Structures of bacterial homologues of SWEET transporters in two distinct conformations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-11

AUTHORS

Yan Xu, Yuyong Tao, Lily S. Cheung, Chao Fan, Li-Qing Chen, Sophia Xu, Kay Perry, Wolf B. Frommer, Liang Feng

ABSTRACT

SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6 + 1-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2 × 2 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general. More... »

PAGES

448

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature13670

DOI

http://dx.doi.org/10.1038/nature13670

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018609943

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25186729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallography, X-Ray", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leptospira", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monosaccharide Transport Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Multimerization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vibrio", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Yan", 
        "id": "sg:person.01217437636.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217437636.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "Yuyong", 
        "id": "sg:person.01265553036.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265553036.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Plant Biology", 
          "id": "https://www.grid.ac/institutes/grid.418000.d", 
          "name": [
            "Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheung", 
        "givenName": "Lily S.", 
        "id": "sg:person.01004451757.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004451757.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Chao", 
        "id": "sg:person.0610262136.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610262136.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Plant Biology", 
          "id": "https://www.grid.ac/institutes/grid.418000.d", 
          "name": [
            "Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li-Qing", 
        "id": "sg:person.0604507561.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604507561.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Biology, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Sophia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perry", 
        "givenName": "Kay", 
        "id": "sg:person.0766252000.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766252000.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA", 
            "Department of Biology, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frommer", 
        "givenName": "Wolf B.", 
        "id": "sg:person.01024646170.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024646170.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Liang", 
        "id": "sg:person.01107052336.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107052336.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1432-0436.2005.00037.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000572168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-0436.2005.00037.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000572168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002725930", 
          "https://doi.org/10.1038/nature13306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(97)76066-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004907170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.110.078964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006152138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m113.469023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006425220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008325002", 
          "https://doi.org/10.1038/nature13082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1620309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008966930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1620309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008966930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00232-010-9327-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009536890", 
          "https://doi.org/10.1007/s00232-010-9327-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m700164-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011360346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.arplant.55.031903.141758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012642079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0497-269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013702320", 
          "https://doi.org/10.1038/nsb0497-269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444906045975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016114112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909042073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018458004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909042073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018458004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-2736(00)00389-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019772065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444904019158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020281098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909052925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020777046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909052925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020777046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021076498", 
          "https://doi.org/10.1038/nature09606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021076498", 
          "https://doi.org/10.1038/nature09606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444902011678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021532775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(99)01698-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022197500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbabio.2010.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022427157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2009.01.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024347213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2009.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025730238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027857435", 
          "https://doi.org/10.1038/nature05579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909047337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032162623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909047337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032162623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00497-012-0208-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033673770", 
          "https://doi.org/10.1007/s00497-012-0208-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035673999", 
          "https://doi.org/10.1038/nature11524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mam.2012.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035893005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038051353", 
          "https://doi.org/10.1038/nature13074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.198701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038832273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1988.tb14150.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038914758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040889010", 
          "https://doi.org/10.1038/nprot.2007.15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1211198109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046048163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1311244110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046194374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibs.2013.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046803245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1324141111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051439709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiol.00030.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053468621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1213351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078616365", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11", 
    "datePublishedReg": "2014-11-01", 
    "description": "SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6\u00a0+\u00a01-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2\u00a0\u00d7\u00a02 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature13670", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439737", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4321694", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7527", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "515"
      }
    ], 
    "name": "Structures of bacterial homologues of SWEET transporters in two distinct conformations", 
    "pagination": "448", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58ab329fe490dee9e65b3cd56cbbdd3cb7e176bf1eb0bf40d6057f0a6ef1c3f4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25186729"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature13670"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018609943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature13670", 
      "https://app.dimensions.ai/details/publication/pub.1018609943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature13670"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature13670'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature13670'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature13670'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature13670'


 

This table displays all metadata directly associated to this object as RDF triples.

317 TRIPLES      21 PREDICATES      82 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature13670 schema:about N0642ba25373e46e0882fabd76577e7a2
2 N0ea0c279fff74cecbb47ec082c04aee2
3 N1d58eab4a92042e88d90c4f2ac772579
4 N2d01ad5b7a0b44769dec11baf182fae5
5 N2e0c5722ab574f96aa64d35d0462d8ef
6 N55b5787f9fd74adc918dc0b8d986fa7c
7 N82b957bf0bd74c819ebf91792663ce2a
8 N89f398beac0d44829ff9375c2cd0d0cc
9 Na7edfbab794b4e28b399aa5c54c205eb
10 Nc9674461b7614051a205426c832b1d5a
11 Nd3dc1a8c044441f18d2b210e5a339718
12 Nd766802b0056490f85b441b551f4868c
13 Nf941687cfd07442e9690987e1e9a5be4
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author Na5df30efbf884a5c958fa8038a3aab68
17 schema:citation sg:pub.10.1007/s00232-010-9327-5
18 sg:pub.10.1007/s00497-012-0208-1
19 sg:pub.10.1038/nature05579
20 sg:pub.10.1038/nature09606
21 sg:pub.10.1038/nature11524
22 sg:pub.10.1038/nature13074
23 sg:pub.10.1038/nature13082
24 sg:pub.10.1038/nature13306
25 sg:pub.10.1038/nprot.2007.15
26 sg:pub.10.1038/nsb0497-269
27 https://app.dimensions.ai/details/publication/pub.1078616365
28 https://doi.org/10.1016/j.bbabio.2010.10.014
29 https://doi.org/10.1016/j.mam.2012.11.002
30 https://doi.org/10.1016/j.molcel.2009.01.035
31 https://doi.org/10.1016/j.sbi.2009.06.002
32 https://doi.org/10.1016/j.tibs.2013.01.003
33 https://doi.org/10.1016/s0005-2736(00)00389-8
34 https://doi.org/10.1016/s0014-5793(99)01698-1
35 https://doi.org/10.1016/s0076-6879(97)76066-x
36 https://doi.org/10.1042/bj1620309
37 https://doi.org/10.1073/pnas.1211198109
38 https://doi.org/10.1073/pnas.1311244110
39 https://doi.org/10.1073/pnas.1324141111
40 https://doi.org/10.1074/jbc.m113.469023
41 https://doi.org/10.1074/mcp.m700164-mcp200
42 https://doi.org/10.1101/gr.198701
43 https://doi.org/10.1105/tpc.110.078964
44 https://doi.org/10.1107/s0907444902011678
45 https://doi.org/10.1107/s0907444904019158
46 https://doi.org/10.1107/s0907444906045975
47 https://doi.org/10.1107/s0907444909042073
48 https://doi.org/10.1107/s0907444909047337
49 https://doi.org/10.1107/s0907444909052925
50 https://doi.org/10.1111/j.1432-0436.2005.00037.x
51 https://doi.org/10.1111/j.1432-1033.1988.tb14150.x
52 https://doi.org/10.1126/science.1213351
53 https://doi.org/10.1126/science.1218099
54 https://doi.org/10.1126/science.1218530
55 https://doi.org/10.1146/annurev.arplant.55.031903.141758
56 https://doi.org/10.1152/physiol.00030.2009
57 schema:datePublished 2014-11
58 schema:datePublishedReg 2014-11-01
59 schema:description SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6 + 1-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2 × 2 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree true
63 schema:isPartOf N5be772ad33644992922fe0c9167ab988
64 Nb8689fcb7534478ca18a40a6c32818cd
65 sg:journal.1018957
66 schema:name Structures of bacterial homologues of SWEET transporters in two distinct conformations
67 schema:pagination 448
68 schema:productId N81f8ec76292b422d8a4afab179f09c21
69 Nb316be73a7e244df9b46d0ec6b427882
70 Nbccd4aa63582448caf829d1e1a194437
71 Nbde1b20973934a7499758a871dbb675f
72 Ne5347f089de14322b64b175109954eb4
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018609943
74 https://doi.org/10.1038/nature13670
75 schema:sdDatePublished 2019-04-11T00:55
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Na913e1de8eb1496fb12b88dc18e15b4a
78 schema:url https://www.nature.com/articles/nature13670
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N0642ba25373e46e0882fabd76577e7a2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Monosaccharide Transport Proteins
84 rdf:type schema:DefinedTerm
85 N0e35694687b74f21924e73479ebed9b4 rdf:first sg:person.01024646170.85
86 rdf:rest N2ce81275aad846508b487c7f0095e803
87 N0ea0c279fff74cecbb47ec082c04aee2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
88 schema:name Protein Multimerization
89 rdf:type schema:DefinedTerm
90 N18e40bf30d5a47438407de0fcd85f195 rdf:first sg:person.01004451757.55
91 rdf:rest N8def591506d24a639757c8cec22baa4b
92 N1d58eab4a92042e88d90c4f2ac772579 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Models, Molecular
94 rdf:type schema:DefinedTerm
95 N1eaaa3101b414bd185bc07f9aaaeb28a rdf:first sg:person.01265553036.60
96 rdf:rest N18e40bf30d5a47438407de0fcd85f195
97 N2ce81275aad846508b487c7f0095e803 rdf:first sg:person.01107052336.94
98 rdf:rest rdf:nil
99 N2d01ad5b7a0b44769dec11baf182fae5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Evolution, Molecular
101 rdf:type schema:DefinedTerm
102 N2e0c5722ab574f96aa64d35d0462d8ef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Bacterial Proteins
104 rdf:type schema:DefinedTerm
105 N2ff01aad5e994168b019196dd0e6c16a rdf:first sg:person.0604507561.72
106 rdf:rest N49ff2e21476c47f0939e61dda81f475d
107 N49ff2e21476c47f0939e61dda81f475d rdf:first N987bfb99bc554221b11bcc12a58b4a98
108 rdf:rest N9064bf5087c84be8ac15d2494a6a05e1
109 N55b5787f9fd74adc918dc0b8d986fa7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Protein Conformation
111 rdf:type schema:DefinedTerm
112 N5be772ad33644992922fe0c9167ab988 schema:issueNumber 7527
113 rdf:type schema:PublicationIssue
114 N81f8ec76292b422d8a4afab179f09c21 schema:name readcube_id
115 schema:value 58ab329fe490dee9e65b3cd56cbbdd3cb7e176bf1eb0bf40d6057f0a6ef1c3f4
116 rdf:type schema:PropertyValue
117 N82b957bf0bd74c819ebf91792663ce2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Structure-Activity Relationship
119 rdf:type schema:DefinedTerm
120 N89f398beac0d44829ff9375c2cd0d0cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Movement
122 rdf:type schema:DefinedTerm
123 N8def591506d24a639757c8cec22baa4b rdf:first sg:person.0610262136.40
124 rdf:rest N2ff01aad5e994168b019196dd0e6c16a
125 N9064bf5087c84be8ac15d2494a6a05e1 rdf:first sg:person.0766252000.50
126 rdf:rest N0e35694687b74f21924e73479ebed9b4
127 N987bfb99bc554221b11bcc12a58b4a98 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
128 schema:familyName Xu
129 schema:givenName Sophia
130 rdf:type schema:Person
131 Na5df30efbf884a5c958fa8038a3aab68 rdf:first sg:person.01217437636.23
132 rdf:rest N1eaaa3101b414bd185bc07f9aaaeb28a
133 Na7edfbab794b4e28b399aa5c54c205eb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Vibrio
135 rdf:type schema:DefinedTerm
136 Na913e1de8eb1496fb12b88dc18e15b4a schema:name Springer Nature - SN SciGraph project
137 rdf:type schema:Organization
138 Nb316be73a7e244df9b46d0ec6b427882 schema:name dimensions_id
139 schema:value pub.1018609943
140 rdf:type schema:PropertyValue
141 Nb8689fcb7534478ca18a40a6c32818cd schema:volumeNumber 515
142 rdf:type schema:PublicationVolume
143 Nbccd4aa63582448caf829d1e1a194437 schema:name doi
144 schema:value 10.1038/nature13670
145 rdf:type schema:PropertyValue
146 Nbde1b20973934a7499758a871dbb675f schema:name nlm_unique_id
147 schema:value 0410462
148 rdf:type schema:PropertyValue
149 Nc9674461b7614051a205426c832b1d5a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Leptospira
151 rdf:type schema:DefinedTerm
152 Nd3dc1a8c044441f18d2b210e5a339718 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Glucose
154 rdf:type schema:DefinedTerm
155 Nd766802b0056490f85b441b551f4868c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Crystallography, X-Ray
157 rdf:type schema:DefinedTerm
158 Ne5347f089de14322b64b175109954eb4 schema:name pubmed_id
159 schema:value 25186729
160 rdf:type schema:PropertyValue
161 Nf941687cfd07442e9690987e1e9a5be4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Arabidopsis
163 rdf:type schema:DefinedTerm
164 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
165 schema:name Biological Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
168 schema:name Biochemistry and Cell Biology
169 rdf:type schema:DefinedTerm
170 sg:grant.2439737 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13670
171 rdf:type schema:MonetaryGrant
172 sg:grant.4321694 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13670
173 rdf:type schema:MonetaryGrant
174 sg:journal.1018957 schema:issn 0090-0028
175 1476-4687
176 schema:name Nature
177 rdf:type schema:Periodical
178 sg:person.01004451757.55 schema:affiliation https://www.grid.ac/institutes/grid.418000.d
179 schema:familyName Cheung
180 schema:givenName Lily S.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004451757.55
182 rdf:type schema:Person
183 sg:person.01024646170.85 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
184 schema:familyName Frommer
185 schema:givenName Wolf B.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024646170.85
187 rdf:type schema:Person
188 sg:person.01107052336.94 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
189 schema:familyName Feng
190 schema:givenName Liang
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107052336.94
192 rdf:type schema:Person
193 sg:person.01217437636.23 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
194 schema:familyName Xu
195 schema:givenName Yan
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217437636.23
197 rdf:type schema:Person
198 sg:person.01265553036.60 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
199 schema:familyName Tao
200 schema:givenName Yuyong
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265553036.60
202 rdf:type schema:Person
203 sg:person.0604507561.72 schema:affiliation https://www.grid.ac/institutes/grid.418000.d
204 schema:familyName Chen
205 schema:givenName Li-Qing
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604507561.72
207 rdf:type schema:Person
208 sg:person.0610262136.40 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
209 schema:familyName Fan
210 schema:givenName Chao
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610262136.40
212 rdf:type schema:Person
213 sg:person.0766252000.50 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
214 schema:familyName Perry
215 schema:givenName Kay
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766252000.50
217 rdf:type schema:Person
218 sg:pub.10.1007/s00232-010-9327-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009536890
219 https://doi.org/10.1007/s00232-010-9327-5
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s00497-012-0208-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033673770
222 https://doi.org/10.1007/s00497-012-0208-1
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nature05579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027857435
225 https://doi.org/10.1038/nature05579
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nature09606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021076498
228 https://doi.org/10.1038/nature09606
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nature11524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035673999
231 https://doi.org/10.1038/nature11524
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nature13074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038051353
234 https://doi.org/10.1038/nature13074
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nature13082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008325002
237 https://doi.org/10.1038/nature13082
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nature13306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002725930
240 https://doi.org/10.1038/nature13306
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nprot.2007.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040889010
243 https://doi.org/10.1038/nprot.2007.15
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/nsb0497-269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013702320
246 https://doi.org/10.1038/nsb0497-269
247 rdf:type schema:CreativeWork
248 https://app.dimensions.ai/details/publication/pub.1078616365 schema:CreativeWork
249 https://doi.org/10.1016/j.bbabio.2010.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022427157
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.mam.2012.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035893005
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.molcel.2009.01.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024347213
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.sbi.2009.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025730238
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.tibs.2013.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046803245
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/s0005-2736(00)00389-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019772065
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/s0014-5793(99)01698-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022197500
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/s0076-6879(97)76066-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004907170
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1042/bj1620309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008966930
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1073/pnas.1211198109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046048163
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1073/pnas.1311244110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046194374
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1073/pnas.1324141111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051439709
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1074/jbc.m113.469023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006425220
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1074/mcp.m700164-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011360346
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1101/gr.198701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038832273
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1105/tpc.110.078964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006152138
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1107/s0907444902011678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021532775
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1107/s0907444904019158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020281098
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1107/s0907444906045975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016114112
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1107/s0907444909042073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018458004
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1107/s0907444909047337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032162623
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1107/s0907444909052925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020777046
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1111/j.1432-0436.2005.00037.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000572168
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1111/j.1432-1033.1988.tb14150.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038914758
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1126/science.1213351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465609
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1126/science.1218099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465937
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1126/science.1218530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465970
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1146/annurev.arplant.55.031903.141758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012642079
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1152/physiol.00030.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053468621
306 rdf:type schema:CreativeWork
307 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
308 schema:name Department of Biology, Stanford University, Stanford, California 94305, USA
309 Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA
310 Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
311 rdf:type schema:Organization
312 https://www.grid.ac/institutes/grid.418000.d schema:alternateName Department of Plant Biology
313 schema:name Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
314 rdf:type schema:Organization
315 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
316 schema:name NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
317 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...