The importance of mixed selectivity in complex cognitive tasks View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05-19

AUTHORS

Mattia Rigotti, Omri Barak, Melissa R. Warden, Xiao-Jing Wang, Nathaniel D. Daw, Earl K. Miller, Stefano Fusi

ABSTRACT

Single-neuron activity in the prefrontal cortex (PFC) is tuned to mixtures of multiple task-related aspects. Such mixed selectivity is highly heterogeneous, seemingly disordered and therefore difficult to interpret. We analysed the neural activity recorded in monkeys during an object sequence memory task to identify a role of mixed selectivity in subserving the cognitive functions ascribed to the PFC. We show that mixed selectivity neurons encode distributed information about all task-relevant aspects. Each aspect can be decoded from the population of neurons even when single-cell selectivity to that aspect is eliminated. Moreover, mixed selectivity offers a significant computational advantage over specialized responses in terms of the repertoire of input–output functions implementable by readout neurons. This advantage originates from the highly diverse nonlinear selectivity to mixtures of task-relevant variables, a signature of high-dimensional neural representations. Crucially, this dimensionality is predictive of animal behaviour as it collapses in error trials. Our findings recommend a shift of focus for future studies from neurons that have easily interpretable response tuning to the widely observed, but rarely analysed, mixed selectivity neurons. More... »

PAGES

585-590

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature12160

DOI

http://dx.doi.org/10.1038/nature12160

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002714407

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23685452


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Behavior, Animal", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Haplorhini", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Memory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Neurological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neurons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prefrontal Cortex", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Single-Cell Analysis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Psychology, New York University, 10003, New York, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Theoretical Neuroscience, Columbia University College of Physicians and Surgeons, 10032, New York, New York, USA", 
            "Center for Neural Science, New York University, 10003, New York, New York, USA", 
            "Department of Psychology, New York University, 10003, New York, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rigotti", 
        "givenName": "Mattia", 
        "id": "sg:person.0713576233.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713576233.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Present address: Department of Physiology, Technion Medical School, Haifa, 31096, Israel.", 
          "id": "http://www.grid.ac/institutes/grid.6451.6", 
          "name": [
            "Center for Theoretical Neuroscience, Columbia University College of Physicians and Surgeons, 10032, New York, New York, USA", 
            "Present address: Department of Physiology, Technion Medical School, Haifa, 31096, Israel."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Barak", 
        "givenName": "Omri", 
        "id": "sg:person.012470353674.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012470353674.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Bioengineering, Stanford University, 94305, Stanford, California, USA", 
          "id": "http://www.grid.ac/institutes/grid.168010.e", 
          "name": [
            "The Picower Institute for Learning and Memory & Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
            "Department of Bioengineering, Stanford University, 94305, Stanford, California, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Warden", 
        "givenName": "Melissa R.", 
        "id": "sg:person.0762434624.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762434624.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 06525, New Haven, Connecticut, USA", 
          "id": "http://www.grid.ac/institutes/grid.47100.32", 
          "name": [
            "Center for Neural Science, New York University, 10003, New York, New York, USA", 
            "Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 06525, New Haven, Connecticut, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiao-Jing", 
        "id": "sg:person.0644070443.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644070443.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Psychology, New York University, 10003, New York, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Center for Neural Science, New York University, 10003, New York, New York, USA", 
            "Department of Psychology, New York University, 10003, New York, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daw", 
        "givenName": "Nathaniel D.", 
        "id": "sg:person.0700070374.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700070374.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Picower Institute for Learning and Memory & Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA", 
          "id": "http://www.grid.ac/institutes/grid.116068.8", 
          "name": [
            "The Picower Institute for Learning and Memory & Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miller", 
        "givenName": "Earl K.", 
        "id": "sg:person.016047256272.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016047256272.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Theoretical Neuroscience, Columbia University College of Physicians and Surgeons, 10032, New York, New York, USA", 
          "id": "http://www.grid.ac/institutes/grid.21729.3f", 
          "name": [
            "Center for Theoretical Neuroscience, Columbia University College of Physicians and Surgeons, 10032, New York, New York, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fusi", 
        "givenName": "Stefano", 
        "id": "sg:person.01326702501.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35097575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056438988", 
          "https://doi.org/10.1038/35097575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00994018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025150743", 
          "https://doi.org/10.1007/bf00994018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042449561", 
          "https://doi.org/10.1038/nature09868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03733-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040027094", 
          "https://doi.org/10.1007/978-3-662-03733-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn2558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033691539", 
          "https://doi.org/10.1038/nrn2558"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05-19", 
    "datePublishedReg": "2013-05-19", 
    "description": "Single-neuron activity in the prefrontal cortex (PFC) is tuned to mixtures of multiple task-related aspects. Such mixed selectivity is highly heterogeneous, seemingly disordered and therefore difficult to interpret. We analysed the neural activity recorded in monkeys during an object sequence memory task to identify a role of mixed selectivity in subserving the cognitive functions ascribed to the PFC. We show that mixed selectivity neurons encode distributed information about all task-relevant aspects. Each aspect can be decoded from the population of neurons even when single-cell selectivity to that aspect is eliminated. Moreover, mixed selectivity offers a significant computational advantage over specialized responses in terms of the repertoire of input\u2013output functions implementable by readout neurons. This advantage originates from the highly diverse nonlinear selectivity to mixtures of task-relevant variables, a signature of high-dimensional neural representations. Crucially, this dimensionality is predictive of animal behaviour as it collapses in error trials. Our findings recommend a shift of focus for future studies from neurons that have easily interpretable response tuning to the widely observed, but rarely analysed, mixed selectivity neurons.", 
    "genre": "article", 
    "id": "sg:pub.10.1038/nature12160", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5224537", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2552249", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2636072", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0028-0836", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7451", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "497"
      }
    ], 
    "keywords": [
      "prefrontal cortex", 
      "populations of neurons", 
      "single neuron activity", 
      "mixed selectivity", 
      "cognitive function", 
      "neurons", 
      "neural activity", 
      "input-output function", 
      "task-relevant aspects", 
      "complex cognitive tasks", 
      "future studies", 
      "task-related aspects", 
      "task-relevant variables", 
      "specialized responses", 
      "error trials", 
      "single-cell selectivity", 
      "memory task", 
      "cognitive tasks", 
      "neural representation", 
      "response tuning", 
      "cortex", 
      "trials", 
      "subserving", 
      "monkeys", 
      "activity", 
      "task", 
      "readout neurons", 
      "animal behavior", 
      "population", 
      "findings", 
      "response", 
      "shift of focus", 
      "function", 
      "study", 
      "role", 
      "repertoire", 
      "aspects", 
      "variables", 
      "representation", 
      "importance", 
      "focus", 
      "behavior", 
      "information", 
      "selectivity", 
      "advantages", 
      "signatures", 
      "significant computational advantages", 
      "dimensionality", 
      "terms", 
      "shift", 
      "mixture", 
      "computational advantages", 
      "tuning", 
      "multiple task-related aspects", 
      "Such mixed selectivity", 
      "object sequence memory task", 
      "sequence memory task", 
      "mixed selectivity neurons", 
      "selectivity neurons", 
      "diverse nonlinear selectivity", 
      "nonlinear selectivity", 
      "high-dimensional neural representations", 
      "interpretable response tuning"
    ], 
    "name": "The importance of mixed selectivity in complex cognitive tasks", 
    "pagination": "585-590", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002714407"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature12160"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23685452"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature12160", 
      "https://app.dimensions.ai/details/publication/pub.1002714407"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_595.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1038/nature12160"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature12160'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature12160'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature12160'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature12160'


 

This table displays all metadata directly associated to this object as RDF triples.

257 TRIPLES      22 PREDICATES      105 URIs      90 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature12160 schema:about N094d4c810a0748868962b0c3547f3e3e
2 N15670faf3d0743f993c65b0f0ea88c87
3 N2a45e7b354194489b5bbd43486273007
4 N2ee075c004a64455aec7f28461d78150
5 N57d85ebe94b64726836aa8ef5f246ccd
6 N650b8e6872064363be1f6ef373a6cade
7 N7963622fd7a64cd590b12b635409dcc9
8 N931c2c338db44254a9f63227ac2a2047
9 Nf43a3f763c154200ac417fdcb7cda339
10 anzsrc-for:11
11 anzsrc-for:1109
12 anzsrc-for:17
13 anzsrc-for:1701
14 schema:author Nd06d9d9fbcc145c09076bc6789f16d6e
15 schema:citation sg:pub.10.1007/978-3-662-03733-1
16 sg:pub.10.1007/bf00994018
17 sg:pub.10.1038/35097575
18 sg:pub.10.1038/nature09868
19 sg:pub.10.1038/nrn2558
20 schema:datePublished 2013-05-19
21 schema:datePublishedReg 2013-05-19
22 schema:description Single-neuron activity in the prefrontal cortex (PFC) is tuned to mixtures of multiple task-related aspects. Such mixed selectivity is highly heterogeneous, seemingly disordered and therefore difficult to interpret. We analysed the neural activity recorded in monkeys during an object sequence memory task to identify a role of mixed selectivity in subserving the cognitive functions ascribed to the PFC. We show that mixed selectivity neurons encode distributed information about all task-relevant aspects. Each aspect can be decoded from the population of neurons even when single-cell selectivity to that aspect is eliminated. Moreover, mixed selectivity offers a significant computational advantage over specialized responses in terms of the repertoire of input–output functions implementable by readout neurons. This advantage originates from the highly diverse nonlinear selectivity to mixtures of task-relevant variables, a signature of high-dimensional neural representations. Crucially, this dimensionality is predictive of animal behaviour as it collapses in error trials. Our findings recommend a shift of focus for future studies from neurons that have easily interpretable response tuning to the widely observed, but rarely analysed, mixed selectivity neurons.
23 schema:genre article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf N127ecb0b9a034016b53333971bea6619
27 Nec45526d84e14159b2a9515c97937375
28 sg:journal.1018957
29 schema:keywords Such mixed selectivity
30 activity
31 advantages
32 animal behavior
33 aspects
34 behavior
35 cognitive function
36 cognitive tasks
37 complex cognitive tasks
38 computational advantages
39 cortex
40 dimensionality
41 diverse nonlinear selectivity
42 error trials
43 findings
44 focus
45 function
46 future studies
47 high-dimensional neural representations
48 importance
49 information
50 input-output function
51 interpretable response tuning
52 memory task
53 mixed selectivity
54 mixed selectivity neurons
55 mixture
56 monkeys
57 multiple task-related aspects
58 neural activity
59 neural representation
60 neurons
61 nonlinear selectivity
62 object sequence memory task
63 population
64 populations of neurons
65 prefrontal cortex
66 readout neurons
67 repertoire
68 representation
69 response
70 response tuning
71 role
72 selectivity
73 selectivity neurons
74 sequence memory task
75 shift
76 shift of focus
77 signatures
78 significant computational advantages
79 single neuron activity
80 single-cell selectivity
81 specialized responses
82 study
83 subserving
84 task
85 task-related aspects
86 task-relevant aspects
87 task-relevant variables
88 terms
89 trials
90 tuning
91 variables
92 schema:name The importance of mixed selectivity in complex cognitive tasks
93 schema:pagination 585-590
94 schema:productId N24061c8211c245cbaf0f220921776e28
95 N7ef5f53c362c47309bb462579dafd6cc
96 Nd8db39d623b74583b3b6148453bedb90
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002714407
98 https://doi.org/10.1038/nature12160
99 schema:sdDatePublished 2021-11-01T18:20
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher N828605e165aa42f0b915913fd6f53d2d
102 schema:url https://doi.org/10.1038/nature12160
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N094d4c810a0748868962b0c3547f3e3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Models, Neurological
108 rdf:type schema:DefinedTerm
109 N127ecb0b9a034016b53333971bea6619 schema:volumeNumber 497
110 rdf:type schema:PublicationVolume
111 N15670faf3d0743f993c65b0f0ea88c87 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Memory
113 rdf:type schema:DefinedTerm
114 N24061c8211c245cbaf0f220921776e28 schema:name dimensions_id
115 schema:value pub.1002714407
116 rdf:type schema:PropertyValue
117 N2a45e7b354194489b5bbd43486273007 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Behavior, Animal
119 rdf:type schema:DefinedTerm
120 N2ee075c004a64455aec7f28461d78150 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Haplorhini
122 rdf:type schema:DefinedTerm
123 N3757dd864fb64b3094cd4ce01559f1c6 rdf:first sg:person.0762434624.36
124 rdf:rest Nad0f16bf8e524c28987681b6af2de0b7
125 N43e88ecd93d54c7bb29cd9454ace05b4 rdf:first sg:person.016047256272.12
126 rdf:rest Nb3bb2dbc4c89431babbb0e0ae2bde83c
127 N4b72ff7c6cff49e585b5343fc70e8750 rdf:first sg:person.012470353674.50
128 rdf:rest N3757dd864fb64b3094cd4ce01559f1c6
129 N57d85ebe94b64726836aa8ef5f246ccd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Prefrontal Cortex
131 rdf:type schema:DefinedTerm
132 N650b8e6872064363be1f6ef373a6cade schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Neurons
134 rdf:type schema:DefinedTerm
135 N7963622fd7a64cd590b12b635409dcc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Cognition
137 rdf:type schema:DefinedTerm
138 N7ef5f53c362c47309bb462579dafd6cc schema:name pubmed_id
139 schema:value 23685452
140 rdf:type schema:PropertyValue
141 N828605e165aa42f0b915913fd6f53d2d schema:name Springer Nature - SN SciGraph project
142 rdf:type schema:Organization
143 N931c2c338db44254a9f63227ac2a2047 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Single-Cell Analysis
145 rdf:type schema:DefinedTerm
146 Nad0f16bf8e524c28987681b6af2de0b7 rdf:first sg:person.0644070443.34
147 rdf:rest Ncb2d8295d8c747e0996fdd169ebcb673
148 Nb3bb2dbc4c89431babbb0e0ae2bde83c rdf:first sg:person.01326702501.50
149 rdf:rest rdf:nil
150 Ncb2d8295d8c747e0996fdd169ebcb673 rdf:first sg:person.0700070374.35
151 rdf:rest N43e88ecd93d54c7bb29cd9454ace05b4
152 Nd06d9d9fbcc145c09076bc6789f16d6e rdf:first sg:person.0713576233.34
153 rdf:rest N4b72ff7c6cff49e585b5343fc70e8750
154 Nd8db39d623b74583b3b6148453bedb90 schema:name doi
155 schema:value 10.1038/nature12160
156 rdf:type schema:PropertyValue
157 Nec45526d84e14159b2a9515c97937375 schema:issueNumber 7451
158 rdf:type schema:PublicationIssue
159 Nf43a3f763c154200ac417fdcb7cda339 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Animals
161 rdf:type schema:DefinedTerm
162 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
163 schema:name Medical and Health Sciences
164 rdf:type schema:DefinedTerm
165 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
166 schema:name Neurosciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
169 schema:name Psychology and Cognitive Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
172 schema:name Psychology
173 rdf:type schema:DefinedTerm
174 sg:grant.2552249 http://pending.schema.org/fundedItem sg:pub.10.1038/nature12160
175 rdf:type schema:MonetaryGrant
176 sg:grant.2636072 http://pending.schema.org/fundedItem sg:pub.10.1038/nature12160
177 rdf:type schema:MonetaryGrant
178 sg:grant.5224537 http://pending.schema.org/fundedItem sg:pub.10.1038/nature12160
179 rdf:type schema:MonetaryGrant
180 sg:journal.1018957 schema:issn 0028-0836
181 1476-4687
182 schema:name Nature
183 schema:publisher Springer Nature
184 rdf:type schema:Periodical
185 sg:person.012470353674.50 schema:affiliation grid-institutes:grid.6451.6
186 schema:familyName Barak
187 schema:givenName Omri
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012470353674.50
189 rdf:type schema:Person
190 sg:person.01326702501.50 schema:affiliation grid-institutes:grid.21729.3f
191 schema:familyName Fusi
192 schema:givenName Stefano
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326702501.50
194 rdf:type schema:Person
195 sg:person.016047256272.12 schema:affiliation grid-institutes:grid.116068.8
196 schema:familyName Miller
197 schema:givenName Earl K.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016047256272.12
199 rdf:type schema:Person
200 sg:person.0644070443.34 schema:affiliation grid-institutes:grid.47100.32
201 schema:familyName Wang
202 schema:givenName Xiao-Jing
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644070443.34
204 rdf:type schema:Person
205 sg:person.0700070374.35 schema:affiliation grid-institutes:grid.137628.9
206 schema:familyName Daw
207 schema:givenName Nathaniel D.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700070374.35
209 rdf:type schema:Person
210 sg:person.0713576233.34 schema:affiliation grid-institutes:grid.137628.9
211 schema:familyName Rigotti
212 schema:givenName Mattia
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0713576233.34
214 rdf:type schema:Person
215 sg:person.0762434624.36 schema:affiliation grid-institutes:grid.168010.e
216 schema:familyName Warden
217 schema:givenName Melissa R.
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0762434624.36
219 rdf:type schema:Person
220 sg:pub.10.1007/978-3-662-03733-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040027094
221 https://doi.org/10.1007/978-3-662-03733-1
222 rdf:type schema:CreativeWork
223 sg:pub.10.1007/bf00994018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025150743
224 https://doi.org/10.1007/bf00994018
225 rdf:type schema:CreativeWork
226 sg:pub.10.1038/35097575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056438988
227 https://doi.org/10.1038/35097575
228 rdf:type schema:CreativeWork
229 sg:pub.10.1038/nature09868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042449561
230 https://doi.org/10.1038/nature09868
231 rdf:type schema:CreativeWork
232 sg:pub.10.1038/nrn2558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033691539
233 https://doi.org/10.1038/nrn2558
234 rdf:type schema:CreativeWork
235 grid-institutes:grid.116068.8 schema:alternateName The Picower Institute for Learning and Memory & Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
236 schema:name The Picower Institute for Learning and Memory & Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
237 rdf:type schema:Organization
238 grid-institutes:grid.137628.9 schema:alternateName Department of Psychology, New York University, 10003, New York, New York, USA
239 schema:name Center for Neural Science, New York University, 10003, New York, New York, USA
240 Center for Theoretical Neuroscience, Columbia University College of Physicians and Surgeons, 10032, New York, New York, USA
241 Department of Psychology, New York University, 10003, New York, New York, USA
242 rdf:type schema:Organization
243 grid-institutes:grid.168010.e schema:alternateName Department of Bioengineering, Stanford University, 94305, Stanford, California, USA
244 schema:name Department of Bioengineering, Stanford University, 94305, Stanford, California, USA
245 The Picower Institute for Learning and Memory & Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 02139, Cambridge, Massachusetts, USA
246 rdf:type schema:Organization
247 grid-institutes:grid.21729.3f schema:alternateName Center for Theoretical Neuroscience, Columbia University College of Physicians and Surgeons, 10032, New York, New York, USA
248 schema:name Center for Theoretical Neuroscience, Columbia University College of Physicians and Surgeons, 10032, New York, New York, USA
249 rdf:type schema:Organization
250 grid-institutes:grid.47100.32 schema:alternateName Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 06525, New Haven, Connecticut, USA
251 schema:name Center for Neural Science, New York University, 10003, New York, New York, USA
252 Department of Neurobiology, Kavli Institute for Neuroscience, Yale University School of Medicine, 06525, New Haven, Connecticut, USA
253 rdf:type schema:Organization
254 grid-institutes:grid.6451.6 schema:alternateName Present address: Department of Physiology, Technion Medical School, Haifa, 31096, Israel.
255 schema:name Center for Theoretical Neuroscience, Columbia University College of Physicians and Surgeons, 10032, New York, New York, USA
256 Present address: Department of Physiology, Technion Medical School, Haifa, 31096, Israel.
257 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...