Magnetic ratchet for three-dimensional spintronic memory and logic View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-01-30

AUTHORS

Reinoud Lavrijsen, Ji-Hyun Lee, Amalio Fernández-Pacheco, Dorothée C. M. C. Petit, Rhodri Mansell, Russell P. Cowburn

ABSTRACT

One of the key challenges for future electronic memory and logic devices is finding viable ways of moving from today's two-dimensional structures, which hold data in an x-y mesh of cells, to three-dimensional structures in which data are stored in an x-y-z lattice of cells. This could allow a many-fold increase in performance. A suggested solution is the shift register--a digital building block that passes data from cell to cell along a chain. In conventional digital microelectronics, two-dimensional shift registers are routinely constructed from a number of connected transistors. However, for three-dimensional devices the added process complexity and space needed for such transistors would largely cancel out the benefits of moving into the third dimension. 'Physical' shift registers, in which an intrinsic physical phenomenon is used to move data near-atomic distances, without requiring conventional transistors, are therefore much preferred. Here we demonstrate a way of implementing a spintronic unidirectional vertical shift register between perpendicularly magnetized ferromagnets of subnanometre thickness, similar to the layers used in non-volatile magnetic random-access memory. By carefully controlling the thickness of each magnetic layer and the exchange coupling between the layers, we form a ratchet that allows information in the form of a sharp magnetic kink soliton to be unidirectionally pumped (or 'shifted') from one magnetic layer to another. This simple and efficient shift-register concept suggests a route to the creation of three-dimensional microchips for memory and logic applications. More... »

PAGES

647

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature11733

DOI

http://dx.doi.org/10.1038/nature11733

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012802094

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23364743


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lavrijsen", 
        "givenName": "Reinoud", 
        "id": "sg:person.01142733243.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142733243.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Ji-Hyun", 
        "id": "sg:person.014633453231.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014633453231.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fern\u00e1ndez-Pacheco", 
        "givenName": "Amalio", 
        "id": "sg:person.01247770725.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247770725.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petit", 
        "givenName": "Doroth\u00e9e C. M. C.", 
        "id": "sg:person.010030436404.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010030436404.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mansell", 
        "givenName": "Rhodri", 
        "id": "sg:person.01321231744.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321231744.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cowburn", 
        "givenName": "Russell P.", 
        "id": "sg:person.01200566506.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200566506.16"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/pssr.201105420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016555459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.microrel.2011.09.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038550126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2007.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049074459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/epjap:2007107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056959635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3078523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057910592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3280373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057930604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3441402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057952405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.346944", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057957171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3682103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057999913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3694270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058002634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060817803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.257204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.257204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1108813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1145799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1214143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062465664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/3453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098931908"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-01-30", 
    "datePublishedReg": "2013-01-30", 
    "description": "One of the key challenges for future electronic memory and logic devices is finding viable ways of moving from today's two-dimensional structures, which hold data in an x-y mesh of cells, to three-dimensional structures in which data are stored in an x-y-z lattice of cells. This could allow a many-fold increase in performance. A suggested solution is the shift register--a digital building block that passes data from cell to cell along a chain. In conventional digital microelectronics, two-dimensional shift registers are routinely constructed from a number of connected transistors. However, for three-dimensional devices the added process complexity and space needed for such transistors would largely cancel out the benefits of moving into the third dimension. 'Physical' shift registers, in which an intrinsic physical phenomenon is used to move data near-atomic distances, without requiring conventional transistors, are therefore much preferred. Here we demonstrate a way of implementing a spintronic unidirectional vertical shift register between perpendicularly magnetized ferromagnets of subnanometre thickness, similar to the layers used in non-volatile magnetic random-access memory. By carefully controlling the thickness of each magnetic layer and the exchange coupling between the layers, we form a ratchet that allows information in the form of a sharp magnetic kink soliton to be unidirectionally pumped (or 'shifted') from one magnetic layer to another. This simple and efficient shift-register concept suggests a route to the creation of three-dimensional microchips for memory and logic applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature11733", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4117323", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3781739", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3781953", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7434", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "493"
      }
    ], 
    "name": "Magnetic ratchet for three-dimensional spintronic memory and logic", 
    "pagination": "647", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3cfd217a346771cb50cb1736dcb1359468bc01b22115c86a012ca56c6bc1e036"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23364743"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature11733"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012802094"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature11733", 
      "https://app.dimensions.ai/details/publication/pub.1012802094"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000422.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature11733"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature11733'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature11733'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature11733'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature11733'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      21 PREDICATES      46 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature11733 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 schema:author Nd6ba47a9ac1d42a4a28ddf86a279ff48
4 schema:citation https://doi.org/10.1002/pssr.201105420
5 https://doi.org/10.1016/j.jmmm.2007.04.035
6 https://doi.org/10.1016/j.microrel.2011.09.028
7 https://doi.org/10.1051/epjap:2007107
8 https://doi.org/10.1063/1.3078523
9 https://doi.org/10.1063/1.3280373
10 https://doi.org/10.1063/1.3441402
11 https://doi.org/10.1063/1.346944
12 https://doi.org/10.1063/1.3682103
13 https://doi.org/10.1063/1.3694270
14 https://doi.org/10.1103/physrevlett.72.920
15 https://doi.org/10.1103/physrevlett.80.849
16 https://doi.org/10.1103/physrevlett.96.257204
17 https://doi.org/10.1126/science.1108813
18 https://doi.org/10.1126/science.1145799
19 https://doi.org/10.1126/science.1166767
20 https://doi.org/10.1126/science.1214143
21 https://doi.org/10.1142/3453
22 schema:datePublished 2013-01-30
23 schema:datePublishedReg 2013-01-30
24 schema:description One of the key challenges for future electronic memory and logic devices is finding viable ways of moving from today's two-dimensional structures, which hold data in an x-y mesh of cells, to three-dimensional structures in which data are stored in an x-y-z lattice of cells. This could allow a many-fold increase in performance. A suggested solution is the shift register--a digital building block that passes data from cell to cell along a chain. In conventional digital microelectronics, two-dimensional shift registers are routinely constructed from a number of connected transistors. However, for three-dimensional devices the added process complexity and space needed for such transistors would largely cancel out the benefits of moving into the third dimension. 'Physical' shift registers, in which an intrinsic physical phenomenon is used to move data near-atomic distances, without requiring conventional transistors, are therefore much preferred. Here we demonstrate a way of implementing a spintronic unidirectional vertical shift register between perpendicularly magnetized ferromagnets of subnanometre thickness, similar to the layers used in non-volatile magnetic random-access memory. By carefully controlling the thickness of each magnetic layer and the exchange coupling between the layers, we form a ratchet that allows information in the form of a sharp magnetic kink soliton to be unidirectionally pumped (or 'shifted') from one magnetic layer to another. This simple and efficient shift-register concept suggests a route to the creation of three-dimensional microchips for memory and logic applications.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N5b8740a3ebfd40909e59fe1392cae471
29 N6f4735af1f0a425f89f1ca3f1010a46b
30 sg:journal.1018957
31 schema:name Magnetic ratchet for three-dimensional spintronic memory and logic
32 schema:pagination 647
33 schema:productId N0e6ceed1d6ac4588be8f4c6e51f7b078
34 N357f94f5c74b4339b9445dbd3e2bc82d
35 N85bfb7b6725b406b8d1f1f4e1ae16cb9
36 Nc00a1cea1102416eabe30e71ecaea48e
37 Nca58190706814bb0941ecd6054848d2f
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012802094
39 https://doi.org/10.1038/nature11733
40 schema:sdDatePublished 2019-04-10T23:11
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N78e8eec00ec64ce7a3ab12a32c6ca65f
43 schema:url https://www.nature.com/articles/nature11733
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N0e6ceed1d6ac4588be8f4c6e51f7b078 schema:name readcube_id
48 schema:value 3cfd217a346771cb50cb1736dcb1359468bc01b22115c86a012ca56c6bc1e036
49 rdf:type schema:PropertyValue
50 N265a88aec438438688eb541801486915 rdf:first sg:person.01321231744.75
51 rdf:rest N62b2a3b2e4174dbb927b864a77e685ca
52 N357f94f5c74b4339b9445dbd3e2bc82d schema:name pubmed_id
53 schema:value 23364743
54 rdf:type schema:PropertyValue
55 N3ed1efbcf44a49b7aec7bd8c1748c4a6 rdf:first sg:person.014633453231.53
56 rdf:rest Na2cf141baddf434ba1cd38403985dc96
57 N5b8740a3ebfd40909e59fe1392cae471 schema:issueNumber 7434
58 rdf:type schema:PublicationIssue
59 N62b2a3b2e4174dbb927b864a77e685ca rdf:first sg:person.01200566506.16
60 rdf:rest rdf:nil
61 N6f4735af1f0a425f89f1ca3f1010a46b schema:volumeNumber 493
62 rdf:type schema:PublicationVolume
63 N78e8eec00ec64ce7a3ab12a32c6ca65f schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N85bfb7b6725b406b8d1f1f4e1ae16cb9 schema:name dimensions_id
66 schema:value pub.1012802094
67 rdf:type schema:PropertyValue
68 Na2cf141baddf434ba1cd38403985dc96 rdf:first sg:person.01247770725.48
69 rdf:rest Nfa91fa48da4542ad854d1fbc92920108
70 Nc00a1cea1102416eabe30e71ecaea48e schema:name doi
71 schema:value 10.1038/nature11733
72 rdf:type schema:PropertyValue
73 Nca58190706814bb0941ecd6054848d2f schema:name nlm_unique_id
74 schema:value 0410462
75 rdf:type schema:PropertyValue
76 Nd6ba47a9ac1d42a4a28ddf86a279ff48 rdf:first sg:person.01142733243.67
77 rdf:rest N3ed1efbcf44a49b7aec7bd8c1748c4a6
78 Nfa91fa48da4542ad854d1fbc92920108 rdf:first sg:person.010030436404.85
79 rdf:rest N265a88aec438438688eb541801486915
80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
84 schema:name Condensed Matter Physics
85 rdf:type schema:DefinedTerm
86 sg:grant.3781739 http://pending.schema.org/fundedItem sg:pub.10.1038/nature11733
87 rdf:type schema:MonetaryGrant
88 sg:grant.3781953 http://pending.schema.org/fundedItem sg:pub.10.1038/nature11733
89 rdf:type schema:MonetaryGrant
90 sg:grant.4117323 http://pending.schema.org/fundedItem sg:pub.10.1038/nature11733
91 rdf:type schema:MonetaryGrant
92 sg:journal.1018957 schema:issn 0090-0028
93 1476-4687
94 schema:name Nature
95 rdf:type schema:Periodical
96 sg:person.010030436404.85 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
97 schema:familyName Petit
98 schema:givenName Dorothée C. M. C.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010030436404.85
100 rdf:type schema:Person
101 sg:person.01142733243.67 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
102 schema:familyName Lavrijsen
103 schema:givenName Reinoud
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01142733243.67
105 rdf:type schema:Person
106 sg:person.01200566506.16 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
107 schema:familyName Cowburn
108 schema:givenName Russell P.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01200566506.16
110 rdf:type schema:Person
111 sg:person.01247770725.48 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
112 schema:familyName Fernández-Pacheco
113 schema:givenName Amalio
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01247770725.48
115 rdf:type schema:Person
116 sg:person.01321231744.75 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
117 schema:familyName Mansell
118 schema:givenName Rhodri
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321231744.75
120 rdf:type schema:Person
121 sg:person.014633453231.53 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
122 schema:familyName Lee
123 schema:givenName Ji-Hyun
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014633453231.53
125 rdf:type schema:Person
126 https://doi.org/10.1002/pssr.201105420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016555459
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jmmm.2007.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049074459
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.microrel.2011.09.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038550126
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1051/epjap:2007107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056959635
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.3078523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057910592
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.3280373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057930604
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.3441402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057952405
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.346944 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057957171
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.3682103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057999913
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.3694270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058002634
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.72.920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809430
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.80.849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060817803
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.96.257204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832485
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1126/science.1108813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451522
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1126/science.1145799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456283
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1126/science.1214143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062465664
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1142/3453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098931908
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
163 schema:name Thin Film Magnetism Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...