and an optical response dominated by excitonic effects. In particular, a recent study based on a GW plus Bethe-Salpeter equation (GW-BSE) approach, which employed many-body Green's-function methodology to address electron-electron and electron-hole interactions, theoretically predicted a diversity of strongly bound excitons. Here we report experimental evidence of a series of excitonic dark states in single-layer WS2 using two-photon excitation spectroscopy. In combination with GW-BSE theory, we prove that the excitons are of Wannier type, meaning that each exciton wavefunction extends over multiple unit cells, but with extraordinarily large binding energy (∼0.7 electronvolts), leading to a quasiparticle bandgap of 2.7 electronvolts. These strongly bound exciton states are observed to be stable even at room temperature. We reveal an exciton series that deviates substantially from hydrogen models, with a novel energy dependence on the orbital angular momentum. These excitonic energy levels are experimentally found to be robust against environmental perturbations. The discovery of excitonic dark states and exceptionally large binding energy not only sheds light on the importance of many-electron effects in this two-dimensional gapped system, but also holds potential for the device application of TMDC monolayers and their heterostructures in computing, communication and bio-sensing. More... »

PAGES

214

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature13734

DOI

http://dx.doi.org/10.1038/nature13734

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1015868849

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25162523


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Ziliang", 
        "id": "sg:person.01122425004.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122425004.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, California 94720, USA", 
            "Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cao", 
        "givenName": "Ting", 
        "id": "sg:person.01103460461.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103460461.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "O\u2019Brien", 
        "givenName": "Kevin", 
        "id": "sg:person.01062261671.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062261671.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Hanyu", 
        "id": "sg:person.013464255721.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013464255721.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Xiaobo", 
        "id": "sg:person.0662216125.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662216125.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Yuan", 
        "id": "sg:person.01111744431.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111744431.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lawrence Berkeley National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.184769.5", 
          "name": [
            "Department of Physics, University of California, Berkeley, California 94720, USA", 
            "Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Louie", 
        "givenName": "Steven G.", 
        "id": "sg:person.01146660016.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146660016.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Berkeley", 
          "id": "https://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA", 
            "Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA", 
            "Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia", 
            "Kavli Energy NanoSciences Institute at the University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94704, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Xiang", 
        "id": "sg:person.01005467612.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005467612.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007022071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.077402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007022071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.241402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008245988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.241402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008245988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009145791", 
          "https://doi.org/10.1038/nmat3505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1110265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020321868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024857999", 
          "https://doi.org/10.1038/nature12385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.125427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026172938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.125427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026172938"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027952436", 
          "https://doi.org/10.1038/nnano.2012.95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.201401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028009007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.201401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028009007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028219354", 
          "https://doi.org/10.1038/nnano.2012.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1235547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030349025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.205302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.85.205302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030578033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cpc.2011.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032023860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.96", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550073", 
          "https://doi.org/10.1038/nnano.2012.96"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4875959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043259958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043505245", 
          "https://doi.org/10.1038/ncomms2498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047021007", 
          "https://doi.org/10.1038/nmat1710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047021007", 
          "https://doi.org/10.1038/nmat1710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049548334", 
          "https://doi.org/10.1038/ncomms1882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.216805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052387138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.111.216805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052387138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802957t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl802957t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/5/24/016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058966450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.5390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.5390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.11099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.42.11099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.4927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.4927", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.115409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.115409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060639964"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-08-27", 
    "datePublishedReg": "2014-08-27", 
    "description": "Transition metal dichalcogenide (TMDC) monolayers have recently emerged as an important class of two-dimensional semiconductors with potential for electronic and optoelectronic devices. Unlike semi-metallic graphene, layered TMDCs have a sizeable bandgap. More interestingly, when thinned down to a monolayer, TMDCs transform from indirect-bandgap to direct-bandgap semiconductors, exhibiting a number of intriguing optical phenomena such as valley-selective circular dichroism, doping-dependent charged excitons and strong photocurrent responses. However, the fundamental mechanism underlying such a strong light-matter interaction is still under intensive investigation. First-principles calculations have predicted a quasiparticle bandgap much larger than the measured optical gap, and an optical response dominated by excitonic effects. In particular, a recent study based on a GW plus Bethe-Salpeter equation (GW-BSE) approach, which employed many-body Green's-function methodology to address electron-electron and electron-hole interactions, theoretically predicted a diversity of strongly bound excitons. Here we report experimental evidence of a series of excitonic dark states in single-layer WS2 using two-photon excitation spectroscopy. In combination with GW-BSE theory, we prove that the excitons are of Wannier type, meaning that each exciton wavefunction extends over multiple unit cells, but with extraordinarily large binding energy (\u223c0.7\u00a0electronvolts), leading to a quasiparticle bandgap of 2.7\u00a0electronvolts. These strongly bound exciton states are observed to be stable even at room temperature. We reveal an exciton series that deviates substantially from hydrogen models, with a novel energy dependence on the orbital angular momentum. These excitonic energy levels are experimentally found to be robust against environmental perturbations. The discovery of excitonic dark states and exceptionally large binding energy not only sheds light on the importance of many-electron effects in this two-dimensional gapped system, but also holds potential for the device application of TMDC monolayers and their heterostructures in computing, communication and bio-sensing. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature13734", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7517", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "513"
      }
    ], 
    "name": "Probing excitonic dark states in single-layer tungsten disulphide", 
    "pagination": "214", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4b9caa2d1e95356ae3e83930d6dd52a78369f849879d53d841cb89386118dacd"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25162523"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature13734"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1015868849"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature13734", 
      "https://app.dimensions.ai/details/publication/pub.1015868849"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature13734"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature13734'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature13734'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature13734'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature13734'


 

This table displays all metadata directly associated to this object as RDF triples.

215 TRIPLES      21 PREDICATES      55 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature13734 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N1005f0bb5ddb4697bbcd4bf0d5fb88ba
4 schema:citation sg:pub.10.1038/nature12385
5 sg:pub.10.1038/ncomms1882
6 sg:pub.10.1038/ncomms2498
7 sg:pub.10.1038/nmat1710
8 sg:pub.10.1038/nmat3505
9 sg:pub.10.1038/nnano.2010.279
10 sg:pub.10.1038/nnano.2012.193
11 sg:pub.10.1038/nnano.2012.95
12 sg:pub.10.1038/nnano.2012.96
13 https://doi.org/10.1016/j.cpc.2011.12.006
14 https://doi.org/10.1021/nl802957t
15 https://doi.org/10.1021/nl903868w
16 https://doi.org/10.1063/1.4875959
17 https://doi.org/10.1088/0022-3719/5/24/016
18 https://doi.org/10.1103/physrevb.34.5390
19 https://doi.org/10.1103/physrevb.42.11099
20 https://doi.org/10.1103/physrevb.62.4927
21 https://doi.org/10.1103/physrevb.72.241402
22 https://doi.org/10.1103/physrevb.85.205302
23 https://doi.org/10.1103/physrevb.86.115409
24 https://doi.org/10.1103/physrevb.87.201401
25 https://doi.org/10.1103/physrevb.89.125427
26 https://doi.org/10.1103/physrevlett.105.136805
27 https://doi.org/10.1103/physrevlett.111.216805
28 https://doi.org/10.1103/physrevlett.92.077402
29 https://doi.org/10.1126/science.1110265
30 https://doi.org/10.1126/science.1235547
31 schema:datePublished 2014-08-27
32 schema:datePublishedReg 2014-08-27
33 schema:description Transition metal dichalcogenide (TMDC) monolayers have recently emerged as an important class of two-dimensional semiconductors with potential for electronic and optoelectronic devices. Unlike semi-metallic graphene, layered TMDCs have a sizeable bandgap. More interestingly, when thinned down to a monolayer, TMDCs transform from indirect-bandgap to direct-bandgap semiconductors, exhibiting a number of intriguing optical phenomena such as valley-selective circular dichroism, doping-dependent charged excitons and strong photocurrent responses. However, the fundamental mechanism underlying such a strong light-matter interaction is still under intensive investigation. First-principles calculations have predicted a quasiparticle bandgap much larger than the measured optical gap, and an optical response dominated by excitonic effects. In particular, a recent study based on a GW plus Bethe-Salpeter equation (GW-BSE) approach, which employed many-body Green's-function methodology to address electron-electron and electron-hole interactions, theoretically predicted a diversity of strongly bound excitons. Here we report experimental evidence of a series of excitonic dark states in single-layer WS2 using two-photon excitation spectroscopy. In combination with GW-BSE theory, we prove that the excitons are of Wannier type, meaning that each exciton wavefunction extends over multiple unit cells, but with extraordinarily large binding energy (∼0.7 electronvolts), leading to a quasiparticle bandgap of 2.7 electronvolts. These strongly bound exciton states are observed to be stable even at room temperature. We reveal an exciton series that deviates substantially from hydrogen models, with a novel energy dependence on the orbital angular momentum. These excitonic energy levels are experimentally found to be robust against environmental perturbations. The discovery of excitonic dark states and exceptionally large binding energy not only sheds light on the importance of many-electron effects in this two-dimensional gapped system, but also holds potential for the device application of TMDC monolayers and their heterostructures in computing, communication and bio-sensing.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree true
37 schema:isPartOf N44a2de5fb84a4bbfabc5b2deb76d4430
38 N9940c9049a94498a9562bb1d096e3b47
39 sg:journal.1018957
40 schema:name Probing excitonic dark states in single-layer tungsten disulphide
41 schema:pagination 214
42 schema:productId N4ddbca7683a24956a787f7ea67ea8121
43 N6f91ef028e544dc3b85f0f4af1d60385
44 N7b1757b3d6014457ab7957bd23a12478
45 Nb88e2933ca614c5cb74bd14b6d7eb1a0
46 Nf9cfc49318714b388cd5876b8c6ccf7a
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015868849
48 https://doi.org/10.1038/nature13734
49 schema:sdDatePublished 2019-04-10T18:56
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N394b1f85191742aea381b33e81ae5702
52 schema:url https://www.nature.com/articles/nature13734
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N00c5f639a3ed4c1faa1f7d281742e254 rdf:first sg:person.0662216125.96
57 rdf:rest N924ba07959954935bb3480f2c0460a9c
58 N1005f0bb5ddb4697bbcd4bf0d5fb88ba rdf:first sg:person.01122425004.66
59 rdf:rest N31690fc4c4414245b07bd700f01cc541
60 N31690fc4c4414245b07bd700f01cc541 rdf:first sg:person.01103460461.72
61 rdf:rest Nb8121cfc515a4ed7a30faae728c6182f
62 N394b1f85191742aea381b33e81ae5702 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N44a2de5fb84a4bbfabc5b2deb76d4430 schema:issueNumber 7517
65 rdf:type schema:PublicationIssue
66 N471a73e1777d4ab39c1ec5acfbd05fd0 rdf:first sg:person.01005467612.83
67 rdf:rest rdf:nil
68 N490cfe1014354e24b093015dd7be3017 rdf:first sg:person.01146660016.40
69 rdf:rest N471a73e1777d4ab39c1ec5acfbd05fd0
70 N4ddbca7683a24956a787f7ea67ea8121 schema:name pubmed_id
71 schema:value 25162523
72 rdf:type schema:PropertyValue
73 N6f91ef028e544dc3b85f0f4af1d60385 schema:name dimensions_id
74 schema:value pub.1015868849
75 rdf:type schema:PropertyValue
76 N7b1757b3d6014457ab7957bd23a12478 schema:name nlm_unique_id
77 schema:value 0410462
78 rdf:type schema:PropertyValue
79 N86dffc82c5af4d36b11bbb19f7c6c8cc rdf:first sg:person.013464255721.49
80 rdf:rest N00c5f639a3ed4c1faa1f7d281742e254
81 N924ba07959954935bb3480f2c0460a9c rdf:first sg:person.01111744431.20
82 rdf:rest N490cfe1014354e24b093015dd7be3017
83 N9940c9049a94498a9562bb1d096e3b47 schema:volumeNumber 513
84 rdf:type schema:PublicationVolume
85 Nb8121cfc515a4ed7a30faae728c6182f rdf:first sg:person.01062261671.28
86 rdf:rest N86dffc82c5af4d36b11bbb19f7c6c8cc
87 Nb88e2933ca614c5cb74bd14b6d7eb1a0 schema:name readcube_id
88 schema:value 4b9caa2d1e95356ae3e83930d6dd52a78369f849879d53d841cb89386118dacd
89 rdf:type schema:PropertyValue
90 Nf9cfc49318714b388cd5876b8c6ccf7a schema:name doi
91 schema:value 10.1038/nature13734
92 rdf:type schema:PropertyValue
93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
94 schema:name Physical Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
97 schema:name Optical Physics
98 rdf:type schema:DefinedTerm
99 sg:journal.1018957 schema:issn 0090-0028
100 1476-4687
101 schema:name Nature
102 rdf:type schema:Periodical
103 sg:person.01005467612.83 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
104 schema:familyName Zhang
105 schema:givenName Xiang
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01005467612.83
107 rdf:type schema:Person
108 sg:person.01062261671.28 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
109 schema:familyName O’Brien
110 schema:givenName Kevin
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01062261671.28
112 rdf:type schema:Person
113 sg:person.01103460461.72 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
114 schema:familyName Cao
115 schema:givenName Ting
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01103460461.72
117 rdf:type schema:Person
118 sg:person.01111744431.20 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
119 schema:familyName Wang
120 schema:givenName Yuan
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111744431.20
122 rdf:type schema:Person
123 sg:person.01122425004.66 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
124 schema:familyName Ye
125 schema:givenName Ziliang
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01122425004.66
127 rdf:type schema:Person
128 sg:person.01146660016.40 schema:affiliation https://www.grid.ac/institutes/grid.184769.5
129 schema:familyName Louie
130 schema:givenName Steven G.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146660016.40
132 rdf:type schema:Person
133 sg:person.013464255721.49 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
134 schema:familyName Zhu
135 schema:givenName Hanyu
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013464255721.49
137 rdf:type schema:Person
138 sg:person.0662216125.96 schema:affiliation https://www.grid.ac/institutes/grid.47840.3f
139 schema:familyName Yin
140 schema:givenName Xiaobo
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0662216125.96
142 rdf:type schema:Person
143 sg:pub.10.1038/nature12385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024857999
144 https://doi.org/10.1038/nature12385
145 rdf:type schema:CreativeWork
146 sg:pub.10.1038/ncomms1882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049548334
147 https://doi.org/10.1038/ncomms1882
148 rdf:type schema:CreativeWork
149 sg:pub.10.1038/ncomms2498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043505245
150 https://doi.org/10.1038/ncomms2498
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/nmat1710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047021007
153 https://doi.org/10.1038/nmat1710
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nmat3505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009145791
156 https://doi.org/10.1038/nmat3505
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
159 https://doi.org/10.1038/nnano.2010.279
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
162 https://doi.org/10.1038/nnano.2012.193
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nnano.2012.95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027952436
165 https://doi.org/10.1038/nnano.2012.95
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nnano.2012.96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550073
168 https://doi.org/10.1038/nnano.2012.96
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.cpc.2011.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032023860
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/nl802957t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221634
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.4875959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043259958
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1088/0022-3719/5/24/016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058966450
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevb.34.5390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060541242
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevb.42.11099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060554843
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevb.62.4927 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597706
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.72.241402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008245988
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.85.205302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030578033
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.86.115409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060639964
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.87.201401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028009007
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.89.125427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026172938
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.111.216805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052387138
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.92.077402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007022071
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.1110265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020321868
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.1235547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030349025
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.184769.5 schema:alternateName Lawrence Berkeley National Laboratory
207 schema:name Department of Physics, University of California, Berkeley, California 94720, USA
208 Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.47840.3f schema:alternateName University of California, Berkeley
211 schema:name Department of Physics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
212 Kavli Energy NanoSciences Institute at the University of California, Berkeley, and Lawrence Berkeley National Laboratory, Berkeley, California 94704, USA
213 Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
214 NSF Nano-scale Science and Engineering Center (NSEC), 3112 Etcheverry Hall, University of California, Berkeley, California 94720, USA
215 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...