Quantitative flux analysis reveals folate-dependent NADPH production View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06

AUTHORS

Jing Fan, Jiangbin Ye, Jurre J. Kamphorst, Tomer Shlomi, Craig B. Thompson, Joshua D. Rabinowitz

ABSTRACT

ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP(+) to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP(+) and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power. More... »

PAGES

298

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature13236

DOI

http://dx.doi.org/10.1038/nature13236

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023194400

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24805240


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Line, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytosol", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Folic Acid", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glutathione", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Glycine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "HEK293 Cells", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Isoenzymes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Leucovorin", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Methylenetetrahydrofolate Dehydrogenase (NADP)", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mice", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mitochondria", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "NADP", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidation-Reduction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Oxidative Stress", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pentose Phosphate Pathway", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Serine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tetrahydrofolates", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fan", 
        "givenName": "Jing", 
        "id": "sg:person.01146603521.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146603521.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ye", 
        "givenName": "Jiangbin", 
        "id": "sg:person.01352075426.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352075426.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kamphorst", 
        "givenName": "Jurre J.", 
        "id": "sg:person.01125641466.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125641466.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technion \u2013 Israel Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA", 
            "Department of Computer Science, Technion \u2013 Israel Institute of Technology, Haifa 32000, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shlomi", 
        "givenName": "Tomer", 
        "id": "sg:person.0657465575.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657465575.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Memorial Sloan Kettering Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.51462.34", 
          "name": [
            "Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson", 
        "givenName": "Craig B.", 
        "id": "sg:person.010620654227.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620654227.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rabinowitz", 
        "givenName": "Joshua D.", 
        "id": "sg:person.01325077714.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325077714.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature11540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000007436", 
          "https://doi.org/10.1038/nature11540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/cddis.2013.393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005173094", 
          "https://doi.org/10.1038/cddis.2013.393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature12040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005310785", 
          "https://doi.org/10.1038/nature12040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac1021166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005562066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac1021166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005562066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006974173", 
          "https://doi.org/10.1038/ng.890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007033767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007033767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009100608", 
          "https://doi.org/10.1038/ncomms4128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nprot.2008.131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010408933", 
          "https://doi.org/10.1038/nprot.2008.131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1476-4598-7-79", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019031166", 
          "https://doi.org/10.1186/1476-4598-7-79"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0083-6729(08)00414-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019079574"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiotec.2009.07.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021408038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2012.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022050778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/jcbfm.2012.85", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022050778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11743", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024833346", 
          "https://doi.org/10.1038/nature11743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1218595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025191587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610772104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027487019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-411-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027677011", 
          "https://doi.org/10.1007/978-1-60761-411-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-60761-411-1_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027677011", 
          "https://doi.org/10.1007/978-1-60761-411-1_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1000514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028391548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030438459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2011.63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030438459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033238111", 
          "https://doi.org/10.1038/nbt.1500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0076-6879(08)01605-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033266676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1160809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033271739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1160809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033271739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abbi.1996.0551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033794230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034030869", 
          "https://doi.org/10.1038/nature11776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/bts127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036035355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.nutr.012809.104810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041312800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0006-291x(81)91850-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043856482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045502595", 
          "https://doi.org/10.1038/nature10350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1535-6108(02)00126-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046094495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1211485", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047887177"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1204176109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050268275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2011.11.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050588735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac902837x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055072121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac902837x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055072121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi971906t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055214584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi971906t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055214584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/ars.2010.3489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059231355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.123.3191.309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062467291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074894596", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078481764", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081708183", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082308870", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1998.274.5.e843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083272080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpendo.1998.274.5.e843", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083272080"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-06", 
    "datePublishedReg": "2014-06-01", 
    "description": "ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP(+) to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP(+) and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature13236", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2440526", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2459473", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2481674", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2435806", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2438866", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2477237", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7504", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "510"
      }
    ], 
    "name": "Quantitative flux analysis reveals folate-dependent NADPH production", 
    "pagination": "298", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6e80fe9e35cecbef19272db9a612265015ec8fd0722c1aecbbc14c24c064cba0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24805240"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature13236"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023194400"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature13236", 
      "https://app.dimensions.ai/details/publication/pub.1023194400"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000424.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature13236"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature13236'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature13236'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature13236'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature13236'


 

This table displays all metadata directly associated to this object as RDF triples.

335 TRIPLES      21 PREDICATES      90 URIs      42 LITERALS      30 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature13236 schema:about N0267ea716d2a425e920e59e2436b98b6
2 N04aff35b95b7448cb29fe4f990820600
3 N0fb7284c13174722b3d87e33fe78bb93
4 N2102342de9c04edd91a21c3deee32b83
5 N2e3f32fb528249ada9042284507936fc
6 N57bb0ed35a5f47bf92e1dbee44267e53
7 N6f869dfe59334c25af9f07efea25c799
8 N70a13c48bd4e4aab842b20e7a6c5a547
9 N764e3e9ba291402289f3209b0aef34fe
10 N9065da99e58a475eb9afcb0d312cfe9d
11 N9b413221fb2e4bb2b9062e5e24d32087
12 Na43f2aea9f704311af1f682a83ce48be
13 Na887686834cf4eb39ee918bbf7621bef
14 Naea15e3d34724a94bb4db8e8862359fe
15 Nb0ee85b44fdb4e7283dda1491335a31c
16 Nbd576ab4dcc747298e0baa65bc99b31d
17 Nc44839ca4463473aa6fa5affb6433d95
18 Nd2c82fa651584855af71ad210f8bc98c
19 Ndcecbcde9c24472ba084f80942c16849
20 Nec3f601c4fb24a9fb43bb283439c7da1
21 Neddd9184058349e0802f9260d0b858cc
22 anzsrc-for:06
23 anzsrc-for:0601
24 schema:author Nf23cca3a82d845898f663a6c5e012be2
25 schema:citation sg:pub.10.1007/978-1-60761-411-1_4
26 sg:pub.10.1038/cddis.2013.393
27 sg:pub.10.1038/nature10350
28 sg:pub.10.1038/nature11540
29 sg:pub.10.1038/nature11743
30 sg:pub.10.1038/nature11776
31 sg:pub.10.1038/nature12040
32 sg:pub.10.1038/nbt.1500
33 sg:pub.10.1038/ncomms4128
34 sg:pub.10.1038/ng.890
35 sg:pub.10.1038/nprot.2008.131
36 sg:pub.10.1186/1476-4598-7-79
37 https://app.dimensions.ai/details/publication/pub.1074894596
38 https://app.dimensions.ai/details/publication/pub.1078481764
39 https://app.dimensions.ai/details/publication/pub.1081708183
40 https://app.dimensions.ai/details/publication/pub.1082308870
41 https://doi.org/10.1006/abbi.1996.0551
42 https://doi.org/10.1016/0006-291x(81)91850-7
43 https://doi.org/10.1016/j.cell.2011.11.050
44 https://doi.org/10.1016/j.jbiotec.2009.07.010
45 https://doi.org/10.1016/s0076-6879(08)01605-4
46 https://doi.org/10.1016/s0083-6729(08)00414-7
47 https://doi.org/10.1016/s1535-6108(02)00126-5
48 https://doi.org/10.1021/ac1021166
49 https://doi.org/10.1021/ac902837x
50 https://doi.org/10.1021/bi971906t
51 https://doi.org/10.1038/jcbfm.2012.85
52 https://doi.org/10.1038/msb.2011.35
53 https://doi.org/10.1038/msb.2011.63
54 https://doi.org/10.1073/pnas.0610772104
55 https://doi.org/10.1073/pnas.1204176109
56 https://doi.org/10.1089/ars.2010.3489
57 https://doi.org/10.1093/bioinformatics/bts127
58 https://doi.org/10.1126/science.1160809
59 https://doi.org/10.1126/science.1211485
60 https://doi.org/10.1126/science.1218595
61 https://doi.org/10.1126/science.123.3191.309
62 https://doi.org/10.1146/annurev.nutr.012809.104810
63 https://doi.org/10.1152/ajpendo.1998.274.5.e843
64 https://doi.org/10.1371/journal.pbio.1000514
65 schema:datePublished 2014-06
66 schema:datePublishedReg 2014-06-01
67 schema:description ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP(+) to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP(+) and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.
68 schema:genre research_article
69 schema:inLanguage en
70 schema:isAccessibleForFree true
71 schema:isPartOf Nbf92175be264460bb035567bbbf959b5
72 Nffffdaeca3194af48345a1d18f989d74
73 sg:journal.1018957
74 schema:name Quantitative flux analysis reveals folate-dependent NADPH production
75 schema:pagination 298
76 schema:productId N251ec50bc58345c1b177453d95ffd04a
77 N478f8abd40ab478b9715d0bdefd426da
78 N554bfd9841a34552bd164ff47b0ba7bb
79 Na0264647e1ef4ef6ac0322ee8b89e100
80 Nb9eeec59f9ce402ab720942ef52dcc51
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023194400
82 https://doi.org/10.1038/nature13236
83 schema:sdDatePublished 2019-04-10T17:19
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Ne43b389f91e64f3294c6c821ad542555
86 schema:url https://www.nature.com/articles/nature13236
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N0267ea716d2a425e920e59e2436b98b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Oxidative Stress
92 rdf:type schema:DefinedTerm
93 N04aff35b95b7448cb29fe4f990820600 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Cell Line, Tumor
95 rdf:type schema:DefinedTerm
96 N0fb7284c13174722b3d87e33fe78bb93 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Cytosol
98 rdf:type schema:DefinedTerm
99 N1443798df4ec45299acee212ee0f75a5 rdf:first sg:person.01325077714.08
100 rdf:rest rdf:nil
101 N1a8e6c9e51ce4ba2894902c62eea70db rdf:first sg:person.01125641466.58
102 rdf:rest N58b6cd557ee944d58ae06bf8e7df955b
103 N2102342de9c04edd91a21c3deee32b83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name HEK293 Cells
105 rdf:type schema:DefinedTerm
106 N251ec50bc58345c1b177453d95ffd04a schema:name pubmed_id
107 schema:value 24805240
108 rdf:type schema:PropertyValue
109 N2e3f32fb528249ada9042284507936fc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Methylenetetrahydrofolate Dehydrogenase (NADP)
111 rdf:type schema:DefinedTerm
112 N478f8abd40ab478b9715d0bdefd426da schema:name nlm_unique_id
113 schema:value 0410462
114 rdf:type schema:PropertyValue
115 N554bfd9841a34552bd164ff47b0ba7bb schema:name doi
116 schema:value 10.1038/nature13236
117 rdf:type schema:PropertyValue
118 N57bb0ed35a5f47bf92e1dbee44267e53 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Isoenzymes
120 rdf:type schema:DefinedTerm
121 N58b6cd557ee944d58ae06bf8e7df955b rdf:first sg:person.0657465575.42
122 rdf:rest N987f6444f62e4dcb87f0ea35f16f8941
123 N5ef5da5cacee4d56bed5ae0867d1053a rdf:first sg:person.01352075426.39
124 rdf:rest N1a8e6c9e51ce4ba2894902c62eea70db
125 N6f869dfe59334c25af9f07efea25c799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Humans
127 rdf:type schema:DefinedTerm
128 N70a13c48bd4e4aab842b20e7a6c5a547 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Oxidation-Reduction
130 rdf:type schema:DefinedTerm
131 N764e3e9ba291402289f3209b0aef34fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Serine
133 rdf:type schema:DefinedTerm
134 N9065da99e58a475eb9afcb0d312cfe9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Glycine
136 rdf:type schema:DefinedTerm
137 N987f6444f62e4dcb87f0ea35f16f8941 rdf:first sg:person.010620654227.65
138 rdf:rest N1443798df4ec45299acee212ee0f75a5
139 N9b413221fb2e4bb2b9062e5e24d32087 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Glutathione
141 rdf:type schema:DefinedTerm
142 Na0264647e1ef4ef6ac0322ee8b89e100 schema:name dimensions_id
143 schema:value pub.1023194400
144 rdf:type schema:PropertyValue
145 Na43f2aea9f704311af1f682a83ce48be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name NADP
147 rdf:type schema:DefinedTerm
148 Na887686834cf4eb39ee918bbf7621bef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Folic Acid
150 rdf:type schema:DefinedTerm
151 Naea15e3d34724a94bb4db8e8862359fe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Animals
153 rdf:type schema:DefinedTerm
154 Nb0ee85b44fdb4e7283dda1491335a31c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Mice
156 rdf:type schema:DefinedTerm
157 Nb9eeec59f9ce402ab720942ef52dcc51 schema:name readcube_id
158 schema:value 6e80fe9e35cecbef19272db9a612265015ec8fd0722c1aecbbc14c24c064cba0
159 rdf:type schema:PropertyValue
160 Nbd576ab4dcc747298e0baa65bc99b31d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Cell Line
162 rdf:type schema:DefinedTerm
163 Nbf92175be264460bb035567bbbf959b5 schema:volumeNumber 510
164 rdf:type schema:PublicationVolume
165 Nc44839ca4463473aa6fa5affb6433d95 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Pentose Phosphate Pathway
167 rdf:type schema:DefinedTerm
168 Nd2c82fa651584855af71ad210f8bc98c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Tetrahydrofolates
170 rdf:type schema:DefinedTerm
171 Ndcecbcde9c24472ba084f80942c16849 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Mitochondria
173 rdf:type schema:DefinedTerm
174 Ne43b389f91e64f3294c6c821ad542555 schema:name Springer Nature - SN SciGraph project
175 rdf:type schema:Organization
176 Nec3f601c4fb24a9fb43bb283439c7da1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Leucovorin
178 rdf:type schema:DefinedTerm
179 Neddd9184058349e0802f9260d0b858cc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Carbon
181 rdf:type schema:DefinedTerm
182 Nf23cca3a82d845898f663a6c5e012be2 rdf:first sg:person.01146603521.13
183 rdf:rest N5ef5da5cacee4d56bed5ae0867d1053a
184 Nffffdaeca3194af48345a1d18f989d74 schema:issueNumber 7504
185 rdf:type schema:PublicationIssue
186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
187 schema:name Biological Sciences
188 rdf:type schema:DefinedTerm
189 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
190 schema:name Biochemistry and Cell Biology
191 rdf:type schema:DefinedTerm
192 sg:grant.2435806 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13236
193 rdf:type schema:MonetaryGrant
194 sg:grant.2438866 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13236
195 rdf:type schema:MonetaryGrant
196 sg:grant.2440526 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13236
197 rdf:type schema:MonetaryGrant
198 sg:grant.2459473 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13236
199 rdf:type schema:MonetaryGrant
200 sg:grant.2477237 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13236
201 rdf:type schema:MonetaryGrant
202 sg:grant.2481674 http://pending.schema.org/fundedItem sg:pub.10.1038/nature13236
203 rdf:type schema:MonetaryGrant
204 sg:journal.1018957 schema:issn 0090-0028
205 1476-4687
206 schema:name Nature
207 rdf:type schema:Periodical
208 sg:person.010620654227.65 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
209 schema:familyName Thompson
210 schema:givenName Craig B.
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010620654227.65
212 rdf:type schema:Person
213 sg:person.01125641466.58 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
214 schema:familyName Kamphorst
215 schema:givenName Jurre J.
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125641466.58
217 rdf:type schema:Person
218 sg:person.01146603521.13 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
219 schema:familyName Fan
220 schema:givenName Jing
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146603521.13
222 rdf:type schema:Person
223 sg:person.01325077714.08 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
224 schema:familyName Rabinowitz
225 schema:givenName Joshua D.
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325077714.08
227 rdf:type schema:Person
228 sg:person.01352075426.39 schema:affiliation https://www.grid.ac/institutes/grid.51462.34
229 schema:familyName Ye
230 schema:givenName Jiangbin
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352075426.39
232 rdf:type schema:Person
233 sg:person.0657465575.42 schema:affiliation https://www.grid.ac/institutes/grid.6451.6
234 schema:familyName Shlomi
235 schema:givenName Tomer
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0657465575.42
237 rdf:type schema:Person
238 sg:pub.10.1007/978-1-60761-411-1_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027677011
239 https://doi.org/10.1007/978-1-60761-411-1_4
240 rdf:type schema:CreativeWork
241 sg:pub.10.1038/cddis.2013.393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005173094
242 https://doi.org/10.1038/cddis.2013.393
243 rdf:type schema:CreativeWork
244 sg:pub.10.1038/nature10350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045502595
245 https://doi.org/10.1038/nature10350
246 rdf:type schema:CreativeWork
247 sg:pub.10.1038/nature11540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000007436
248 https://doi.org/10.1038/nature11540
249 rdf:type schema:CreativeWork
250 sg:pub.10.1038/nature11743 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024833346
251 https://doi.org/10.1038/nature11743
252 rdf:type schema:CreativeWork
253 sg:pub.10.1038/nature11776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034030869
254 https://doi.org/10.1038/nature11776
255 rdf:type schema:CreativeWork
256 sg:pub.10.1038/nature12040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005310785
257 https://doi.org/10.1038/nature12040
258 rdf:type schema:CreativeWork
259 sg:pub.10.1038/nbt.1500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238111
260 https://doi.org/10.1038/nbt.1500
261 rdf:type schema:CreativeWork
262 sg:pub.10.1038/ncomms4128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009100608
263 https://doi.org/10.1038/ncomms4128
264 rdf:type schema:CreativeWork
265 sg:pub.10.1038/ng.890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006974173
266 https://doi.org/10.1038/ng.890
267 rdf:type schema:CreativeWork
268 sg:pub.10.1038/nprot.2008.131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010408933
269 https://doi.org/10.1038/nprot.2008.131
270 rdf:type schema:CreativeWork
271 sg:pub.10.1186/1476-4598-7-79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019031166
272 https://doi.org/10.1186/1476-4598-7-79
273 rdf:type schema:CreativeWork
274 https://app.dimensions.ai/details/publication/pub.1074894596 schema:CreativeWork
275 https://app.dimensions.ai/details/publication/pub.1078481764 schema:CreativeWork
276 https://app.dimensions.ai/details/publication/pub.1081708183 schema:CreativeWork
277 https://app.dimensions.ai/details/publication/pub.1082308870 schema:CreativeWork
278 https://doi.org/10.1006/abbi.1996.0551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033794230
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1016/0006-291x(81)91850-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043856482
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1016/j.cell.2011.11.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050588735
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1016/j.jbiotec.2009.07.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021408038
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1016/s0076-6879(08)01605-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033266676
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1016/s0083-6729(08)00414-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019079574
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1016/s1535-6108(02)00126-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046094495
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1021/ac1021166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005562066
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1021/ac902837x schema:sameAs https://app.dimensions.ai/details/publication/pub.1055072121
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1021/bi971906t schema:sameAs https://app.dimensions.ai/details/publication/pub.1055214584
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1038/jcbfm.2012.85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022050778
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1038/msb.2011.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007033767
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1038/msb.2011.63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030438459
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1073/pnas.0610772104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027487019
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1073/pnas.1204176109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050268275
307 rdf:type schema:CreativeWork
308 https://doi.org/10.1089/ars.2010.3489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059231355
309 rdf:type schema:CreativeWork
310 https://doi.org/10.1093/bioinformatics/bts127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036035355
311 rdf:type schema:CreativeWork
312 https://doi.org/10.1126/science.1160809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033271739
313 rdf:type schema:CreativeWork
314 https://doi.org/10.1126/science.1211485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047887177
315 rdf:type schema:CreativeWork
316 https://doi.org/10.1126/science.1218595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025191587
317 rdf:type schema:CreativeWork
318 https://doi.org/10.1126/science.123.3191.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062467291
319 rdf:type schema:CreativeWork
320 https://doi.org/10.1146/annurev.nutr.012809.104810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041312800
321 rdf:type schema:CreativeWork
322 https://doi.org/10.1152/ajpendo.1998.274.5.e843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083272080
323 rdf:type schema:CreativeWork
324 https://doi.org/10.1371/journal.pbio.1000514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028391548
325 rdf:type schema:CreativeWork
326 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
327 schema:name Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA
328 rdf:type schema:Organization
329 https://www.grid.ac/institutes/grid.51462.34 schema:alternateName Memorial Sloan Kettering Cancer Center
330 schema:name Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
331 rdf:type schema:Organization
332 https://www.grid.ac/institutes/grid.6451.6 schema:alternateName Technion – Israel Institute of Technology
333 schema:name Department of Chemistry and Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA
334 Department of Computer Science, Technion – Israel Institute of Technology, Haifa 32000, Israel
335 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...