Structures of bacterial homologues of SWEET transporters in two distinct conformations View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-11

AUTHORS

Yan Xu, Yuyong Tao, Lily S. Cheung, Chao Fan, Li-Qing Chen, Sophia Xu, Kay Perry, Wolf B. Frommer, Liang Feng

ABSTRACT

SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6 + 1-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2 × 2 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general. More... »

PAGES

448

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature13670

DOI

http://dx.doi.org/10.1038/nature13670

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1018609943

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/25186729


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Arabidopsis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bacterial Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Crystallography, X-Ray", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glucose", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leptospira", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monosaccharide Transport Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Movement", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Conformation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Multimerization", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Structure-Activity Relationship", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vibrio", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Yan", 
        "id": "sg:person.01217437636.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217437636.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tao", 
        "givenName": "Yuyong", 
        "id": "sg:person.01265553036.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265553036.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Plant Biology", 
          "id": "https://www.grid.ac/institutes/grid.418000.d", 
          "name": [
            "Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheung", 
        "givenName": "Lily S.", 
        "id": "sg:person.01004451757.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004451757.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Chao", 
        "id": "sg:person.0610262136.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610262136.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Plant Biology", 
          "id": "https://www.grid.ac/institutes/grid.418000.d", 
          "name": [
            "Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Li-Qing", 
        "id": "sg:person.0604507561.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604507561.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Biology, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Sophia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Perry", 
        "givenName": "Kay", 
        "id": "sg:person.0766252000.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766252000.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA", 
            "Department of Biology, Stanford University, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frommer", 
        "givenName": "Wolf B.", 
        "id": "sg:person.01024646170.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024646170.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Stanford University", 
          "id": "https://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feng", 
        "givenName": "Liang", 
        "id": "sg:person.01107052336.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107052336.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1432-0436.2005.00037.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000572168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-0436.2005.00037.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000572168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002725930", 
          "https://doi.org/10.1038/nature13306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(97)76066-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004907170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1105/tpc.110.078964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006152138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m113.469023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006425220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008325002", 
          "https://doi.org/10.1038/nature13082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1620309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008966930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj1620309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008966930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00232-010-9327-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009536890", 
          "https://doi.org/10.1007/s00232-010-9327-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/mcp.m700164-mcp200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011360346"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.arplant.55.031903.141758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012642079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsb0497-269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013702320", 
          "https://doi.org/10.1038/nsb0497-269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444906045975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016114112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909042073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018458004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909042073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018458004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0005-2736(00)00389-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019772065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444904019158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020281098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909052925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020777046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909052925", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020777046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021076498", 
          "https://doi.org/10.1038/nature09606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021076498", 
          "https://doi.org/10.1038/nature09606"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444902011678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021532775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0014-5793(99)01698-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022197500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbabio.2010.10.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022427157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2009.01.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024347213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2009.06.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025730238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027857435", 
          "https://doi.org/10.1038/nature05579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909047337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032162623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909047337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032162623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00497-012-0208-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033673770", 
          "https://doi.org/10.1007/s00497-012-0208-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035673999", 
          "https://doi.org/10.1038/nature11524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mam.2012.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035893005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature13074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038051353", 
          "https://doi.org/10.1038/nature13074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.198701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038832273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1432-1033.1988.tb14150.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038914758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2007.15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040889010", 
          "https://doi.org/10.1038/nprot.2007.15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1211198109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046048163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1311244110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046194374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibs.2013.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046803245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1324141111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051439709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/physiol.00030.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053468621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1213351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218530", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078616365", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-11", 
    "datePublishedReg": "2014-11-01", 
    "description": "SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6\u00a0+\u00a01-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2\u00a0\u00d7\u00a02 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature13670", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2439737", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4321694", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7527", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "515"
      }
    ], 
    "name": "Structures of bacterial homologues of SWEET transporters in two distinct conformations", 
    "pagination": "448", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "58ab329fe490dee9e65b3cd56cbbdd3cb7e176bf1eb0bf40d6057f0a6ef1c3f4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "25186729"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature13670"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1018609943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature13670", 
      "https://app.dimensions.ai/details/publication/pub.1018609943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature13670"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature13670'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature13670'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature13670'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature13670'


 

This table displays all metadata directly associated to this object as RDF triples.

317 TRIPLES      21 PREDICATES      82 URIs      34 LITERALS      22 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature13670 schema:about N0ade5900d913443da39cc81e969cf2da
2 N0ae1209a3d1e42d78127910201157ce4
3 N0b1df1f279704021be87c5b79aa3321a
4 N0cd0df6a168348dfbb6b9f909df37902
5 N0ef61339d50449f984634035c3109812
6 N41f2400608a14365943d5d414c8d0576
7 N432217b560564e0ba76876754af02136
8 N4d0165a651c34431bf5f469b27baf6a4
9 N505cb2c88d1b4ce6aee6f6b917376809
10 N647f3d4c2b97434a821057f1954fa9fe
11 N67cc7781bcdf42938e8e4e8e23fde61f
12 N845b80fd90dc4181bc15dc92181a8ef7
13 Nc1f35b20fbb2428397cc681774af4454
14 anzsrc-for:06
15 anzsrc-for:0601
16 schema:author N19c15aafb5c348b3867b15f2e6299c93
17 schema:citation sg:pub.10.1007/s00232-010-9327-5
18 sg:pub.10.1007/s00497-012-0208-1
19 sg:pub.10.1038/nature05579
20 sg:pub.10.1038/nature09606
21 sg:pub.10.1038/nature11524
22 sg:pub.10.1038/nature13074
23 sg:pub.10.1038/nature13082
24 sg:pub.10.1038/nature13306
25 sg:pub.10.1038/nprot.2007.15
26 sg:pub.10.1038/nsb0497-269
27 https://app.dimensions.ai/details/publication/pub.1078616365
28 https://doi.org/10.1016/j.bbabio.2010.10.014
29 https://doi.org/10.1016/j.mam.2012.11.002
30 https://doi.org/10.1016/j.molcel.2009.01.035
31 https://doi.org/10.1016/j.sbi.2009.06.002
32 https://doi.org/10.1016/j.tibs.2013.01.003
33 https://doi.org/10.1016/s0005-2736(00)00389-8
34 https://doi.org/10.1016/s0014-5793(99)01698-1
35 https://doi.org/10.1016/s0076-6879(97)76066-x
36 https://doi.org/10.1042/bj1620309
37 https://doi.org/10.1073/pnas.1211198109
38 https://doi.org/10.1073/pnas.1311244110
39 https://doi.org/10.1073/pnas.1324141111
40 https://doi.org/10.1074/jbc.m113.469023
41 https://doi.org/10.1074/mcp.m700164-mcp200
42 https://doi.org/10.1101/gr.198701
43 https://doi.org/10.1105/tpc.110.078964
44 https://doi.org/10.1107/s0907444902011678
45 https://doi.org/10.1107/s0907444904019158
46 https://doi.org/10.1107/s0907444906045975
47 https://doi.org/10.1107/s0907444909042073
48 https://doi.org/10.1107/s0907444909047337
49 https://doi.org/10.1107/s0907444909052925
50 https://doi.org/10.1111/j.1432-0436.2005.00037.x
51 https://doi.org/10.1111/j.1432-1033.1988.tb14150.x
52 https://doi.org/10.1126/science.1213351
53 https://doi.org/10.1126/science.1218099
54 https://doi.org/10.1126/science.1218530
55 https://doi.org/10.1146/annurev.arplant.55.031903.141758
56 https://doi.org/10.1152/physiol.00030.2009
57 schema:datePublished 2014-11
58 schema:datePublishedReg 2014-11-01
59 schema:description SWEETs and their prokaryotic homologues are monosaccharide and disaccharide transporters that are present from Archaea to plants and humans. SWEETs play crucial roles in cellular sugar efflux processes: that is, in phloem loading, pollen nutrition and nectar secretion. Their bacterial homologues, which are called SemiSWEETs, are among the smallest known transporters. Here we show that SemiSWEET molecules, which consist of a triple-helix bundle, form symmetrical, parallel dimers, thereby generating the translocation pathway. Two SemiSWEET isoforms were crystallized, one in an apparently open state and one in an occluded state, indicating that SemiSWEETs and SWEETs are transporters that undergo rocking-type movements during the transport cycle. The topology of the triple-helix bundle is similar yet distinct to that of the basic building block of animal and plant major facilitator superfamily (MFS) transporters (for example, GLUTs and SUTs). This finding indicates two possibilities: that SWEETs and MFS transporters evolved from an ancestral triple-helix bundle or that the triple-helix bundle represents convergent evolution. In SemiSWEETs and SWEETs, two triple-helix bundles are arranged in a parallel configuration to produce the 6- and 6 + 1-transmembrane-helix pores, respectively. In the 12-transmembrane-helix MFS transporters, four triple-helix bundles are arranged into an alternating antiparallel configuration, resulting in a much larger 2 × 2 triple-helix bundle forming the pore. Given the similarity of SemiSWEETs and SWEETs to PQ-loop amino acid transporters and to mitochondrial pyruvate carriers (MPCs), the structures characterized here may also be relevant to other transporters in the MtN3 clan. The insight gained from the structures of these transporters and from the analysis of mutations of conserved residues will improve the understanding of the transport mechanism, as well as allow comparative studies of the different superfamilies involved in sugar transport and the evolution of transporters in general.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree true
63 schema:isPartOf N932e118a992c447baa32aa5d7e2a6240
64 Nd8b1240fb3594d26a320bed7f4564817
65 sg:journal.1018957
66 schema:name Structures of bacterial homologues of SWEET transporters in two distinct conformations
67 schema:pagination 448
68 schema:productId N078957110c384c869b38a76b849fbd54
69 N2e50be498f9248cc94fe0e0f7632f060
70 N67f6d688875144f4b81e154893eb1413
71 N6d4660206cce4a8d87b7e98d9df0e2a6
72 N73d660275d3c4a05a1de4140f0242431
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018609943
74 https://doi.org/10.1038/nature13670
75 schema:sdDatePublished 2019-04-11T00:55
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher Na211bec2b9f94ee08151f7aba2d6b25e
78 schema:url https://www.nature.com/articles/nature13670
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N078957110c384c869b38a76b849fbd54 schema:name pubmed_id
83 schema:value 25186729
84 rdf:type schema:PropertyValue
85 N0ade5900d913443da39cc81e969cf2da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Monosaccharide Transport Proteins
87 rdf:type schema:DefinedTerm
88 N0ae1209a3d1e42d78127910201157ce4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Evolution, Molecular
90 rdf:type schema:DefinedTerm
91 N0b1df1f279704021be87c5b79aa3321a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Models, Molecular
93 rdf:type schema:DefinedTerm
94 N0cd0df6a168348dfbb6b9f909df37902 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Movement
96 rdf:type schema:DefinedTerm
97 N0ef61339d50449f984634035c3109812 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Structure-Activity Relationship
99 rdf:type schema:DefinedTerm
100 N19c15aafb5c348b3867b15f2e6299c93 rdf:first sg:person.01217437636.23
101 rdf:rest N43cf6644863a40d6b274a4f0b3c81c85
102 N23dad2ed4ba24b869a5dd5e5f4b0e1c6 rdf:first sg:person.01024646170.85
103 rdf:rest N363b2241e2374b9193825638fbdac2f1
104 N2e50be498f9248cc94fe0e0f7632f060 schema:name dimensions_id
105 schema:value pub.1018609943
106 rdf:type schema:PropertyValue
107 N363b2241e2374b9193825638fbdac2f1 rdf:first sg:person.01107052336.94
108 rdf:rest rdf:nil
109 N41f2400608a14365943d5d414c8d0576 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Glucose
111 rdf:type schema:DefinedTerm
112 N432217b560564e0ba76876754af02136 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Leptospira
114 rdf:type schema:DefinedTerm
115 N43cf6644863a40d6b274a4f0b3c81c85 rdf:first sg:person.01265553036.60
116 rdf:rest Nd7a8f8adf77c44b3b933c728e3224559
117 N4d0165a651c34431bf5f469b27baf6a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Arabidopsis
119 rdf:type schema:DefinedTerm
120 N505cb2c88d1b4ce6aee6f6b917376809 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Protein Conformation
122 rdf:type schema:DefinedTerm
123 N5d5ae59422f342798284ac0ef9961ed6 rdf:first sg:person.0610262136.40
124 rdf:rest N7806a4073fca48ada493cbc4b26ee63b
125 N647f3d4c2b97434a821057f1954fa9fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Protein Multimerization
127 rdf:type schema:DefinedTerm
128 N67cc7781bcdf42938e8e4e8e23fde61f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Bacterial Proteins
130 rdf:type schema:DefinedTerm
131 N67f6d688875144f4b81e154893eb1413 schema:name readcube_id
132 schema:value 58ab329fe490dee9e65b3cd56cbbdd3cb7e176bf1eb0bf40d6057f0a6ef1c3f4
133 rdf:type schema:PropertyValue
134 N6d4660206cce4a8d87b7e98d9df0e2a6 schema:name doi
135 schema:value 10.1038/nature13670
136 rdf:type schema:PropertyValue
137 N73d660275d3c4a05a1de4140f0242431 schema:name nlm_unique_id
138 schema:value 0410462
139 rdf:type schema:PropertyValue
140 N75435b87f24243b68cc86c695ff09ef5 rdf:first N9939ac6ae22a47ee89a62ffccc1d2f74
141 rdf:rest Nb6712e6a97b7412cb3ed734bfb839091
142 N7806a4073fca48ada493cbc4b26ee63b rdf:first sg:person.0604507561.72
143 rdf:rest N75435b87f24243b68cc86c695ff09ef5
144 N845b80fd90dc4181bc15dc92181a8ef7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Vibrio
146 rdf:type schema:DefinedTerm
147 N932e118a992c447baa32aa5d7e2a6240 schema:volumeNumber 515
148 rdf:type schema:PublicationVolume
149 N9939ac6ae22a47ee89a62ffccc1d2f74 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
150 schema:familyName Xu
151 schema:givenName Sophia
152 rdf:type schema:Person
153 Na211bec2b9f94ee08151f7aba2d6b25e schema:name Springer Nature - SN SciGraph project
154 rdf:type schema:Organization
155 Nb6712e6a97b7412cb3ed734bfb839091 rdf:first sg:person.0766252000.50
156 rdf:rest N23dad2ed4ba24b869a5dd5e5f4b0e1c6
157 Nc1f35b20fbb2428397cc681774af4454 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Crystallography, X-Ray
159 rdf:type schema:DefinedTerm
160 Nd7a8f8adf77c44b3b933c728e3224559 rdf:first sg:person.01004451757.55
161 rdf:rest N5d5ae59422f342798284ac0ef9961ed6
162 Nd8b1240fb3594d26a320bed7f4564817 schema:issueNumber 7527
163 rdf:type schema:PublicationIssue
164 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
165 schema:name Biological Sciences
166 rdf:type schema:DefinedTerm
167 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
168 schema:name Biochemistry and Cell Biology
169 rdf:type schema:DefinedTerm
170 sg:grant.2439737 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13670
171 rdf:type schema:MonetaryGrant
172 sg:grant.4321694 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13670
173 rdf:type schema:MonetaryGrant
174 sg:journal.1018957 schema:issn 0090-0028
175 1476-4687
176 schema:name Nature
177 rdf:type schema:Periodical
178 sg:person.01004451757.55 schema:affiliation https://www.grid.ac/institutes/grid.418000.d
179 schema:familyName Cheung
180 schema:givenName Lily S.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01004451757.55
182 rdf:type schema:Person
183 sg:person.01024646170.85 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
184 schema:familyName Frommer
185 schema:givenName Wolf B.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01024646170.85
187 rdf:type schema:Person
188 sg:person.01107052336.94 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
189 schema:familyName Feng
190 schema:givenName Liang
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01107052336.94
192 rdf:type schema:Person
193 sg:person.01217437636.23 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
194 schema:familyName Xu
195 schema:givenName Yan
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217437636.23
197 rdf:type schema:Person
198 sg:person.01265553036.60 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
199 schema:familyName Tao
200 schema:givenName Yuyong
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265553036.60
202 rdf:type schema:Person
203 sg:person.0604507561.72 schema:affiliation https://www.grid.ac/institutes/grid.418000.d
204 schema:familyName Chen
205 schema:givenName Li-Qing
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604507561.72
207 rdf:type schema:Person
208 sg:person.0610262136.40 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
209 schema:familyName Fan
210 schema:givenName Chao
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610262136.40
212 rdf:type schema:Person
213 sg:person.0766252000.50 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
214 schema:familyName Perry
215 schema:givenName Kay
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766252000.50
217 rdf:type schema:Person
218 sg:pub.10.1007/s00232-010-9327-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009536890
219 https://doi.org/10.1007/s00232-010-9327-5
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s00497-012-0208-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033673770
222 https://doi.org/10.1007/s00497-012-0208-1
223 rdf:type schema:CreativeWork
224 sg:pub.10.1038/nature05579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027857435
225 https://doi.org/10.1038/nature05579
226 rdf:type schema:CreativeWork
227 sg:pub.10.1038/nature09606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021076498
228 https://doi.org/10.1038/nature09606
229 rdf:type schema:CreativeWork
230 sg:pub.10.1038/nature11524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035673999
231 https://doi.org/10.1038/nature11524
232 rdf:type schema:CreativeWork
233 sg:pub.10.1038/nature13074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038051353
234 https://doi.org/10.1038/nature13074
235 rdf:type schema:CreativeWork
236 sg:pub.10.1038/nature13082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008325002
237 https://doi.org/10.1038/nature13082
238 rdf:type schema:CreativeWork
239 sg:pub.10.1038/nature13306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002725930
240 https://doi.org/10.1038/nature13306
241 rdf:type schema:CreativeWork
242 sg:pub.10.1038/nprot.2007.15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040889010
243 https://doi.org/10.1038/nprot.2007.15
244 rdf:type schema:CreativeWork
245 sg:pub.10.1038/nsb0497-269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013702320
246 https://doi.org/10.1038/nsb0497-269
247 rdf:type schema:CreativeWork
248 https://app.dimensions.ai/details/publication/pub.1078616365 schema:CreativeWork
249 https://doi.org/10.1016/j.bbabio.2010.10.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022427157
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1016/j.mam.2012.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035893005
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1016/j.molcel.2009.01.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024347213
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1016/j.sbi.2009.06.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025730238
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1016/j.tibs.2013.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046803245
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1016/s0005-2736(00)00389-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019772065
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1016/s0014-5793(99)01698-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022197500
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1016/s0076-6879(97)76066-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004907170
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1042/bj1620309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008966930
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1073/pnas.1211198109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046048163
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1073/pnas.1311244110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046194374
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1073/pnas.1324141111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051439709
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1074/jbc.m113.469023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006425220
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1074/mcp.m700164-mcp200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011360346
276 rdf:type schema:CreativeWork
277 https://doi.org/10.1101/gr.198701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038832273
278 rdf:type schema:CreativeWork
279 https://doi.org/10.1105/tpc.110.078964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006152138
280 rdf:type schema:CreativeWork
281 https://doi.org/10.1107/s0907444902011678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021532775
282 rdf:type schema:CreativeWork
283 https://doi.org/10.1107/s0907444904019158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020281098
284 rdf:type schema:CreativeWork
285 https://doi.org/10.1107/s0907444906045975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016114112
286 rdf:type schema:CreativeWork
287 https://doi.org/10.1107/s0907444909042073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018458004
288 rdf:type schema:CreativeWork
289 https://doi.org/10.1107/s0907444909047337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032162623
290 rdf:type schema:CreativeWork
291 https://doi.org/10.1107/s0907444909052925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020777046
292 rdf:type schema:CreativeWork
293 https://doi.org/10.1111/j.1432-0436.2005.00037.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1000572168
294 rdf:type schema:CreativeWork
295 https://doi.org/10.1111/j.1432-1033.1988.tb14150.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038914758
296 rdf:type schema:CreativeWork
297 https://doi.org/10.1126/science.1213351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465609
298 rdf:type schema:CreativeWork
299 https://doi.org/10.1126/science.1218099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465937
300 rdf:type schema:CreativeWork
301 https://doi.org/10.1126/science.1218530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465970
302 rdf:type schema:CreativeWork
303 https://doi.org/10.1146/annurev.arplant.55.031903.141758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012642079
304 rdf:type schema:CreativeWork
305 https://doi.org/10.1152/physiol.00030.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053468621
306 rdf:type schema:CreativeWork
307 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
308 schema:name Department of Biology, Stanford University, Stanford, California 94305, USA
309 Department of Molecular and Cellular Physiology, 279 Campus Drive, Stanford University School of Medicine, Stanford, California 94305, USA
310 Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
311 rdf:type schema:Organization
312 https://www.grid.ac/institutes/grid.418000.d schema:alternateName Department of Plant Biology
313 schema:name Department of Plant Biology, Carnegie Institution for Science, 260 Panama Street, Stanford, California 94305, USA
314 rdf:type schema:Organization
315 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
316 schema:name NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
317 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...