Non-invasive prenatal measurement of the fetal genome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-07

AUTHORS

H. Christina Fan, Wei Gu, Jianbin Wang, Yair J. Blumenfeld, Yasser Y. El-Sayed, Stephen R. Quake

ABSTRACT

The vast majority of prenatal genetic testing requires invasive sampling. However, this poses a risk to the fetus, so one must make a decision that weighs the desire for genetic information against the risk of an adverse outcome due to hazards of the testing process. These issues are not required to be coupled, and it would be desirable to discover genetic information about the fetus without incurring a health risk. Here we demonstrate that it is possible to non-invasively sequence the entire prenatal genome. Our results show that molecular counting of parental haplotypes in maternal plasma by shotgun sequencing of maternal plasma DNA allows the inherited fetal genome to be deciphered non-invasively. We also applied the counting principle directly to each allele in the fetal exome by performing exome capture on maternal plasma DNA before shotgun sequencing. This approach enables non-invasive exome screening of clinically relevant and deleterious alleles that were paternally inherited or had arisen as de novo germline mutations, and complements the haplotype counting approach to provide a comprehensive view of the fetal genome. Non-invasive determination of the fetal genome may ultimately facilitate the diagnosis of all inherited and de novo genetic disease. More... »

PAGES

320

Journal

TITLE

Nature

ISSUE

7407

VOLUME

487

Author Affiliations

Related Patents

  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods And Systems For Digitally Counting Features On Arrays
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Systems For Digitally Counting Features On Arrays
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • Methods For Allele Calling And Ploidy Calling
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Compositions And Methods For Identifying Nucleic Acid Molecules
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods For Simultaneous Amplification Of Target Loci
  • Cell Free Dna Diagnostic Testing Standards
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • Massively Parallel Single Cell Analysis
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Label-Tags
  • Spatially Addressable Molecular Barcoding
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • System And Method For Cleaning Noisy Genetic Data And Determining Chromosome Copy Number
  • System And Method For Cleaning Noisy Genetic Data And Determining Chromosome Copy Number
  • Method Of Determining The Fraction Of Fetal Dna In Maternal Blood Using Hla Markers
  • Spatially Addressable Molecular Barcoding
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Reagent Kit, Apparatus, And Method For Detecting Chromosome Aneuploidy
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Fetal Haplotype Identification
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods And Systems For Detecting Genetic Variants
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Massively Parallel Single Cell Analysis
  • Methods For Multi-Resolution Analysis Of Cell-Free Nucleic Acids
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Massively Parallel Single Cell Analysis
  • Massively Parallel Single Cell Analysis
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature11251

    DOI

    http://dx.doi.org/10.1038/nature11251

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038456574

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22763444


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fetus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Haplotypes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pregnancy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prenatal Diagnosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Bioengineering, Stanford University, Clark Center Rm E300, 318 Campus Drive, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "H. Christina", 
            "id": "sg:person.01114470533.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114470533.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Bioengineering, Stanford University, Clark Center Rm E300, 318 Campus Drive, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gu", 
            "givenName": "Wei", 
            "id": "sg:person.01033355325.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033355325.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Bioengineering, Stanford University, Clark Center Rm E300, 318 Campus Drive, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jianbin", 
            "id": "sg:person.01101470525.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101470525.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, Room HH333, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blumenfeld", 
            "givenName": "Yair J.", 
            "id": "sg:person.012706106257.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706106257.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, Room HH333, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "El-Sayed", 
            "givenName": "Yasser Y.", 
            "id": "sg:person.010300471243.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300471243.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Bioengineering, Stanford University, Clark Center Rm E300, 318 Campus Drive, Stanford, California 94305, USA", 
                "Department of Applied Physics, Stanford University, Clark Center Room E300, 318 Campus Drive, Stanford, California 94305, USA", 
                "Howard Hughes Medical Institute, Stanford University, Clark Center Room E300, 318 Campus Drive, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quake", 
            "givenName": "Stephen R.", 
            "id": "sg:person.0670455354.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670455354.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1136/jech.2005.036517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002856366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/scitranslmed.3001720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003452907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/500808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007874903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/aog.0b013e31824fb482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/aog.0b013e31824fb482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1373/clinchem.2011.165910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013935020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/301800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018747728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1105422108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025253093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0808319105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030741698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajog.2010.12.060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034106973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034167525", 
              "https://doi.org/10.1186/1471-2164-10-116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039257970", 
              "https://doi.org/10.1038/nbt.1975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041888819", 
              "https://doi.org/10.1038/nbt.1739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041888819", 
              "https://doi.org/10.1038/nbt.1739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmra1105043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044099529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/gim.0b013e3182368a0e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045357634", 
              "https://doi.org/10.1097/gim.0b013e3182368a0e"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/gim.0b013e3182368a0e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045357634", 
              "https://doi.org/10.1097/gim.0b013e3182368a0e"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2011.73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048993431", 
              "https://doi.org/10.1038/gim.2011.73"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npre.2010.5373.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050302767", 
              "https://doi.org/10.1038/npre.2010.5373.1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.c7401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052555957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-6736(91)91513-t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053385747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-6736(91)91513-t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053385747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077754850", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-07", 
        "datePublishedReg": "2012-07-01", 
        "description": "The vast majority of prenatal genetic testing requires invasive sampling. However, this poses a risk to the fetus, so one must make a decision that weighs the desire for genetic information against the risk of an adverse outcome due to hazards of the testing process. These issues are not required to be coupled, and it would be desirable to discover genetic information about the fetus without incurring a health risk. Here we demonstrate that it is possible to non-invasively sequence the entire prenatal genome. Our results show that molecular counting of parental haplotypes in maternal plasma by shotgun sequencing of maternal plasma DNA allows the inherited fetal genome to be deciphered non-invasively. We also applied the counting principle directly to each allele in the fetal exome by performing exome capture on maternal plasma DNA before shotgun sequencing. This approach enables non-invasive exome screening of clinically relevant and deleterious alleles that were paternally inherited or had arisen as de novo germline mutations, and complements the haplotype counting approach to provide a comprehensive view of the fetal genome. Non-invasive determination of the fetal genome may ultimately facilitate the diagnosis of all inherited and de novo genetic disease.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature11251", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2699092", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2355026", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7407", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "487"
          }
        ], 
        "name": "Non-invasive prenatal measurement of the fetal genome", 
        "pagination": "320", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b73098054ce2c74277d07adafc27d6e419dd97b11e442e937378d2ba5d0658a9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22763444"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature11251"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038456574"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature11251", 
          "https://app.dimensions.ai/details/publication/pub.1038456574"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000551.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature11251"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature11251'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature11251'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature11251'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature11251'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      61 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature11251 schema:about N16e3abf617c343a38c5682caa7b0c699
    2 N21e881ef49bf4e7596fa703eca3abd2d
    3 N29d849e5d2174c8cb06420545e3c48c9
    4 N2badb8b83e6a476d8415974628b6a04a
    5 N4424c4c44ce144eb9846d96e59f3f752
    6 N482ebba4b085457490c7a4310b4a1bed
    7 N5171931def99449cba93ba3dd786c51f
    8 N5c4324717a6e47d9bdcb7a7692e88188
    9 Nc33583d8f30344308a8d2fa9b69e9ff3
    10 Nd40b163441ac4b66bc43f5c8b1e0f08e
    11 Nda63d39c5ee349dbabe0a92ea275cd32
    12 Nf18c896447224d69b34c6516b7c752ed
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author N0afe0658c52647b097bbdd6bed495ee5
    16 schema:citation sg:pub.10.1038/gim.2011.73
    17 sg:pub.10.1038/nature09534
    18 sg:pub.10.1038/nbt.1739
    19 sg:pub.10.1038/nbt.1975
    20 sg:pub.10.1038/npre.2010.5373.1
    21 sg:pub.10.1097/gim.0b013e3182368a0e
    22 sg:pub.10.1186/1471-2164-10-116
    23 https://app.dimensions.ai/details/publication/pub.1077754850
    24 https://doi.org/10.1016/0140-6736(91)91513-t
    25 https://doi.org/10.1016/j.ajog.2010.12.060
    26 https://doi.org/10.1056/nejmra1105043
    27 https://doi.org/10.1073/pnas.0808319105
    28 https://doi.org/10.1073/pnas.1105422108
    29 https://doi.org/10.1086/301800
    30 https://doi.org/10.1086/500808
    31 https://doi.org/10.1097/aog.0b013e31824fb482
    32 https://doi.org/10.1126/scitranslmed.3001720
    33 https://doi.org/10.1136/bmj.c7401
    34 https://doi.org/10.1136/jech.2005.036517
    35 https://doi.org/10.1373/clinchem.2011.165910
    36 schema:datePublished 2012-07
    37 schema:datePublishedReg 2012-07-01
    38 schema:description The vast majority of prenatal genetic testing requires invasive sampling. However, this poses a risk to the fetus, so one must make a decision that weighs the desire for genetic information against the risk of an adverse outcome due to hazards of the testing process. These issues are not required to be coupled, and it would be desirable to discover genetic information about the fetus without incurring a health risk. Here we demonstrate that it is possible to non-invasively sequence the entire prenatal genome. Our results show that molecular counting of parental haplotypes in maternal plasma by shotgun sequencing of maternal plasma DNA allows the inherited fetal genome to be deciphered non-invasively. We also applied the counting principle directly to each allele in the fetal exome by performing exome capture on maternal plasma DNA before shotgun sequencing. This approach enables non-invasive exome screening of clinically relevant and deleterious alleles that were paternally inherited or had arisen as de novo germline mutations, and complements the haplotype counting approach to provide a comprehensive view of the fetal genome. Non-invasive determination of the fetal genome may ultimately facilitate the diagnosis of all inherited and de novo genetic disease.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree true
    42 schema:isPartOf Nac449578be8f4cde8cfa9b0a3a1d3fdd
    43 Nf8a17feb9fdf42d79b3de6906e3dfe71
    44 sg:journal.1018957
    45 schema:name Non-invasive prenatal measurement of the fetal genome
    46 schema:pagination 320
    47 schema:productId N06152d3b7e9b40c98e4026386887d7e4
    48 N10322cb0828e466186c96d7c9ab674ea
    49 N1c26fc69223843039d2f62944d79981c
    50 N423257ffe012467ebc01f968fdd84cdb
    51 Nbae4c64c9a8142c4bdd85e9aeb0e7037
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038456574
    53 https://doi.org/10.1038/nature11251
    54 schema:sdDatePublished 2019-04-10T15:08
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N7fd65d0e217a49718486159f8f8640dc
    57 schema:url https://www.nature.com/articles/nature11251
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N06152d3b7e9b40c98e4026386887d7e4 schema:name dimensions_id
    62 schema:value pub.1038456574
    63 rdf:type schema:PropertyValue
    64 N0afe0658c52647b097bbdd6bed495ee5 rdf:first sg:person.01114470533.00
    65 rdf:rest Nc96cff5d1d15479b83470c9853f01239
    66 N10322cb0828e466186c96d7c9ab674ea schema:name readcube_id
    67 schema:value b73098054ce2c74277d07adafc27d6e419dd97b11e442e937378d2ba5d0658a9
    68 rdf:type schema:PropertyValue
    69 N16e3abf617c343a38c5682caa7b0c699 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    70 schema:name Haplotypes
    71 rdf:type schema:DefinedTerm
    72 N1c26fc69223843039d2f62944d79981c schema:name pubmed_id
    73 schema:value 22763444
    74 rdf:type schema:PropertyValue
    75 N21e881ef49bf4e7596fa703eca3abd2d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    76 schema:name Pregnancy
    77 rdf:type schema:DefinedTerm
    78 N29d849e5d2174c8cb06420545e3c48c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Genome, Human
    80 rdf:type schema:DefinedTerm
    81 N2badb8b83e6a476d8415974628b6a04a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    82 schema:name Sensitivity and Specificity
    83 rdf:type schema:DefinedTerm
    84 N423257ffe012467ebc01f968fdd84cdb schema:name nlm_unique_id
    85 schema:value 0410462
    86 rdf:type schema:PropertyValue
    87 N4424c4c44ce144eb9846d96e59f3f752 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    88 schema:name Prenatal Diagnosis
    89 rdf:type schema:DefinedTerm
    90 N482ebba4b085457490c7a4310b4a1bed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    91 schema:name Chromosomes, Human
    92 rdf:type schema:DefinedTerm
    93 N5171931def99449cba93ba3dd786c51f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    94 schema:name Exome
    95 rdf:type schema:DefinedTerm
    96 N5c0332cc80b549f3a2ab354696d2e1dc rdf:first sg:person.01101470525.00
    97 rdf:rest N6e9eda19f4be4b9995f278064f753c3f
    98 N5c4324717a6e47d9bdcb7a7692e88188 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    99 schema:name Female
    100 rdf:type schema:DefinedTerm
    101 N6e9eda19f4be4b9995f278064f753c3f rdf:first sg:person.012706106257.12
    102 rdf:rest Nf4750346ed75479e9f6b8cd3194458bc
    103 N7fd65d0e217a49718486159f8f8640dc schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 Nac449578be8f4cde8cfa9b0a3a1d3fdd schema:volumeNumber 487
    106 rdf:type schema:PublicationVolume
    107 Nbae4c64c9a8142c4bdd85e9aeb0e7037 schema:name doi
    108 schema:value 10.1038/nature11251
    109 rdf:type schema:PropertyValue
    110 Nc33583d8f30344308a8d2fa9b69e9ff3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    111 schema:name DNA
    112 rdf:type schema:DefinedTerm
    113 Nc96cff5d1d15479b83470c9853f01239 rdf:first sg:person.01033355325.91
    114 rdf:rest N5c0332cc80b549f3a2ab354696d2e1dc
    115 Nd40b163441ac4b66bc43f5c8b1e0f08e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    116 schema:name Male
    117 rdf:type schema:DefinedTerm
    118 Nda63d39c5ee349dbabe0a92ea275cd32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    119 schema:name Fetus
    120 rdf:type schema:DefinedTerm
    121 Ne6b4138e858a4910a496df28384eb133 rdf:first sg:person.0670455354.14
    122 rdf:rest rdf:nil
    123 Nf18c896447224d69b34c6516b7c752ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    124 schema:name Humans
    125 rdf:type schema:DefinedTerm
    126 Nf4750346ed75479e9f6b8cd3194458bc rdf:first sg:person.010300471243.15
    127 rdf:rest Ne6b4138e858a4910a496df28384eb133
    128 Nf8a17feb9fdf42d79b3de6906e3dfe71 schema:issueNumber 7407
    129 rdf:type schema:PublicationIssue
    130 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Biological Sciences
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Genetics
    135 rdf:type schema:DefinedTerm
    136 sg:grant.2355026 http://pending.schema.org/fundedItem sg:pub.10.1038/nature11251
    137 rdf:type schema:MonetaryGrant
    138 sg:grant.2699092 http://pending.schema.org/fundedItem sg:pub.10.1038/nature11251
    139 rdf:type schema:MonetaryGrant
    140 sg:journal.1018957 schema:issn 0090-0028
    141 1476-4687
    142 schema:name Nature
    143 rdf:type schema:Periodical
    144 sg:person.010300471243.15 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    145 schema:familyName El-Sayed
    146 schema:givenName Yasser Y.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300471243.15
    148 rdf:type schema:Person
    149 sg:person.01033355325.91 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    150 schema:familyName Gu
    151 schema:givenName Wei
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033355325.91
    153 rdf:type schema:Person
    154 sg:person.01101470525.00 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    155 schema:familyName Wang
    156 schema:givenName Jianbin
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101470525.00
    158 rdf:type schema:Person
    159 sg:person.01114470533.00 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    160 schema:familyName Fan
    161 schema:givenName H. Christina
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114470533.00
    163 rdf:type schema:Person
    164 sg:person.012706106257.12 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    165 schema:familyName Blumenfeld
    166 schema:givenName Yair J.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706106257.12
    168 rdf:type schema:Person
    169 sg:person.0670455354.14 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    170 schema:familyName Quake
    171 schema:givenName Stephen R.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670455354.14
    173 rdf:type schema:Person
    174 sg:pub.10.1038/gim.2011.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048993431
    175 https://doi.org/10.1038/gim.2011.73
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
    178 https://doi.org/10.1038/nature09534
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nbt.1739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041888819
    181 https://doi.org/10.1038/nbt.1739
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nbt.1975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039257970
    184 https://doi.org/10.1038/nbt.1975
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/npre.2010.5373.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050302767
    187 https://doi.org/10.1038/npre.2010.5373.1
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1097/gim.0b013e3182368a0e schema:sameAs https://app.dimensions.ai/details/publication/pub.1045357634
    190 https://doi.org/10.1097/gim.0b013e3182368a0e
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1186/1471-2164-10-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034167525
    193 https://doi.org/10.1186/1471-2164-10-116
    194 rdf:type schema:CreativeWork
    195 https://app.dimensions.ai/details/publication/pub.1077754850 schema:CreativeWork
    196 https://doi.org/10.1016/0140-6736(91)91513-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1053385747
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.ajog.2010.12.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034106973
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1056/nejmra1105043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044099529
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1073/pnas.0808319105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030741698
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1073/pnas.1105422108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025253093
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1086/301800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018747728
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1086/500808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007874903
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1097/aog.0b013e31824fb482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772403
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1126/scitranslmed.3001720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003452907
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1136/bmj.c7401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052555957
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1136/jech.2005.036517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002856366
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1373/clinchem.2011.165910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013935020
    219 rdf:type schema:CreativeWork
    220 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    221 schema:name Department of Applied Physics, Stanford University, Clark Center Room E300, 318 Campus Drive, Stanford, California 94305, USA
    222 Department of Bioengineering, Stanford University, Clark Center Rm E300, 318 Campus Drive, Stanford, California 94305, USA
    223 Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, Room HH333, Stanford, California 94305, USA
    224 Howard Hughes Medical Institute, Stanford University, Clark Center Room E300, 318 Campus Drive, Stanford, California 94305, USA
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...