Chromatin dynamics during cellular reprogramming View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-10-23

AUTHORS

Effie Apostolou, Konrad Hochedlinger

ABSTRACT

Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment. More... »

PAGES

462-471

References to SciGraph publications

  • 2013-03-05. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency in NATURE COMMUNICATIONS
  • 2009-01-18. Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells in NATURE GENETICS
  • 2012-04-22. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming in NATURE CELL BIOLOGY
  • 2013-10-23. Topology of mammalian developmental enhancers and their regulatory landscapes in NATURE
  • 2011-09. Reprogramming within hours following nuclear transfer into mouse but not human zygotes in NATURE COMMUNICATIONS
  • 2013-10-23. TET enzymes, TDG and the dynamics of DNA demethylation in NATURE
  • 2009-07-08. Chd1 regulates open chromatin and pluripotency of embryonic stem cells in NATURE
  • 2013-06-09. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency in NATURE CELL BIOLOGY
  • 2009-11-01. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts in NATURE GENETICS
  • 2012-07-08. The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming in NATURE
  • 2012-08-19. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2 in NATURE
  • 2009-12-13. Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells in NATURE GENETICS
  • 2011-06-08. Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1 in NATURE
  • 2013-02-03. A unique Oct4 interface is crucial for reprogramming to pluripotency in NATURE CELL BIOLOGY
  • 2013-02-10. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency in NATURE
  • 2013-06-02. High-resolution analysis with novel cell-surface markers identifies routes to iPS cells in NATURE
  • 2007-11-30. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts in NATURE BIOTECHNOLOGY
  • 2011-07-24. esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function in NATURE CELL BIOLOGY
  • 2013-08-11. Establishment of totipotency does not depend on Oct4A in NATURE CELL BIOLOGY
  • 2012-03-04. Chromatin-modifying enzymes as modulators of reprogramming in NATURE
  • 2008-12-17. Crypt stem cells as the cells-of-origin of intestinal cancer in NATURE
  • 2013-05-05. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy in NATURE GENETICS
  • 2013-09-18. Deterministic direct reprogramming of somatic cells to pluripotency in NATURE
  • 2008-03-19. Chromatin dynamics during epigenetic reprogramming in the mouse germ line in NATURE
  • 2009-08-09. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells in NATURE GENETICS
  • 2010-12-22. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8 in NATURE
  • 2012-10-29. HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes in EPIGENETICS & CHROMATIN
  • 2013-06-30. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells in NATURE
  • 2012-12-02. H3K9 methylation is a barrier during somatic cell reprogramming into iPSCs in NATURE GENETICS
  • 2012-03-04. Ascorbic acid prevents loss of Dlk1-Dio3 imprinting and facilitates generation of all–iPS cell mice from terminally differentiated B cells in NATURE GENETICS
  • 2011-09-04. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes in NATURE
  • 2013-02-17. Naive pluripotency is associated with global DNA hypomethylation in NATURE STRUCTURAL & MOLECULAR BIOLOGY
  • 2008-05-28. Dissecting direct reprogramming through integrative genomic analysis in NATURE
  • 2010-08-18. Mediator and cohesin connect gene expression and chromatin architecture in NATURE
  • 2010-06-09. Nuclear reprogramming to a pluripotent state by three approaches in NATURE
  • 2011-02-02. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells in NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature12749

    DOI

    http://dx.doi.org/10.1038/nature12749

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007961933

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/24153299


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biochemistry and Cell Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinogenesis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Differentiation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cell Fusion", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Cellular Reprogramming", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromatin", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA Methylation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Epigenesis, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Germ Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Histones", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Induced Pluripotent Stem Cells", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Nuclear Transfer Techniques", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Signal Transduction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Transcription Factors", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Massachusetts General Hospital Center for Regenerative Medicine, 185 Cambridge Street, 02114, Boston, Massachusetts, USA", 
                "Harvard Stem Cell Institute, 1350 Masschusetts Avenue, 02138, Cambridge, Massachusetts, USA", 
                "Howard Hughes Medical Institute, 4000 Jones Bridge Road, 20815, Chevy Chase, Maryland, USA", 
                "Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Apostolou", 
            "givenName": "Effie", 
            "id": "sg:person.01134732714.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134732714.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA", 
              "id": "http://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Massachusetts General Hospital Center for Regenerative Medicine, 185 Cambridge Street, 02114, Boston, Massachusetts, USA", 
                "Harvard Stem Cell Institute, 1350 Masschusetts Avenue, 02138, Cambridge, Massachusetts, USA", 
                "Howard Hughes Medical Institute, 4000 Jones Bridge Road, 20815, Chevy Chase, Maryland, USA", 
                "Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hochedlinger", 
            "givenName": "Konrad", 
            "id": "sg:person.01266764452.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266764452.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/ncomms1503", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021435730", 
              "https://doi.org/10.1038/ncomms1503"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007851579", 
              "https://doi.org/10.1038/ng.471"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2768", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003252761", 
              "https://doi.org/10.1038/ncb2768"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.297", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045314212", 
              "https://doi.org/10.1038/ng.297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023030104", 
              "https://doi.org/10.1038/ng.2628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047692648", 
              "https://doi.org/10.1038/nature09229"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008726934", 
              "https://doi.org/10.1038/nature09798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nsmb.2510", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053107109", 
              "https://doi.org/10.1038/nsmb.2510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033219210", 
              "https://doi.org/10.1038/nature12243"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11925", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034824135", 
              "https://doi.org/10.1038/nature11925"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10953", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051799046", 
              "https://doi.org/10.1038/nature10953"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms2582", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002951305", 
              "https://doi.org/10.1038/ncomms2582"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.2491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041935406", 
              "https://doi.org/10.1038/ng.2491"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12362", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008910662", 
              "https://doi.org/10.1038/nature12362"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051471226", 
              "https://doi.org/10.1038/nature11272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature06714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001093895", 
              "https://doi.org/10.1038/nature06714"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020963310", 
              "https://doi.org/10.1038/nature07602"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044517222", 
              "https://doi.org/10.1038/nature11333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08212", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021803949", 
              "https://doi.org/10.1038/nature08212"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041852547", 
              "https://doi.org/10.1038/ncb2816"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1756-8935-5-17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025542914", 
              "https://doi.org/10.1186/1756-8935-5-17"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040499216", 
              "https://doi.org/10.1038/nature12587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049600424", 
              "https://doi.org/10.1038/ng.428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041517908", 
              "https://doi.org/10.1038/nature09590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037743725", 
              "https://doi.org/10.1038/nature07056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037625384", 
              "https://doi.org/10.1038/ng.496"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2483", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032283776", 
              "https://doi.org/10.1038/ncb2483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2680", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041406970", 
              "https://doi.org/10.1038/ncb2680"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.1110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003080962", 
              "https://doi.org/10.1038/ng.1110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032259045", 
              "https://doi.org/10.1038/nature10106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10443", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051845802", 
              "https://doi.org/10.1038/nature10443"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12753", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023475926", 
              "https://doi.org/10.1038/nature12753"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncb2285", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020577076", 
              "https://doi.org/10.1038/ncb2285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09380", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004695178", 
              "https://doi.org/10.1038/nature09380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature12750", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037921395", 
              "https://doi.org/10.1038/nature12750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002744128", 
              "https://doi.org/10.1038/nbt1374"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-10-23", 
        "datePublishedReg": "2013-10-23", 
        "description": "Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment.", 
        "genre": "article", 
        "id": "sg:pub.10.1038/nature12749", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2527843", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0028-0836", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7472", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "502"
          }
        ], 
        "keywords": [
          "chromatin dynamics", 
          "induced pluripotency", 
          "cell fate transitions", 
          "patient-specific stem cells", 
          "fate transitions", 
          "chromatin structure", 
          "germ cell maturation", 
          "cellular reprogramming", 
          "transcription factors", 
          "cell states", 
          "diverse processes", 
          "stem cells", 
          "pluripotency", 
          "mechanistic insights", 
          "unique assay", 
          "regenerative medicine", 
          "cell maturation", 
          "latest insights", 
          "pathological processes", 
          "integrated view", 
          "chromatin", 
          "reprogramming", 
          "powerful tool", 
          "tumorigenesis", 
          "insights", 
          "maturation", 
          "cells", 
          "cancer treatment", 
          "assays", 
          "dynamics", 
          "interplay", 
          "process", 
          "events", 
          "structure", 
          "addition", 
          "factors", 
          "changes", 
          "tool", 
          "transition", 
          "new approach", 
          "medicine", 
          "treatment", 
          "approach", 
          "state", 
          "view"
        ], 
        "name": "Chromatin dynamics during cellular reprogramming", 
        "pagination": "462-471", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007961933"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature12749"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "24153299"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature12749", 
          "https://app.dimensions.ai/details/publication/pub.1007961933"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:56", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_600.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1038/nature12749"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature12749'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature12749'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature12749'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature12749'


     

    This table displays all metadata directly associated to this object as RDF triples.

    322 TRIPLES      21 PREDICATES      121 URIs      77 LITERALS      22 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature12749 schema:about N121b2d9e28cd49e2ae5b2ce8b2243aa2
    2 N12a0a6bdf4c04cf789df46f35af0b64c
    3 N1dcd56beca434171b4e4fca79f5b1f12
    4 N2135b6c5b74f454b941ea46490ca67e0
    5 N5aa73a4d4c4548f69559f7b11576129e
    6 N6f07d4ee758944abb05b2cb39582962a
    7 N729669744ba8470193af3b03345ab218
    8 N74890c9ae92c416b93c273b19f146659
    9 N80320e3906ef496dbb460667eb73f7b2
    10 Nb7a0c0bc9a18455e9890a3612dcb22dd
    11 Nbbb163f470b5477fa7bd5c09ab81df47
    12 Nc04dd88962bc471baa2b442cc3cbf2ab
    13 Nda1f7621189b4b859b92c65a3c0ef285
    14 Nea33b396aac64e859dc57d71353b43be
    15 Neada3d8cfb484d61b7860f2bdc6e2341
    16 anzsrc-for:06
    17 anzsrc-for:0601
    18 schema:author Nd01ed13680ce43728a185ab1705fdfd7
    19 schema:citation sg:pub.10.1038/nature06714
    20 sg:pub.10.1038/nature07056
    21 sg:pub.10.1038/nature07602
    22 sg:pub.10.1038/nature08212
    23 sg:pub.10.1038/nature09229
    24 sg:pub.10.1038/nature09380
    25 sg:pub.10.1038/nature09590
    26 sg:pub.10.1038/nature09798
    27 sg:pub.10.1038/nature10106
    28 sg:pub.10.1038/nature10443
    29 sg:pub.10.1038/nature10953
    30 sg:pub.10.1038/nature11272
    31 sg:pub.10.1038/nature11333
    32 sg:pub.10.1038/nature11925
    33 sg:pub.10.1038/nature12243
    34 sg:pub.10.1038/nature12362
    35 sg:pub.10.1038/nature12587
    36 sg:pub.10.1038/nature12750
    37 sg:pub.10.1038/nature12753
    38 sg:pub.10.1038/nbt1374
    39 sg:pub.10.1038/ncb2285
    40 sg:pub.10.1038/ncb2483
    41 sg:pub.10.1038/ncb2680
    42 sg:pub.10.1038/ncb2768
    43 sg:pub.10.1038/ncb2816
    44 sg:pub.10.1038/ncomms1503
    45 sg:pub.10.1038/ncomms2582
    46 sg:pub.10.1038/ng.1110
    47 sg:pub.10.1038/ng.2491
    48 sg:pub.10.1038/ng.2628
    49 sg:pub.10.1038/ng.297
    50 sg:pub.10.1038/ng.428
    51 sg:pub.10.1038/ng.471
    52 sg:pub.10.1038/ng.496
    53 sg:pub.10.1038/nsmb.2510
    54 sg:pub.10.1186/1756-8935-5-17
    55 schema:datePublished 2013-10-23
    56 schema:datePublishedReg 2013-10-23
    57 schema:description Induced pluripotency is a powerful tool to derive patient-specific stem cells. In addition, it provides a unique assay to study the interplay between transcription factors and chromatin structure. Here, we review the latest insights into chromatin dynamics that are inherent to induced pluripotency. Moreover, we compare and contrast these events with other physiological and pathological processes that involve changes in chromatin and cell state, including germ cell maturation and tumorigenesis. We propose that an integrated view of these seemingly diverse processes could provide mechanistic insights into cell fate transitions in general and might lead to new approaches in regenerative medicine and cancer treatment.
    58 schema:genre article
    59 schema:isAccessibleForFree true
    60 schema:isPartOf N4a6e6aeb1289448c95b4a595f770613b
    61 Nf8d3238a81bd4c95ac1dcc2a27521055
    62 sg:journal.1018957
    63 schema:keywords addition
    64 approach
    65 assays
    66 cancer treatment
    67 cell fate transitions
    68 cell maturation
    69 cell states
    70 cells
    71 cellular reprogramming
    72 changes
    73 chromatin
    74 chromatin dynamics
    75 chromatin structure
    76 diverse processes
    77 dynamics
    78 events
    79 factors
    80 fate transitions
    81 germ cell maturation
    82 induced pluripotency
    83 insights
    84 integrated view
    85 interplay
    86 latest insights
    87 maturation
    88 mechanistic insights
    89 medicine
    90 new approach
    91 pathological processes
    92 patient-specific stem cells
    93 pluripotency
    94 powerful tool
    95 process
    96 regenerative medicine
    97 reprogramming
    98 state
    99 stem cells
    100 structure
    101 tool
    102 transcription factors
    103 transition
    104 treatment
    105 tumorigenesis
    106 unique assay
    107 view
    108 schema:name Chromatin dynamics during cellular reprogramming
    109 schema:pagination 462-471
    110 schema:productId N1f85ed2e328e4171a46132c88f5bedbd
    111 N8abea9d1baec4998bbd9b322a708bb5e
    112 Na5b0f0462c4543089b448b2069e7ff03
    113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007961933
    114 https://doi.org/10.1038/nature12749
    115 schema:sdDatePublished 2022-09-02T15:56
    116 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    117 schema:sdPublisher Ne4f2a3698b5545de846452a9f4a2f099
    118 schema:url https://doi.org/10.1038/nature12749
    119 sgo:license sg:explorer/license/
    120 sgo:sdDataset articles
    121 rdf:type schema:ScholarlyArticle
    122 N121b2d9e28cd49e2ae5b2ce8b2243aa2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    123 schema:name Germ Cells
    124 rdf:type schema:DefinedTerm
    125 N12a0a6bdf4c04cf789df46f35af0b64c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    126 schema:name Epigenesis, Genetic
    127 rdf:type schema:DefinedTerm
    128 N1dcd56beca434171b4e4fca79f5b1f12 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    129 schema:name Chromatin
    130 rdf:type schema:DefinedTerm
    131 N1f85ed2e328e4171a46132c88f5bedbd schema:name dimensions_id
    132 schema:value pub.1007961933
    133 rdf:type schema:PropertyValue
    134 N2135b6c5b74f454b941ea46490ca67e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    135 schema:name Cell Differentiation
    136 rdf:type schema:DefinedTerm
    137 N4a6e6aeb1289448c95b4a595f770613b schema:issueNumber 7472
    138 rdf:type schema:PublicationIssue
    139 N5aa73a4d4c4548f69559f7b11576129e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    140 schema:name Carcinogenesis
    141 rdf:type schema:DefinedTerm
    142 N6f07d4ee758944abb05b2cb39582962a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Cellular Reprogramming
    144 rdf:type schema:DefinedTerm
    145 N729669744ba8470193af3b03345ab218 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name DNA Methylation
    147 rdf:type schema:DefinedTerm
    148 N74890c9ae92c416b93c273b19f146659 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    149 schema:name Signal Transduction
    150 rdf:type schema:DefinedTerm
    151 N80320e3906ef496dbb460667eb73f7b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    152 schema:name Transcription Factors
    153 rdf:type schema:DefinedTerm
    154 N8abea9d1baec4998bbd9b322a708bb5e schema:name doi
    155 schema:value 10.1038/nature12749
    156 rdf:type schema:PropertyValue
    157 Na5b0f0462c4543089b448b2069e7ff03 schema:name pubmed_id
    158 schema:value 24153299
    159 rdf:type schema:PropertyValue
    160 Nb7a0c0bc9a18455e9890a3612dcb22dd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Humans
    162 rdf:type schema:DefinedTerm
    163 Nbbb163f470b5477fa7bd5c09ab81df47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Cell Fusion
    165 rdf:type schema:DefinedTerm
    166 Nc04dd88962bc471baa2b442cc3cbf2ab schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Nuclear Transfer Techniques
    168 rdf:type schema:DefinedTerm
    169 Nd01ed13680ce43728a185ab1705fdfd7 rdf:first sg:person.01134732714.33
    170 rdf:rest Nd734fdec233a494c91f0369875505a58
    171 Nd734fdec233a494c91f0369875505a58 rdf:first sg:person.01266764452.01
    172 rdf:rest rdf:nil
    173 Nda1f7621189b4b859b92c65a3c0ef285 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    174 schema:name Histones
    175 rdf:type schema:DefinedTerm
    176 Ne4f2a3698b5545de846452a9f4a2f099 schema:name Springer Nature - SN SciGraph project
    177 rdf:type schema:Organization
    178 Nea33b396aac64e859dc57d71353b43be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    179 schema:name Induced Pluripotent Stem Cells
    180 rdf:type schema:DefinedTerm
    181 Neada3d8cfb484d61b7860f2bdc6e2341 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    182 schema:name Animals
    183 rdf:type schema:DefinedTerm
    184 Nf8d3238a81bd4c95ac1dcc2a27521055 schema:volumeNumber 502
    185 rdf:type schema:PublicationVolume
    186 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    187 schema:name Biological Sciences
    188 rdf:type schema:DefinedTerm
    189 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
    190 schema:name Biochemistry and Cell Biology
    191 rdf:type schema:DefinedTerm
    192 sg:grant.2527843 http://pending.schema.org/fundedItem sg:pub.10.1038/nature12749
    193 rdf:type schema:MonetaryGrant
    194 sg:journal.1018957 schema:issn 0028-0836
    195 1476-4687
    196 schema:name Nature
    197 schema:publisher Springer Nature
    198 rdf:type schema:Periodical
    199 sg:person.01134732714.33 schema:affiliation grid-institutes:grid.38142.3c
    200 schema:familyName Apostolou
    201 schema:givenName Effie
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134732714.33
    203 rdf:type schema:Person
    204 sg:person.01266764452.01 schema:affiliation grid-institutes:grid.38142.3c
    205 schema:familyName Hochedlinger
    206 schema:givenName Konrad
    207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266764452.01
    208 rdf:type schema:Person
    209 sg:pub.10.1038/nature06714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001093895
    210 https://doi.org/10.1038/nature06714
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1038/nature07056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037743725
    213 https://doi.org/10.1038/nature07056
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1038/nature07602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020963310
    216 https://doi.org/10.1038/nature07602
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1038/nature08212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021803949
    219 https://doi.org/10.1038/nature08212
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/nature09229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047692648
    222 https://doi.org/10.1038/nature09229
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nature09380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004695178
    225 https://doi.org/10.1038/nature09380
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nature09590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041517908
    228 https://doi.org/10.1038/nature09590
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nature09798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008726934
    231 https://doi.org/10.1038/nature09798
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nature10106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032259045
    234 https://doi.org/10.1038/nature10106
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nature10443 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051845802
    237 https://doi.org/10.1038/nature10443
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/nature10953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051799046
    240 https://doi.org/10.1038/nature10953
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/nature11272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051471226
    243 https://doi.org/10.1038/nature11272
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/nature11333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044517222
    246 https://doi.org/10.1038/nature11333
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nature11925 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034824135
    249 https://doi.org/10.1038/nature11925
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nature12243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033219210
    252 https://doi.org/10.1038/nature12243
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/nature12362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008910662
    255 https://doi.org/10.1038/nature12362
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature12587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040499216
    258 https://doi.org/10.1038/nature12587
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nature12750 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037921395
    261 https://doi.org/10.1038/nature12750
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1038/nature12753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023475926
    264 https://doi.org/10.1038/nature12753
    265 rdf:type schema:CreativeWork
    266 sg:pub.10.1038/nbt1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002744128
    267 https://doi.org/10.1038/nbt1374
    268 rdf:type schema:CreativeWork
    269 sg:pub.10.1038/ncb2285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020577076
    270 https://doi.org/10.1038/ncb2285
    271 rdf:type schema:CreativeWork
    272 sg:pub.10.1038/ncb2483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032283776
    273 https://doi.org/10.1038/ncb2483
    274 rdf:type schema:CreativeWork
    275 sg:pub.10.1038/ncb2680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041406970
    276 https://doi.org/10.1038/ncb2680
    277 rdf:type schema:CreativeWork
    278 sg:pub.10.1038/ncb2768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003252761
    279 https://doi.org/10.1038/ncb2768
    280 rdf:type schema:CreativeWork
    281 sg:pub.10.1038/ncb2816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041852547
    282 https://doi.org/10.1038/ncb2816
    283 rdf:type schema:CreativeWork
    284 sg:pub.10.1038/ncomms1503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021435730
    285 https://doi.org/10.1038/ncomms1503
    286 rdf:type schema:CreativeWork
    287 sg:pub.10.1038/ncomms2582 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002951305
    288 https://doi.org/10.1038/ncomms2582
    289 rdf:type schema:CreativeWork
    290 sg:pub.10.1038/ng.1110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003080962
    291 https://doi.org/10.1038/ng.1110
    292 rdf:type schema:CreativeWork
    293 sg:pub.10.1038/ng.2491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041935406
    294 https://doi.org/10.1038/ng.2491
    295 rdf:type schema:CreativeWork
    296 sg:pub.10.1038/ng.2628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023030104
    297 https://doi.org/10.1038/ng.2628
    298 rdf:type schema:CreativeWork
    299 sg:pub.10.1038/ng.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045314212
    300 https://doi.org/10.1038/ng.297
    301 rdf:type schema:CreativeWork
    302 sg:pub.10.1038/ng.428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049600424
    303 https://doi.org/10.1038/ng.428
    304 rdf:type schema:CreativeWork
    305 sg:pub.10.1038/ng.471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007851579
    306 https://doi.org/10.1038/ng.471
    307 rdf:type schema:CreativeWork
    308 sg:pub.10.1038/ng.496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037625384
    309 https://doi.org/10.1038/ng.496
    310 rdf:type schema:CreativeWork
    311 sg:pub.10.1038/nsmb.2510 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053107109
    312 https://doi.org/10.1038/nsmb.2510
    313 rdf:type schema:CreativeWork
    314 sg:pub.10.1186/1756-8935-5-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025542914
    315 https://doi.org/10.1186/1756-8935-5-17
    316 rdf:type schema:CreativeWork
    317 grid-institutes:grid.38142.3c schema:alternateName Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA
    318 schema:name Department of Stem Cell and Regenerative Biology, Harvard University and Harvard Medical School, 7 Divinity Avenue, 02138, Cambridge, Massachusetts, USA
    319 Harvard Stem Cell Institute, 1350 Masschusetts Avenue, 02138, Cambridge, Massachusetts, USA
    320 Howard Hughes Medical Institute, 4000 Jones Bridge Road, 20815, Chevy Chase, Maryland, USA
    321 Massachusetts General Hospital Center for Regenerative Medicine, 185 Cambridge Street, 02114, Boston, Massachusetts, USA
    322 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...