Spread in model climate sensitivity traced to atmospheric convective mixing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-01-01

AUTHORS

Steven C. Sherwood, Sandrine Bony, Jean-Louis Dufresne

ABSTRACT

Equilibrium climate sensitivity refers to the ultimate change in global mean temperature in response to a change in external forcing. Despite decades of research attempting to narrow uncertainties, equilibrium climate sensitivity estimates from climate models still span roughly 1.5 to 5 degrees Celsius for a doubling of atmospheric carbon dioxide concentration, precluding accurate projections of future climate. The spread arises largely from differences in the feedback from low clouds, for reasons not yet understood. Here we show that differences in the simulated strength of convective mixing between the lower and middle tropical troposphere explain about half of the variance in climate sensitivity estimated by 43 climate models. The apparent mechanism is that such mixing dehydrates the low-cloud layer at a rate that increases as the climate warms, and this rate of increase depends on the initial mixing strength, linking the mixing to cloud feedback. The mixing inferred from observations appears to be sufficiently strong to imply a climate sensitivity of more than 3 degrees for a doubling of carbon dioxide. This is significantly higher than the currently accepted lower bound of 1.5 degrees, thereby constraining model projections towards relatively severe future warming. More... »

PAGES

37-42

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature12829

DOI

http://dx.doi.org/10.1038/nature12829

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016927016

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24380952


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0401", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atmospheric Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Air Movements", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Atmosphere", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carbon Dioxide", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Climate", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Feedback", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Global Warming", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temperature", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Uncertainty", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney 2052, Australia", 
          "id": "http://www.grid.ac/institutes/grid.1005.4", 
          "name": [
            "Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney 2052, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sherwood", 
        "givenName": "Steven C.", 
        "id": "sg:person.0725170115.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725170115.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique and Institut Pierre Simon Laplace (LMD/IPSL), CNRS, Universit\u00e9 Pierre et Marie Curie, Paris 75252, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique and Institut Pierre Simon Laplace (LMD/IPSL), CNRS, Universit\u00e9 Pierre et Marie Curie, Paris 75252, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bony", 
        "givenName": "Sandrine", 
        "id": "sg:person.013647160343.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire de M\u00e9t\u00e9orologie Dynamique and Institut Pierre Simon Laplace (LMD/IPSL), CNRS, Universit\u00e9 Pierre et Marie Curie, Paris 75252, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Laboratoire de M\u00e9t\u00e9orologie Dynamique and Institut Pierre Simon Laplace (LMD/IPSL), CNRS, Universit\u00e9 Pierre et Marie Curie, Paris 75252, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dufresne", 
        "givenName": "Jean-Louis", 
        "id": "sg:person.01075255253.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00382-013-1725-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028387493", 
          "https://doi.org/10.1007/s00382-013-1725-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1336-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030808219", 
          "https://doi.org/10.1007/s00382-012-1336-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046916950", 
          "https://doi.org/10.1038/nature01092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0001433808030043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038001991", 
          "https://doi.org/10.1134/s0001433808030043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-011-1279-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031005835", 
          "https://doi.org/10.1007/s00382-011-1279-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00382-012-1608-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025483451", 
          "https://doi.org/10.1007/s00382-012-1608-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01-01", 
    "datePublishedReg": "2014-01-01", 
    "description": "Equilibrium climate sensitivity refers to the ultimate change in global mean temperature in response to a change in external forcing. Despite decades of research attempting to narrow uncertainties, equilibrium climate sensitivity estimates from climate models still span roughly 1.5 to 5 degrees Celsius for a doubling of atmospheric carbon dioxide concentration, precluding accurate projections of future climate. The spread arises largely from differences in the feedback from low clouds, for reasons not yet understood. Here we show that differences in the simulated strength of convective mixing between the lower and middle tropical troposphere explain about half of the variance in climate sensitivity estimated by 43 climate models. The apparent mechanism is that such mixing dehydrates the low-cloud layer at a rate that increases as the climate warms, and this rate of increase depends on the initial mixing strength, linking the mixing to cloud feedback. The mixing inferred from observations appears to be sufficiently strong to imply a climate sensitivity of more than 3 degrees for a doubling of carbon dioxide. This is significantly higher than the currently accepted lower bound of 1.5 degrees, thereby constraining model projections towards relatively severe future warming.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature12829", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3788763", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7481", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "505"
      }
    ], 
    "keywords": [
      "climate sensitivity", 
      "climate models", 
      "convective mixing", 
      "equilibrium climate sensitivity estimates", 
      "atmospheric carbon dioxide concentration", 
      "middle tropical troposphere", 
      "equilibrium climate sensitivity", 
      "climate sensitivity estimates", 
      "model climate sensitivity", 
      "global mean temperature", 
      "lower cloud layer", 
      "carbon dioxide concentration", 
      "cloud feedback", 
      "tropical troposphere", 
      "low clouds", 
      "future climate", 
      "model projections", 
      "future warming", 
      "external forcing", 
      "narrow uncertainties", 
      "accurate projections", 
      "mean temperature", 
      "simulated strength", 
      "dioxide concentration", 
      "climate", 
      "carbon dioxide", 
      "mixing", 
      "degrees Celsius", 
      "sensitivity estimates", 
      "rate of increase", 
      "forcing", 
      "troposphere", 
      "warming", 
      "projections", 
      "cloud", 
      "doubling", 
      "changes", 
      "feedback", 
      "estimates", 
      "uncertainty", 
      "Celsius", 
      "dioxide", 
      "apparent mechanism", 
      "layer", 
      "model", 
      "decades of research", 
      "temperature", 
      "concentration", 
      "decades", 
      "sensitivity", 
      "rate", 
      "dehydrate", 
      "degree", 
      "half", 
      "differences", 
      "increase", 
      "variance", 
      "strength", 
      "ultimate change", 
      "spread", 
      "response", 
      "mechanism", 
      "reasons", 
      "research", 
      "observations"
    ], 
    "name": "Spread in model climate sensitivity traced to atmospheric convective mixing", 
    "pagination": "37-42", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016927016"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature12829"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24380952"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature12829", 
      "https://app.dimensions.ai/details/publication/pub.1016927016"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_640.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature12829"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature12829'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature12829'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature12829'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature12829'


 

This table displays all metadata directly associated to this object as RDF triples.

205 TRIPLES      21 PREDICATES      105 URIs      91 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature12829 schema:about N16b80b51b05e440f960cede3e77ff29b
2 N5060be98b90a425484965c04322f2f9e
3 N6605c7e6724d482d945789c0666da362
4 N84e95cc75fc240c8a7784cdab179fafc
5 N87d6f7abb1e242d0a87e2a269f272651
6 N8e52ab5d9c0d425ca64b64b535c61f00
7 N93746673f606485290c0e800ea0a0842
8 Ncdc792cc7b904ece83a5a3c5d2ccf4a7
9 Nd32855df02d342bcaf1175c6b3b4d324
10 anzsrc-for:04
11 anzsrc-for:0401
12 schema:author N81f97b9570ad4d37bfb1f4b6501433b1
13 schema:citation sg:pub.10.1007/s00382-011-1279-7
14 sg:pub.10.1007/s00382-012-1336-x
15 sg:pub.10.1007/s00382-012-1608-5
16 sg:pub.10.1007/s00382-013-1725-9
17 sg:pub.10.1038/nature01092
18 sg:pub.10.1134/s0001433808030043
19 schema:datePublished 2014-01-01
20 schema:datePublishedReg 2014-01-01
21 schema:description Equilibrium climate sensitivity refers to the ultimate change in global mean temperature in response to a change in external forcing. Despite decades of research attempting to narrow uncertainties, equilibrium climate sensitivity estimates from climate models still span roughly 1.5 to 5 degrees Celsius for a doubling of atmospheric carbon dioxide concentration, precluding accurate projections of future climate. The spread arises largely from differences in the feedback from low clouds, for reasons not yet understood. Here we show that differences in the simulated strength of convective mixing between the lower and middle tropical troposphere explain about half of the variance in climate sensitivity estimated by 43 climate models. The apparent mechanism is that such mixing dehydrates the low-cloud layer at a rate that increases as the climate warms, and this rate of increase depends on the initial mixing strength, linking the mixing to cloud feedback. The mixing inferred from observations appears to be sufficiently strong to imply a climate sensitivity of more than 3 degrees for a doubling of carbon dioxide. This is significantly higher than the currently accepted lower bound of 1.5 degrees, thereby constraining model projections towards relatively severe future warming.
22 schema:genre article
23 schema:isAccessibleForFree false
24 schema:isPartOf N09a4ff31b956480b9432a2d7866b86e4
25 N8646ee02a8a44a00ad8a5cef0c0b75ce
26 sg:journal.1018957
27 schema:keywords Celsius
28 accurate projections
29 apparent mechanism
30 atmospheric carbon dioxide concentration
31 carbon dioxide
32 carbon dioxide concentration
33 changes
34 climate
35 climate models
36 climate sensitivity
37 climate sensitivity estimates
38 cloud
39 cloud feedback
40 concentration
41 convective mixing
42 decades
43 decades of research
44 degree
45 degrees Celsius
46 dehydrate
47 differences
48 dioxide
49 dioxide concentration
50 doubling
51 equilibrium climate sensitivity
52 equilibrium climate sensitivity estimates
53 estimates
54 external forcing
55 feedback
56 forcing
57 future climate
58 future warming
59 global mean temperature
60 half
61 increase
62 layer
63 low clouds
64 lower cloud layer
65 mean temperature
66 mechanism
67 middle tropical troposphere
68 mixing
69 model
70 model climate sensitivity
71 model projections
72 narrow uncertainties
73 observations
74 projections
75 rate
76 rate of increase
77 reasons
78 research
79 response
80 sensitivity
81 sensitivity estimates
82 simulated strength
83 spread
84 strength
85 temperature
86 tropical troposphere
87 troposphere
88 ultimate change
89 uncertainty
90 variance
91 warming
92 schema:name Spread in model climate sensitivity traced to atmospheric convective mixing
93 schema:pagination 37-42
94 schema:productId N39b3b0346d5f427180d9c56300cc96d6
95 Nba526d0e9fda46f19d81788a6d1ebd88
96 Ncce1c2fdf6ad48f49f2842226ee905f9
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016927016
98 https://doi.org/10.1038/nature12829
99 schema:sdDatePublished 2022-12-01T06:32
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N872fcc3129e94fc4bd00b471151de330
102 schema:url https://doi.org/10.1038/nature12829
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N09a4ff31b956480b9432a2d7866b86e4 schema:volumeNumber 505
107 rdf:type schema:PublicationVolume
108 N0ace60c675d645cea15ea99324725045 rdf:first sg:person.01075255253.14
109 rdf:rest rdf:nil
110 N16b80b51b05e440f960cede3e77ff29b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Atmosphere
112 rdf:type schema:DefinedTerm
113 N39b3b0346d5f427180d9c56300cc96d6 schema:name pubmed_id
114 schema:value 24380952
115 rdf:type schema:PropertyValue
116 N5060be98b90a425484965c04322f2f9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Feedback
118 rdf:type schema:DefinedTerm
119 N6605c7e6724d482d945789c0666da362 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Carbon Dioxide
121 rdf:type schema:DefinedTerm
122 N7931c6daf75043d49c413159cde74507 rdf:first sg:person.013647160343.22
123 rdf:rest N0ace60c675d645cea15ea99324725045
124 N81f97b9570ad4d37bfb1f4b6501433b1 rdf:first sg:person.0725170115.33
125 rdf:rest N7931c6daf75043d49c413159cde74507
126 N84e95cc75fc240c8a7784cdab179fafc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Air Movements
128 rdf:type schema:DefinedTerm
129 N8646ee02a8a44a00ad8a5cef0c0b75ce schema:issueNumber 7481
130 rdf:type schema:PublicationIssue
131 N872fcc3129e94fc4bd00b471151de330 schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 N87d6f7abb1e242d0a87e2a269f272651 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Uncertainty
135 rdf:type schema:DefinedTerm
136 N8e52ab5d9c0d425ca64b64b535c61f00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Temperature
138 rdf:type schema:DefinedTerm
139 N93746673f606485290c0e800ea0a0842 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Global Warming
141 rdf:type schema:DefinedTerm
142 Nba526d0e9fda46f19d81788a6d1ebd88 schema:name dimensions_id
143 schema:value pub.1016927016
144 rdf:type schema:PropertyValue
145 Ncce1c2fdf6ad48f49f2842226ee905f9 schema:name doi
146 schema:value 10.1038/nature12829
147 rdf:type schema:PropertyValue
148 Ncdc792cc7b904ece83a5a3c5d2ccf4a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Climate
150 rdf:type schema:DefinedTerm
151 Nd32855df02d342bcaf1175c6b3b4d324 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Models, Theoretical
153 rdf:type schema:DefinedTerm
154 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
155 schema:name Earth Sciences
156 rdf:type schema:DefinedTerm
157 anzsrc-for:0401 schema:inDefinedTermSet anzsrc-for:
158 schema:name Atmospheric Sciences
159 rdf:type schema:DefinedTerm
160 sg:grant.3788763 http://pending.schema.org/fundedItem sg:pub.10.1038/nature12829
161 rdf:type schema:MonetaryGrant
162 sg:journal.1018957 schema:issn 0028-0836
163 1476-4687
164 schema:name Nature
165 schema:publisher Springer Nature
166 rdf:type schema:Periodical
167 sg:person.01075255253.14 schema:affiliation grid-institutes:None
168 schema:familyName Dufresne
169 schema:givenName Jean-Louis
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075255253.14
171 rdf:type schema:Person
172 sg:person.013647160343.22 schema:affiliation grid-institutes:None
173 schema:familyName Bony
174 schema:givenName Sandrine
175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013647160343.22
176 rdf:type schema:Person
177 sg:person.0725170115.33 schema:affiliation grid-institutes:grid.1005.4
178 schema:familyName Sherwood
179 schema:givenName Steven C.
180 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725170115.33
181 rdf:type schema:Person
182 sg:pub.10.1007/s00382-011-1279-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031005835
183 https://doi.org/10.1007/s00382-011-1279-7
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s00382-012-1336-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030808219
186 https://doi.org/10.1007/s00382-012-1336-x
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s00382-012-1608-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025483451
189 https://doi.org/10.1007/s00382-012-1608-5
190 rdf:type schema:CreativeWork
191 sg:pub.10.1007/s00382-013-1725-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028387493
192 https://doi.org/10.1007/s00382-013-1725-9
193 rdf:type schema:CreativeWork
194 sg:pub.10.1038/nature01092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046916950
195 https://doi.org/10.1038/nature01092
196 rdf:type schema:CreativeWork
197 sg:pub.10.1134/s0001433808030043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038001991
198 https://doi.org/10.1134/s0001433808030043
199 rdf:type schema:CreativeWork
200 grid-institutes:None schema:alternateName Laboratoire de Météorologie Dynamique and Institut Pierre Simon Laplace (LMD/IPSL), CNRS, Université Pierre et Marie Curie, Paris 75252, France
201 schema:name Laboratoire de Météorologie Dynamique and Institut Pierre Simon Laplace (LMD/IPSL), CNRS, Université Pierre et Marie Curie, Paris 75252, France
202 rdf:type schema:Organization
203 grid-institutes:grid.1005.4 schema:alternateName Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney 2052, Australia
204 schema:name Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New South Wales, Sydney 2052, Australia
205 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...