Chromatin dynamics during cellular reprogramming View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-10-23

AUTHORS

Effie Apostolou, Konrad Hochedlinger

ABSTRACT

Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment. More... »

PAGES

462-471

References to SciGraph publications

  • 2009-01-18. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells in NATURE GENETICS
  • 2012-04-22. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming in NATURE CELL BIOLOGY
  • 2013-10-23. Topology of mammalian developmental enhancers and their regulatory landscapes in NATURE
  • 2011-09. Reprogramming within hours following nuclear transfer into mouse but not human zygotes in NATURE COMMUNICATIONS
  • 2013-10-23. TET enzymes, TDG and the dynamics of DNA demethylation in NATURE
  • 2009-07-08. Chd1 regulates open chromatin and pluripotency of embryonic stem cells in NATURE
  • 2013-06-09. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency in NATURE CELL BIOLOGY
  • 2009-11-01. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts in NATURE GENETICS
  • 2012-07-08. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming in NATURE
  • 2012-08-19. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2 in NATURE
  • 2009-12-13. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells in NATURE GENETICS
  • 2011-06-08. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1 in NATURE
  • 2013-02-03. A unique Oct4 interface is crucial for reprogramming to pluripotency in NATURE CELL BIOLOGY
  • 2013-02-10. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency in NATURE
  • 2013-06-02. High-resolution analysis with novel cell-surface markers identifies routes to iPS cells in NATURE
  • 2010-06-09. Nuclear reprogramming to a pluripotent state by three approaches in NATURE
  • 2007-11-30. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts in NATURE BIOTECHNOLOGY
  • 2011-07-24. esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function in NATURE CELL BIOLOGY
  • 2013-08-11. Establishment of totipotency does not depend on Oct4A in NATURE CELL BIOLOGY
  • 2012-03-04. Chromatin-modifying enzymes as modulators of reprogramming in NATURE
  • 2008-12-17. Crypt stem cells as the cells-of-origin of intestinal cancer in NATURE
  • 2013-05-05. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy in NATURE GENETICS
  • 2013-09-18. Deterministic direct reprogramming of somatic cells to pluripotency in NATURE
  • 2008-03-19. Chromatin dynamics during epigenetic reprogramming in the mouse germ line in NATURE
  • 2009-08-09. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells in NATURE GENETICS
  • 2010-12-22. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8 in NATURE
  • 2012-10-29. HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes in EPIGENETICS & CHROMATIN
  • 2013-06-30. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells in NATURE
  • 2012-12-02. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs in NATURE GENETICS
  • 2012-03-04. Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all–iPS cell mice from terminally differentiated B cells in NATURE GENETICS
  • 2011-09-04. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes in NATURE
  • 2013-02-17. Naive pluripotency is associated with global DNA hypomethylation in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2008-05-28. Dissecting direct reprogramming through integrative genomic analysis in NATURE
  • 2010-08-18. Mediator and cohesin connect gene expression and chromatin architecture in NATURE
  • 2013-03-05. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency in NATURE COMMUNICATIONS
  • 2011-02-02. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature12749

    DOI

    http://dx.doi.org/10.1038/nature12749

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007961933

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24153299


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Fusion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cellular Reprogramming", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Methylation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epigenesis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Germ Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Histones", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Induced Pluripotent Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nuclear Transfer Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Massachusetts General Hospital Center for Regenerative Medicine, 185 Cambridge Street, 02114, Boston, Massachusetts, USA", 
                "Harvard Stem Cell Institute, 1350 Masschusetts Avenue, 02138, Cambridge, Massachusetts, USA", 
                "Howard Hughes Medical Institute, 4000 Jones Bridge Road, 20815, Chevy Chase, Maryland, USA", 
                "Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Apostolou", 
            "givenName": "Effie", 
            "id": "sg:person.01134732714.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134732714.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Massachusetts General Hospital Center for Regenerative Medicine, 185 Cambridge Street, 02114, Boston, Massachusetts, USA", 
                "Harvard Stem Cell Institute, 1350 Masschusetts Avenue, 02138, Cambridge, Massachusetts, USA", 
                "Howard Hughes Medical Institute, 4000 Jones Bridge Road, 20815, Chevy Chase, Maryland, USA", 
                "Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hochedlinger", 
            "givenName": "Konrad", 
            "id": "sg:person.01266764452.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266764452.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncb2680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041406970", 
              "https://doi.org/10.1038/ncb2680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045314212", 
              "https://doi.org/10.1038/ng.297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037921395", 
              "https://doi.org/10.1038/nature12750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023030104", 
              "https://doi.org/10.1038/ng.2628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049600424", 
              "https://doi.org/10.1038/ng.428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008910662", 
              "https://doi.org/10.1038/nature12362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008726934", 
              "https://doi.org/10.1038/nature09798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051799046", 
              "https://doi.org/10.1038/nature10953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms1503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021435730", 
              "https://doi.org/10.1038/ncomms1503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.1110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003080962", 
              "https://doi.org/10.1038/ng.1110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003252761", 
              "https://doi.org/10.1038/ncb2768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037743725", 
              "https://doi.org/10.1038/nature07056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007851579", 
              "https://doi.org/10.1038/ng.471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040499216", 
              "https://doi.org/10.1038/nature12587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032283776", 
              "https://doi.org/10.1038/ncb2483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002744128", 
              "https://doi.org/10.1038/nbt1374"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033219210", 
              "https://doi.org/10.1038/nature12243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001093895", 
              "https://doi.org/10.1038/nature06714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047692648", 
              "https://doi.org/10.1038/nature09229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051471226", 
              "https://doi.org/10.1038/nature11272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032259045", 
              "https://doi.org/10.1038/nature10106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1756-8935-5-17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025542914", 
              "https://doi.org/10.1186/1756-8935-5-17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041935406", 
              "https://doi.org/10.1038/ng.2491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044517222", 
              "https://doi.org/10.1038/nature11333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021803949", 
              "https://doi.org/10.1038/nature08212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053107109", 
              "https://doi.org/10.1038/nsmb.2510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023475926", 
              "https://doi.org/10.1038/nature12753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002951305", 
              "https://doi.org/10.1038/ncomms2582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041517908", 
              "https://doi.org/10.1038/nature09590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041852547", 
              "https://doi.org/10.1038/ncb2816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037625384", 
              "https://doi.org/10.1038/ng.496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034824135", 
              "https://doi.org/10.1038/nature11925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051845802", 
              "https://doi.org/10.1038/nature10443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020963310", 
              "https://doi.org/10.1038/nature07602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004695178", 
              "https://doi.org/10.1038/nature09380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020577076", 
              "https://doi.org/10.1038/ncb2285"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-10-23", 
        "datePublishedReg": "2013-10-23", 
        "description": "Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature12749", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2527843", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7472", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "502"
          }
        ], 
        "keywords": [
          "chromatin dynamics", 
          "induced pluripotency", 
          "cell fate transitions", 
          "patient-specific stem cells", 
          "fate transitions", 
          "chromatin structure", 
          "germ cell maturation", 
          "cellular reprogramming", 
          "transcription factors", 
          "cell states", 
          "diverse processes", 
          "stem cells", 
          "pluripotency", 
          "mechanistic insights", 
          "unique assay", 
          "regenerative medicine", 
          "cell maturation", 
          "latest insights", 
          "pathological processes", 
          "integrated view", 
          "chromatin", 
          "reprogramming", 
          "powerful tool", 
          "tumorigenesis", 
          "insights", 
          "maturation", 
          "cells", 
          "cancer treatment", 
          "assays", 
          "dynamics", 
          "interplay", 
          "process", 
          "events", 
          "structure", 
          "addition", 
          "factors", 
          "changes", 
          "tool", 
          "transition", 
          "new approach", 
          "medicine", 
          "treatment", 
          "approach", 
          "state", 
          "view"
        ], 
        "name": "Chromatin dynamics during cellular reprogramming", 
        "pagination": "462-471", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007961933"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature12749"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24153299"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature12749", 
          "https://app.dimensions.ai/details/publication/pub.1007961933"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_616.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature12749"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature12749'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature12749'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature12749'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature12749'


     

    This table displays all metadata directly associated to this object as RDF triples.

    322 TRIPLES      21 PREDICATES      121 URIs      77 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature12749 schema:about N1782ee278ef2472ab1733b82ccb68c4f
    2 N2c033cf6c376406cb5526fbe7a0ec563
    3 N33e4a3c735294081bd76c29a081f6079
    4 N40315c7ebcb74ac3ac382a63212d7d79
    5 N500400a0f9e64ed8b48983bff7f011cb
    6 N608b0cb6b71d4f16a5a830ec2b518fba
    7 N7207bea376174df9a7b6c7a5cb571012
    8 N79acb427a90a4c2ca3790e654eeef29e
    9 N7bd449602a1546d89d417f07dc7453e7
    10 N83ef401fb28e40169e6bf0ff2f526954
    11 N8ac328add5d14bca9216053874b10610
    12 Nbbac20c3d9984dedbf68689b1e82a629
    13 Ncda602757eac4ee5a6d6d714994d81bd
    14 Ncfb694a5a4414eaf90c6261450b709e5
    15 Ne8ff371e688d40c59a4ef37592e12416
    16 anzsrc-for:06
    17 anzsrc-for:0601
    18 schema:author N95ad7e1aac85436a8ceb6c699d08b579
    19 schema:citation sg:pub.10.1038/nature06714
    20 sg:pub.10.1038/nature07056
    21 sg:pub.10.1038/nature07602
    22 sg:pub.10.1038/nature08212
    23 sg:pub.10.1038/nature09229
    24 sg:pub.10.1038/nature09380
    25 sg:pub.10.1038/nature09590
    26 sg:pub.10.1038/nature09798
    27 sg:pub.10.1038/nature10106
    28 sg:pub.10.1038/nature10443
    29 sg:pub.10.1038/nature10953
    30 sg:pub.10.1038/nature11272
    31 sg:pub.10.1038/nature11333
    32 sg:pub.10.1038/nature11925
    33 sg:pub.10.1038/nature12243
    34 sg:pub.10.1038/nature12362
    35 sg:pub.10.1038/nature12587
    36 sg:pub.10.1038/nature12750
    37 sg:pub.10.1038/nature12753
    38 sg:pub.10.1038/nbt1374
    39 sg:pub.10.1038/ncb2285
    40 sg:pub.10.1038/ncb2483
    41 sg:pub.10.1038/ncb2680
    42 sg:pub.10.1038/ncb2768
    43 sg:pub.10.1038/ncb2816
    44 sg:pub.10.1038/ncomms1503
    45 sg:pub.10.1038/ncomms2582
    46 sg:pub.10.1038/ng.1110
    47 sg:pub.10.1038/ng.2491
    48 sg:pub.10.1038/ng.2628
    49 sg:pub.10.1038/ng.297
    50 sg:pub.10.1038/ng.428
    51 sg:pub.10.1038/ng.471
    52 sg:pub.10.1038/ng.496
    53 sg:pub.10.1038/nsmb.2510
    54 sg:pub.10.1186/1756-8935-5-17
    55 schema:datePublished 2013-10-23
    56 schema:datePublishedReg 2013-10-23
    57 schema:description Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment.
    58 schema:genre article
    59 schema:isAccessibleForFree true
    60 schema:isPartOf N555b17c5d92d45dfbf417d9bb605c2fa
    61 N96190ffb95fd44c0b11030305f5ef20a
    62 sg:journal.1018957
    63 schema:keywords addition
    64 approach
    65 assays
    66 cancer treatment
    67 cell fate transitions
    68 cell maturation
    69 cell states
    70 cells
    71 cellular reprogramming
    72 changes
    73 chromatin
    74 chromatin dynamics
    75 chromatin structure
    76 diverse processes
    77 dynamics
    78 events
    79 factors
    80 fate transitions
    81 germ cell maturation
    82 induced pluripotency
    83 insights
    84 integrated view
    85 interplay
    86 latest insights
    87 maturation
    88 mechanistic insights
    89 medicine
    90 new approach
    91 pathological processes
    92 patient-specific stem cells
    93 pluripotency
    94 powerful tool
    95 process
    96 regenerative medicine
    97 reprogramming
    98 state
    99 stem cells
    100 structure
    101 tool
    102 transcription factors
    103 transition
    104 treatment
    105 tumorigenesis
    106 unique assay
    107 view
    108 schema:name Chromatin dynamics during cellular reprogramming
    109 schema:pagination 462-471
    110 schema:productId N9c7b6325163b4ea38b9bc5f876e72079
    111 Nac7097bce430471ebfaee894c7dac647
    112 Ne396dbbbb8bf470a84f23720a69c0609
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007961933
    114 https://doi.org/10.1038/nature12749
    115 schema:sdDatePublished 2022-10-01T06:39
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher N044bfdec81564e18b91de81c2dec0339
    118 schema:url https://doi.org/10.1038/nature12749
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N044bfdec81564e18b91de81c2dec0339 schema:name Springer Nature - SN SciGraph project
    123 rdf:type schema:Organization
    124 N1782ee278ef2472ab1733b82ccb68c4f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Cellular Reprogramming
    126 rdf:type schema:DefinedTerm
    127 N2c033cf6c376406cb5526fbe7a0ec563 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Humans
    129 rdf:type schema:DefinedTerm
    130 N33e4a3c735294081bd76c29a081f6079 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    131 schema:name Chromatin
    132 rdf:type schema:DefinedTerm
    133 N40315c7ebcb74ac3ac382a63212d7d79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Animals
    135 rdf:type schema:DefinedTerm
    136 N500400a0f9e64ed8b48983bff7f011cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    137 schema:name Epigenesis, Genetic
    138 rdf:type schema:DefinedTerm
    139 N555b17c5d92d45dfbf417d9bb605c2fa schema:volumeNumber 502
    140 rdf:type schema:PublicationVolume
    141 N608b0cb6b71d4f16a5a830ec2b518fba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    142 schema:name Nuclear Transfer Techniques
    143 rdf:type schema:DefinedTerm
    144 N7207bea376174df9a7b6c7a5cb571012 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    145 schema:name Histones
    146 rdf:type schema:DefinedTerm
    147 N79acb427a90a4c2ca3790e654eeef29e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    148 schema:name Induced Pluripotent Stem Cells
    149 rdf:type schema:DefinedTerm
    150 N7bd449602a1546d89d417f07dc7453e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Carcinogenesis
    152 rdf:type schema:DefinedTerm
    153 N83ef401fb28e40169e6bf0ff2f526954 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    154 schema:name Germ Cells
    155 rdf:type schema:DefinedTerm
    156 N8ac328add5d14bca9216053874b10610 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name DNA Methylation
    158 rdf:type schema:DefinedTerm
    159 N95ad7e1aac85436a8ceb6c699d08b579 rdf:first sg:person.01134732714.33
    160 rdf:rest Neaa318ce9cfc46128f6ccf741f08bd1e
    161 N96190ffb95fd44c0b11030305f5ef20a schema:issueNumber 7472
    162 rdf:type schema:PublicationIssue
    163 N9c7b6325163b4ea38b9bc5f876e72079 schema:name dimensions_id
    164 schema:value pub.1007961933
    165 rdf:type schema:PropertyValue
    166 Nac7097bce430471ebfaee894c7dac647 schema:name pubmed_id
    167 schema:value 24153299
    168 rdf:type schema:PropertyValue
    169 Nbbac20c3d9984dedbf68689b1e82a629 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Cell Differentiation
    171 rdf:type schema:DefinedTerm
    172 Ncda602757eac4ee5a6d6d714994d81bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Transcription Factors
    174 rdf:type schema:DefinedTerm
    175 Ncfb694a5a4414eaf90c6261450b709e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    176 schema:name Signal Transduction
    177 rdf:type schema:DefinedTerm
    178 Ne396dbbbb8bf470a84f23720a69c0609 schema:name doi
    179 schema:value 10.1038/nature12749
    180 rdf:type schema:PropertyValue
    181 Ne8ff371e688d40c59a4ef37592e12416 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Cell Fusion
    183 rdf:type schema:DefinedTerm
    184 Neaa318ce9cfc46128f6ccf741f08bd1e rdf:first sg:person.01266764452.01
    185 rdf:rest rdf:nil
    186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biological Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Biochemistry and Cell Biology
    191 rdf:type schema:DefinedTerm
    192 sg:grant.2527843 http://pending.schema.org/fundedItem sg:pub.10.1038/nature12749
    193 rdf:type schema:MonetaryGrant
    194 sg:journal.1018957 schema:issn 0028-0836
    195 1476-4687
    196 schema:name Nature
    197 schema:publisher Springer Nature
    198 rdf:type schema:Periodical
    199 sg:person.01134732714.33 schema:affiliation grid-institutes:grid.38142.3c
    200 schema:familyName Apostolou
    201 schema:givenName Effie
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134732714.33
    203 rdf:type schema:Person
    204 sg:person.01266764452.01 schema:affiliation grid-institutes:grid.38142.3c
    205 schema:familyName Hochedlinger
    206 schema:givenName Konrad
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266764452.01
    208 rdf:type schema:Person
    209 sg:pub.10.1038/nature06714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001093895
    210 https://doi.org/10.1038/nature06714
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nature07056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037743725
    213 https://doi.org/10.1038/nature07056
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nature07602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020963310
    216 https://doi.org/10.1038/nature07602
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nature08212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021803949
    219 https://doi.org/10.1038/nature08212
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nature09229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047692648
    222 https://doi.org/10.1038/nature09229
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nature09380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004695178
    225 https://doi.org/10.1038/nature09380
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nature09590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041517908
    228 https://doi.org/10.1038/nature09590
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nature09798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008726934
    231 https://doi.org/10.1038/nature09798
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nature10106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032259045
    234 https://doi.org/10.1038/nature10106
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nature10443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051845802
    237 https://doi.org/10.1038/nature10443
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nature10953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051799046
    240 https://doi.org/10.1038/nature10953
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nature11272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051471226
    243 https://doi.org/10.1038/nature11272
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nature11333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044517222
    246 https://doi.org/10.1038/nature11333
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nature11925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034824135
    249 https://doi.org/10.1038/nature11925
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nature12243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033219210
    252 https://doi.org/10.1038/nature12243
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nature12362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008910662
    255 https://doi.org/10.1038/nature12362
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature12587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040499216
    258 https://doi.org/10.1038/nature12587
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nature12750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037921395
    261 https://doi.org/10.1038/nature12750
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nature12753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023475926
    264 https://doi.org/10.1038/nature12753
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nbt1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002744128
    267 https://doi.org/10.1038/nbt1374
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/ncb2285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020577076
    270 https://doi.org/10.1038/ncb2285
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/ncb2483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032283776
    273 https://doi.org/10.1038/ncb2483
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/ncb2680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041406970
    276 https://doi.org/10.1038/ncb2680
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/ncb2768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003252761
    279 https://doi.org/10.1038/ncb2768
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/ncb2816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041852547
    282 https://doi.org/10.1038/ncb2816
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/ncomms1503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021435730
    285 https://doi.org/10.1038/ncomms1503
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/ncomms2582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002951305
    288 https://doi.org/10.1038/ncomms2582
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/ng.1110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003080962
    291 https://doi.org/10.1038/ng.1110
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/ng.2491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041935406
    294 https://doi.org/10.1038/ng.2491
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/ng.2628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023030104
    297 https://doi.org/10.1038/ng.2628
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/ng.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045314212
    300 https://doi.org/10.1038/ng.297
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/ng.428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049600424
    303 https://doi.org/10.1038/ng.428
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/ng.471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007851579
    306 https://doi.org/10.1038/ng.471
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/ng.496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037625384
    309 https://doi.org/10.1038/ng.496
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/nsmb.2510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053107109
    312 https://doi.org/10.1038/nsmb.2510
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/1756-8935-5-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025542914
    315 https://doi.org/10.1186/1756-8935-5-17
    316 rdf:type schema:CreativeWork
    317 grid-institutes:grid.38142.3c schema:alternateName Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA
    318 schema:name Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA
    319 Harvard Stem Cell Institute, 1350 Masschusetts Avenue, 02138, Cambridge, Massachusetts, USA
    320 Howard Hughes Medical Institute, 4000 Jones Bridge Road, 20815, Chevy Chase, Maryland, USA
    321 Massachusetts General Hospital Center for Regenerative Medicine, 185 Cambridge Street, 02114, Boston, Massachusetts, USA
    322 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...