Formation of a topological non-Fermi liquid in MnSi View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05-01

AUTHORS

R. Ritz, M. Halder, M. Wagner, C. Franz, A. Bauer, C. Pfleiderer

ABSTRACT

Fermi liquid theory provides a remarkably powerful framework for the description of the conduction electrons in metals and their ordering phenomena, such as superconductivity, ferromagnetism, and spin- and charge-density-wave order. A different class of ordering phenomena of great interest concerns spin configurations that are topologically protected, that is, their topology can be destroyed only by forcing the average magnetization locally to zero. Examples of such configurations are hedgehogs (points at which all spins are either pointing inwards or outwards) and vortices. A central question concerns the nature of the metallic state in the presence of such topologically distinct spin textures. Here we report a high-pressure study of the metallic state at the border of the skyrmion lattice in MnSi, which represents a new form of magnetic order composed of topologically non-trivial vortices. When long-range magnetic order is suppressed under pressure, the key characteristic of the skyrmion lattice--that is, the topological Hall signal due to the emergent magnetic flux associated with the topological winding--is unaffected in sign or magnitude and becomes an important characteristic of the metallic state. The regime of the topological Hall signal in temperature, pressure and magnetic field coincides thereby with the exceptionally extended regime of a pronounced non-Fermi-liquid resistivity. The observation of this topological Hall signal in the regime of the NFL resistivity suggests empirically that spin correlations with non-trivial topological character may drive a breakdown of Fermi liquid theory in pure metals. More... »

PAGES

231

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature12023

DOI

http://dx.doi.org/10.1038/nature12023

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037576267

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23636328


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ritz", 
        "givenName": "R.", 
        "id": "sg:person.01261233642.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261233642.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halder", 
        "givenName": "M.", 
        "id": "sg:person.0766026172.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766026172.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wagner", 
        "givenName": "M.", 
        "id": "sg:person.015730064125.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730064125.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franz", 
        "givenName": "C.", 
        "id": "sg:person.0603742742.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603742742.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "A.", 
        "id": "sg:person.01332240064.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332240064.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Physik Department E21, Technische Universit\u00e4t M\u00fcnchen, D-85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pfleiderer", 
        "givenName": "C.", 
        "id": "sg:person.0645154744.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nmat2916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000753350", 
          "https://doi.org/10.1038/nmat2916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.207202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001461138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.207202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001461138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001708870", 
          "https://doi.org/10.1038/nphys488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001708870", 
          "https://doi.org/10.1038/nphys488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.172403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005609165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.172403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005609165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010483519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010483519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.134407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012793596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.134407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012793596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.256404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015182989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.256404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015182989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025508742", 
          "https://doi.org/10.1038/nature02232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025508742", 
          "https://doi.org/10.1038/nature02232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034080992", 
          "https://doi.org/10.1038/nature09124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036946746", 
          "https://doi.org/10.1038/nature07401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35106527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039062421", 
          "https://doi.org/10.1038/35106527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35106527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039062421", 
          "https://doi.org/10.1038/35106527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039183001", 
          "https://doi.org/10.1038/nature01968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039183001", 
          "https://doi.org/10.1038/nature01968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/9/31/019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039289528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.047207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048386789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.047207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048386789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.134424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048998285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.87.134424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048998285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.237204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050429486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.237204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050429486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.207201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051556263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.207201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051556263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.247202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052455353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.247202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052455353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3523056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057967362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/18/22/017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058962379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.8330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.55.8330", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060584800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.156406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.156406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1142644", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1214143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465664"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05-01", 
    "datePublishedReg": "2013-05-01", 
    "description": "Fermi liquid theory provides a remarkably powerful framework for the description of the conduction electrons in metals and their ordering phenomena, such as superconductivity, ferromagnetism, and spin- and charge-density-wave order. A different class of ordering phenomena of great interest concerns spin configurations that are topologically protected, that is, their topology can be destroyed only by forcing the average magnetization locally to zero. Examples of such configurations are hedgehogs (points at which all spins are either pointing inwards or outwards) and vortices. A central question concerns the nature of the metallic state in the presence of such topologically distinct spin textures. Here we report a high-pressure study of the metallic state at the border of the skyrmion lattice in MnSi, which represents a new form of magnetic order composed of topologically non-trivial vortices. When long-range magnetic order is suppressed under pressure, the key characteristic of the skyrmion lattice--that is, the topological Hall signal due to the emergent magnetic flux associated with the topological winding--is unaffected in sign or magnitude and becomes an important characteristic of the metallic state. The regime of the topological Hall signal in temperature, pressure and magnetic field coincides thereby with the exceptionally extended regime of a pronounced non-Fermi-liquid resistivity. The observation of this topological Hall signal in the regime of the NFL resistivity suggests empirically that spin correlations with non-trivial topological character may drive a breakdown of Fermi liquid theory in pure metals.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature12023", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3783141", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7448", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "497"
      }
    ], 
    "name": "Formation of a topological non-Fermi liquid in MnSi", 
    "pagination": "231", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b3000b31c2b5418f08e7abc3fb828c0c35308a9413611037d98e9bc8ed94e8f4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23636328"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature12023"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037576267"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature12023", 
      "https://app.dimensions.ai/details/publication/pub.1037576267"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000425.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature12023"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature12023'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature12023'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature12023'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature12023'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      21 PREDICATES      56 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature12023 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nfe1fc9a712d84c528a39958c7a77efa4
4 schema:citation sg:pub.10.1038/35106527
5 sg:pub.10.1038/nature01968
6 sg:pub.10.1038/nature02232
7 sg:pub.10.1038/nature05056
8 sg:pub.10.1038/nature07401
9 sg:pub.10.1038/nature09124
10 sg:pub.10.1038/nmat2916
11 sg:pub.10.1038/nphys488
12 https://doi.org/10.1063/1.3523056
13 https://doi.org/10.1088/0022-3719/18/22/017
14 https://doi.org/10.1088/0953-8984/9/31/019
15 https://doi.org/10.1103/physrevb.55.8330
16 https://doi.org/10.1103/physrevb.75.172403
17 https://doi.org/10.1103/physrevb.81.041203
18 https://doi.org/10.1103/physrevb.87.134407
19 https://doi.org/10.1103/physrevb.87.134424
20 https://doi.org/10.1103/physrevlett.102.186601
21 https://doi.org/10.1103/physrevlett.102.186602
22 https://doi.org/10.1103/physrevlett.103.207201
23 https://doi.org/10.1103/physrevlett.104.256404
24 https://doi.org/10.1103/physrevlett.108.237204
25 https://doi.org/10.1103/physrevlett.89.247202
26 https://doi.org/10.1103/physrevlett.96.047207
27 https://doi.org/10.1103/physrevlett.96.207202
28 https://doi.org/10.1103/physrevlett.99.156406
29 https://doi.org/10.1126/science.1142644
30 https://doi.org/10.1126/science.1166767
31 https://doi.org/10.1126/science.1214143
32 schema:datePublished 2013-05-01
33 schema:datePublishedReg 2013-05-01
34 schema:description Fermi liquid theory provides a remarkably powerful framework for the description of the conduction electrons in metals and their ordering phenomena, such as superconductivity, ferromagnetism, and spin- and charge-density-wave order. A different class of ordering phenomena of great interest concerns spin configurations that are topologically protected, that is, their topology can be destroyed only by forcing the average magnetization locally to zero. Examples of such configurations are hedgehogs (points at which all spins are either pointing inwards or outwards) and vortices. A central question concerns the nature of the metallic state in the presence of such topologically distinct spin textures. Here we report a high-pressure study of the metallic state at the border of the skyrmion lattice in MnSi, which represents a new form of magnetic order composed of topologically non-trivial vortices. When long-range magnetic order is suppressed under pressure, the key characteristic of the skyrmion lattice--that is, the topological Hall signal due to the emergent magnetic flux associated with the topological winding--is unaffected in sign or magnitude and becomes an important characteristic of the metallic state. The regime of the topological Hall signal in temperature, pressure and magnetic field coincides thereby with the exceptionally extended regime of a pronounced non-Fermi-liquid resistivity. The observation of this topological Hall signal in the regime of the NFL resistivity suggests empirically that spin correlations with non-trivial topological character may drive a breakdown of Fermi liquid theory in pure metals.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N7e9dc65933cc4274a220c2dacd2072fa
39 N845a5d9b033041d486006cf1ed8b8462
40 sg:journal.1018957
41 schema:name Formation of a topological non-Fermi liquid in MnSi
42 schema:pagination 231
43 schema:productId N12373a892f364e8096ed3da23d2f0501
44 N20ba95f373b44aab9a341bc8144f43b3
45 N5600d00a21924a69a13d50774a64ff82
46 N762f5350ef8f4925a8826d57f1eadcb1
47 N78b3cf4b61d34f5fa765f0425be62a88
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037576267
49 https://doi.org/10.1038/nature12023
50 schema:sdDatePublished 2019-04-11T00:55
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N0e57cc6580d347acb2de974022940310
53 schema:url https://www.nature.com/articles/nature12023
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N0e57cc6580d347acb2de974022940310 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N12373a892f364e8096ed3da23d2f0501 schema:name pubmed_id
60 schema:value 23636328
61 rdf:type schema:PropertyValue
62 N20ba95f373b44aab9a341bc8144f43b3 schema:name readcube_id
63 schema:value b3000b31c2b5418f08e7abc3fb828c0c35308a9413611037d98e9bc8ed94e8f4
64 rdf:type schema:PropertyValue
65 N52a03158735f464195cdaeb285e0cc69 rdf:first sg:person.0645154744.12
66 rdf:rest rdf:nil
67 N5600d00a21924a69a13d50774a64ff82 schema:name nlm_unique_id
68 schema:value 0410462
69 rdf:type schema:PropertyValue
70 N724c8dac90dc42b49e7743fb087fc9a2 rdf:first sg:person.0603742742.63
71 rdf:rest Nb585a3353bb947aabd4cc0a4a38ec037
72 N762f5350ef8f4925a8826d57f1eadcb1 schema:name dimensions_id
73 schema:value pub.1037576267
74 rdf:type schema:PropertyValue
75 N78b3cf4b61d34f5fa765f0425be62a88 schema:name doi
76 schema:value 10.1038/nature12023
77 rdf:type schema:PropertyValue
78 N7e9dc65933cc4274a220c2dacd2072fa schema:issueNumber 7448
79 rdf:type schema:PublicationIssue
80 N845a5d9b033041d486006cf1ed8b8462 schema:volumeNumber 497
81 rdf:type schema:PublicationVolume
82 Nb585a3353bb947aabd4cc0a4a38ec037 rdf:first sg:person.01332240064.41
83 rdf:rest N52a03158735f464195cdaeb285e0cc69
84 Nb5994f29eea14ba8a4f3a94ba8d42d40 rdf:first sg:person.0766026172.69
85 rdf:rest Nd2797a831c9244eb933beb80a7acf870
86 Nd2797a831c9244eb933beb80a7acf870 rdf:first sg:person.015730064125.44
87 rdf:rest N724c8dac90dc42b49e7743fb087fc9a2
88 Nfe1fc9a712d84c528a39958c7a77efa4 rdf:first sg:person.01261233642.46
89 rdf:rest Nb5994f29eea14ba8a4f3a94ba8d42d40
90 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
91 schema:name Engineering
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
94 schema:name Materials Engineering
95 rdf:type schema:DefinedTerm
96 sg:grant.3783141 http://pending.schema.org/fundedItem sg:pub.10.1038/nature12023
97 rdf:type schema:MonetaryGrant
98 sg:journal.1018957 schema:issn 0090-0028
99 1476-4687
100 schema:name Nature
101 rdf:type schema:Periodical
102 sg:person.01261233642.46 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
103 schema:familyName Ritz
104 schema:givenName R.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261233642.46
106 rdf:type schema:Person
107 sg:person.01332240064.41 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
108 schema:familyName Bauer
109 schema:givenName A.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01332240064.41
111 rdf:type schema:Person
112 sg:person.015730064125.44 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
113 schema:familyName Wagner
114 schema:givenName M.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015730064125.44
116 rdf:type schema:Person
117 sg:person.0603742742.63 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
118 schema:familyName Franz
119 schema:givenName C.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603742742.63
121 rdf:type schema:Person
122 sg:person.0645154744.12 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
123 schema:familyName Pfleiderer
124 schema:givenName C.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645154744.12
126 rdf:type schema:Person
127 sg:person.0766026172.69 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
128 schema:familyName Halder
129 schema:givenName M.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766026172.69
131 rdf:type schema:Person
132 sg:pub.10.1038/35106527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039062421
133 https://doi.org/10.1038/35106527
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/nature01968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039183001
136 https://doi.org/10.1038/nature01968
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nature02232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025508742
139 https://doi.org/10.1038/nature02232
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
142 https://doi.org/10.1038/nature05056
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nature07401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036946746
145 https://doi.org/10.1038/nature07401
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature09124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
148 https://doi.org/10.1038/nature09124
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nmat2916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000753350
151 https://doi.org/10.1038/nmat2916
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nphys488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001708870
154 https://doi.org/10.1038/nphys488
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1063/1.3523056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057967362
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1088/0022-3719/18/22/017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058962379
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/0953-8984/9/31/019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039289528
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevb.55.8330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060584800
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevb.75.172403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005609165
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevb.81.041203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029452091
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevb.87.134407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012793596
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1103/physrevb.87.134424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048998285
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physrevlett.102.186601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010483519
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physrevlett.102.186602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045611615
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physrevlett.103.207201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051556263
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physrevlett.104.256404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015182989
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physrevlett.108.237204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050429486
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.89.247202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052455353
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.96.047207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048386789
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.96.207202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001461138
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.99.156406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834722
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.1142644 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456045
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.1214143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465664
195 rdf:type schema:CreativeWork
196 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
197 schema:name Physik Department E21, Technische Universität München, D-85748 Garching, Germany
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...