A metal-free organic–inorganic aqueous flow battery View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-01

AUTHORS

Brian Huskinson, Michael P. Marshak, Changwon Suh, Süleyman Er, Michael R. Gerhardt, Cooper J. Galvin, Xudong Chen, Alán Aspuru-Guzik, Roy G. Gordon, Michael J. Aziz

ABSTRACT

As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br(-) redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost. More... »

PAGES

195

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature12909

DOI

http://dx.doi.org/10.1038/nature12909

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043553122

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24402280


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huskinson", 
        "givenName": "Brian", 
        "id": "sg:person.01176102364.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176102364.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, Massachusetts 02138, USA", 
            "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marshak", 
        "givenName": "Michael P.", 
        "id": "sg:person.01244215564.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244215564.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suh", 
        "givenName": "Changwon", 
        "id": "sg:person.015134445661.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134445661.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Eindhoven University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6852.9", 
          "name": [
            "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA", 
            "Molecular Materials and Nanosystems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Er", 
        "givenName": "S\u00fcleyman", 
        "id": "sg:person.015123104620.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015123104620.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerhardt", 
        "givenName": "Michael R.", 
        "id": "sg:person.0635040064.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635040064.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galvin", 
        "givenName": "Cooper J.", 
        "id": "sg:person.0703153264.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703153264.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Xudong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aspuru-Guzik", 
        "givenName": "Al\u00e1n", 
        "id": "sg:person.01144233302.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144233302.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, Massachusetts 02138, USA", 
            "Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gordon", 
        "givenName": "Roy G.", 
        "id": "sg:person.012651422732.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651422732.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Harvard School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, Massachusetts 02138, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aziz", 
        "givenName": "Michael J.", 
        "id": "sg:person.01172732633.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172732633.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c2ee22274d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003058645"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4061/2011/816202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012136738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10800-011-0348-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015991297", 
          "https://doi.org/10.1007/s10800-011-0348-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.3599565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018232113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.2128776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019472874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-4020(01)82995-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021689605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.freeradbiomed.2010.05.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022831321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00296684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023499604", 
          "https://doi.org/10.1007/bf00296684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2010.06.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025425557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2ee02542f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027046776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr100290v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035243065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr100290v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035243065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2ra21342g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037515515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0728(00)00331-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040773596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2cc32466k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043170393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100389a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055668646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00105a030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055707373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01427a020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055798438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja02174a028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055828165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/je300407g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055883241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp055414z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056063223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp055414z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056063223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp953087x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056120794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp953087x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056120794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz100418p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056133425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jz100418p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056133425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060566310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.17953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.11169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.59.1758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060591374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/138620711795508331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069174721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/2.f06103if", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099765816"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01", 
    "datePublishedReg": "2014-01-01", 
    "description": "As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br(-) redox couple, yields a peak galvanic power density exceeding 0.6\u2009W\u2009cm(-2) at 1.3\u2009A\u2009cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of \u03c0-aromatic redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature12909", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3000154", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7482", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "505"
      }
    ], 
    "name": "A metal-free organic\u2013inorganic aqueous flow battery", 
    "pagination": "195", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cf7582fdfbef361bea79514e17c46a121581bc8aea2c030d9d7bcb965428182d"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24402280"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature12909"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043553122"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature12909", 
      "https://app.dimensions.ai/details/publication/pub.1043553122"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature12909"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature12909'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature12909'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature12909'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature12909'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      58 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature12909 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N8c59bef85ae4484b96656f85fd500999
4 schema:citation sg:pub.10.1007/bf00296684
5 sg:pub.10.1007/s10800-011-0348-2
6 https://doi.org/10.1016/j.freeradbiomed.2010.05.009
7 https://doi.org/10.1016/j.jpowsour.2010.06.069
8 https://doi.org/10.1016/s0022-0728(00)00331-4
9 https://doi.org/10.1016/s0040-4020(01)82995-1
10 https://doi.org/10.1021/cr100290v
11 https://doi.org/10.1021/j100389a010
12 https://doi.org/10.1021/ja00105a030
13 https://doi.org/10.1021/ja01427a020
14 https://doi.org/10.1021/ja02174a028
15 https://doi.org/10.1021/je300407g
16 https://doi.org/10.1021/jp055414z
17 https://doi.org/10.1021/jp953087x
18 https://doi.org/10.1021/jz100418p
19 https://doi.org/10.1039/c2cc32466k
20 https://doi.org/10.1039/c2ee02542f
21 https://doi.org/10.1039/c2ee22274d
22 https://doi.org/10.1039/c2ra21342g
23 https://doi.org/10.1103/physrevb.47.558
24 https://doi.org/10.1103/physrevb.50.17953
25 https://doi.org/10.1103/physrevb.54.11169
26 https://doi.org/10.1103/physrevb.59.1758
27 https://doi.org/10.1103/physrevlett.77.3865
28 https://doi.org/10.1149/1.2128776
29 https://doi.org/10.1149/1.3599565
30 https://doi.org/10.1149/2.f06103if
31 https://doi.org/10.2174/138620711795508331
32 https://doi.org/10.4061/2011/816202
33 schema:datePublished 2014-01
34 schema:datePublishedReg 2014-01-01
35 schema:description As the fraction of electricity generation from intermittent renewable sources--such as solar or wind--grows, the ability to store large amounts of electrical energy is of increasing importance. Solid-electrode batteries maintain discharge at peak power for far too short a time to fully regulate wind or solar power output. In contrast, flow batteries can independently scale the power (electrode area) and energy (arbitrarily large storage volume) components of the system by maintaining all of the electro-active species in fluid form. Wide-scale utilization of flow batteries is, however, limited by the abundance and cost of these materials, particularly those using redox-active metals and precious-metal electrocatalysts. Here we describe a class of energy storage materials that exploits the favourable chemical and electrochemical properties of a family of molecules known as quinones. The example we demonstrate is a metal-free flow battery based on the redox chemistry of 9,10-anthraquinone-2,7-disulphonic acid (AQDS). AQDS undergoes extremely rapid and reversible two-electron two-proton reduction on a glassy carbon electrode in sulphuric acid. An aqueous flow battery with inexpensive carbon electrodes, combining the quinone/hydroquinone couple with the Br2/Br(-) redox couple, yields a peak galvanic power density exceeding 0.6 W cm(-2) at 1.3 A cm(-2). Cycling of this quinone-bromide flow battery showed >99 per cent storage capacity retention per cycle. The organic anthraquinone species can be synthesized from inexpensive commodity chemicals. This organic approach permits tuning of important properties such as the reduction potential and solubility by adding functional groups: for example, we demonstrate that the addition of two hydroxy groups to AQDS increases the open circuit potential of the cell by 11% and we describe a pathway for further increases in cell voltage. The use of π-aromatic redox-active organic molecules instead of redox-active metals represents a new and promising direction for realizing massive electrical energy storage at greatly reduced cost.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree true
39 schema:isPartOf N29fc414e46e34422bacef2b2af6ebca2
40 Nf4b4a6d403fa4aae8cc2ff897c23db4c
41 sg:journal.1018957
42 schema:name A metal-free organic–inorganic aqueous flow battery
43 schema:pagination 195
44 schema:productId N21fe47c6d2dc426fbbfdbf6bc7ba05dc
45 N288bccdf63a24e15b5f8d8fcf1d58ad8
46 N36de383af1e84216897aec7e2f1110d0
47 Nb887954a5fdf494db722073279f70b20
48 Nc4f5b700aa354d2db14f371541bbc7bb
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043553122
50 https://doi.org/10.1038/nature12909
51 schema:sdDatePublished 2019-04-10T18:08
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nd5d2fe94c81a4afaa10e8b9af3955bf7
54 schema:url https://www.nature.com/articles/nature12909
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N0add6c0900754e5a98c6f0e12cfa36d1 rdf:first sg:person.015134445661.72
59 rdf:rest N74c89d5d5ab247fb96374c439a5d040e
60 N184368ef6cf34d08939ced75ecdedf8a rdf:first sg:person.012651422732.40
61 rdf:rest Nfd743d2159c24e178b45cabfe559f25a
62 N21fe47c6d2dc426fbbfdbf6bc7ba05dc schema:name nlm_unique_id
63 schema:value 0410462
64 rdf:type schema:PropertyValue
65 N24abb6a2a02348f8ac022e1e92f22b94 rdf:first sg:person.01144233302.51
66 rdf:rest N184368ef6cf34d08939ced75ecdedf8a
67 N288bccdf63a24e15b5f8d8fcf1d58ad8 schema:name doi
68 schema:value 10.1038/nature12909
69 rdf:type schema:PropertyValue
70 N29fc414e46e34422bacef2b2af6ebca2 schema:issueNumber 7482
71 rdf:type schema:PublicationIssue
72 N36de383af1e84216897aec7e2f1110d0 schema:name pubmed_id
73 schema:value 24402280
74 rdf:type schema:PropertyValue
75 N6297c7e430114e72b757367db3c81d7f rdf:first Nfdfd51acd5a24cc5b65c5149ffe468ea
76 rdf:rest N24abb6a2a02348f8ac022e1e92f22b94
77 N7242c6806b0544689335673d87142f71 rdf:first sg:person.0703153264.06
78 rdf:rest N6297c7e430114e72b757367db3c81d7f
79 N74c89d5d5ab247fb96374c439a5d040e rdf:first sg:person.015123104620.31
80 rdf:rest Nc912721ebf9a4f23948b628841a64d43
81 N8c59bef85ae4484b96656f85fd500999 rdf:first sg:person.01176102364.13
82 rdf:rest Nc7a32de5992c46beb9914b72b204d4e4
83 Nb887954a5fdf494db722073279f70b20 schema:name readcube_id
84 schema:value cf7582fdfbef361bea79514e17c46a121581bc8aea2c030d9d7bcb965428182d
85 rdf:type schema:PropertyValue
86 Nc4f5b700aa354d2db14f371541bbc7bb schema:name dimensions_id
87 schema:value pub.1043553122
88 rdf:type schema:PropertyValue
89 Nc7a32de5992c46beb9914b72b204d4e4 rdf:first sg:person.01244215564.86
90 rdf:rest N0add6c0900754e5a98c6f0e12cfa36d1
91 Nc912721ebf9a4f23948b628841a64d43 rdf:first sg:person.0635040064.77
92 rdf:rest N7242c6806b0544689335673d87142f71
93 Nd5d2fe94c81a4afaa10e8b9af3955bf7 schema:name Springer Nature - SN SciGraph project
94 rdf:type schema:Organization
95 Nf4b4a6d403fa4aae8cc2ff897c23db4c schema:volumeNumber 505
96 rdf:type schema:PublicationVolume
97 Nfd743d2159c24e178b45cabfe559f25a rdf:first sg:person.01172732633.23
98 rdf:rest rdf:nil
99 Nfdfd51acd5a24cc5b65c5149ffe468ea schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
100 schema:familyName Chen
101 schema:givenName Xudong
102 rdf:type schema:Person
103 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
104 schema:name Chemical Sciences
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
107 schema:name Physical Chemistry (incl. Structural)
108 rdf:type schema:DefinedTerm
109 sg:grant.3000154 http://pending.schema.org/fundedItem sg:pub.10.1038/nature12909
110 rdf:type schema:MonetaryGrant
111 sg:journal.1018957 schema:issn 0090-0028
112 1476-4687
113 schema:name Nature
114 rdf:type schema:Periodical
115 sg:person.01144233302.51 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
116 schema:familyName Aspuru-Guzik
117 schema:givenName Alán
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144233302.51
119 rdf:type schema:Person
120 sg:person.01172732633.23 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
121 schema:familyName Aziz
122 schema:givenName Michael J.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172732633.23
124 rdf:type schema:Person
125 sg:person.01176102364.13 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
126 schema:familyName Huskinson
127 schema:givenName Brian
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176102364.13
129 rdf:type schema:Person
130 sg:person.01244215564.86 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
131 schema:familyName Marshak
132 schema:givenName Michael P.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01244215564.86
134 rdf:type schema:Person
135 sg:person.012651422732.40 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
136 schema:familyName Gordon
137 schema:givenName Roy G.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651422732.40
139 rdf:type schema:Person
140 sg:person.015123104620.31 schema:affiliation https://www.grid.ac/institutes/grid.6852.9
141 schema:familyName Er
142 schema:givenName Süleyman
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015123104620.31
144 rdf:type schema:Person
145 sg:person.015134445661.72 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
146 schema:familyName Suh
147 schema:givenName Changwon
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015134445661.72
149 rdf:type schema:Person
150 sg:person.0635040064.77 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
151 schema:familyName Gerhardt
152 schema:givenName Michael R.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635040064.77
154 rdf:type schema:Person
155 sg:person.0703153264.06 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
156 schema:familyName Galvin
157 schema:givenName Cooper J.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703153264.06
159 rdf:type schema:Person
160 sg:pub.10.1007/bf00296684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023499604
161 https://doi.org/10.1007/bf00296684
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/s10800-011-0348-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015991297
164 https://doi.org/10.1007/s10800-011-0348-2
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.freeradbiomed.2010.05.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022831321
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.jpowsour.2010.06.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025425557
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0022-0728(00)00331-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040773596
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0040-4020(01)82995-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021689605
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/cr100290v schema:sameAs https://app.dimensions.ai/details/publication/pub.1035243065
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/j100389a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055668646
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/ja00105a030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055707373
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1021/ja01427a020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055798438
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1021/ja02174a028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055828165
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1021/je300407g schema:sameAs https://app.dimensions.ai/details/publication/pub.1055883241
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1021/jp055414z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056063223
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1021/jp953087x schema:sameAs https://app.dimensions.ai/details/publication/pub.1056120794
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1021/jz100418p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056133425
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1039/c2cc32466k schema:sameAs https://app.dimensions.ai/details/publication/pub.1043170393
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1039/c2ee02542f schema:sameAs https://app.dimensions.ai/details/publication/pub.1027046776
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1039/c2ee22274d schema:sameAs https://app.dimensions.ai/details/publication/pub.1003058645
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1039/c2ra21342g schema:sameAs https://app.dimensions.ai/details/publication/pub.1037515515
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevb.47.558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060566310
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevb.50.17953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573414
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevb.54.11169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581262
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physrevb.59.1758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060591374
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physrevlett.77.3865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814179
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1149/1.2128776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019472874
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1149/1.3599565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018232113
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1149/2.f06103if schema:sameAs https://app.dimensions.ai/details/publication/pub.1099765816
215 rdf:type schema:CreativeWork
216 https://doi.org/10.2174/138620711795508331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069174721
217 rdf:type schema:CreativeWork
218 https://doi.org/10.4061/2011/816202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012136738
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
221 schema:name Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
222 Harvard School of Engineering and Applied Sciences, 29 Oxford Street, Cambridge, Massachusetts 02138, USA
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.6852.9 schema:alternateName Eindhoven University of Technology
225 schema:name Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA
226 Molecular Materials and Nanosystems, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...