Non-invasive prenatal measurement of the fetal genome View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-07

AUTHORS

H. Christina Fan, Wei Gu, Jianbin Wang, Yair J. Blumenfeld, Yasser Y. El-Sayed, Stephen R. Quake

ABSTRACT

The vast majority of prenatal genetic testing requires invasive sampling. However, this poses a risk to the fetus, so one must make a decision that weighs the desire for genetic information against the risk of an adverse outcome due to hazards of the testing process. These issues are not required to be coupled, and it would be desirable to discover genetic information about the fetus without incurring a health risk. Here we demonstrate that it is possible to non-invasively sequence the entire prenatal genome. Our results show that molecular counting of parental haplotypes in maternal plasma by shotgun sequencing of maternal plasma DNA allows the inherited fetal genome to be deciphered non-invasively. We also applied the counting principle directly to each allele in the fetal exome by performing exome capture on maternal plasma DNA before shotgun sequencing. This approach enables non-invasive exome screening of clinically relevant and deleterious alleles that were paternally inherited or had arisen as de novo germline mutations, and complements the haplotype counting approach to provide a comprehensive view of the fetal genome. Non-invasive determination of the fetal genome may ultimately facilitate the diagnosis of all inherited and de novo genetic disease. More... »

PAGES

320

Journal

TITLE

Nature

ISSUE

7407

VOLUME

487

Author Affiliations

Related Patents

  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods And Systems For Digitally Counting Features On Arrays
  • Methods And Systems For Digitally Counting Features On Arrays
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • Methods For Allele Calling And Ploidy Calling
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Compositions And Methods For Identifying Nucleic Acid Molecules
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods For Simultaneous Amplification Of Target Loci
  • Cell Free Dna Diagnostic Testing Standards
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • System And Method For Cleaning Noisy Genetic Data From Target Individuals Using Genetic Data From Genetically Related Individuals
  • Massively Parallel Single Cell Analysis
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Label-Tags
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Spatially Addressable Molecular Barcoding
  • System And Method For Cleaning Noisy Genetic Data And Determining Chromosome Copy Number
  • System And Method For Cleaning Noisy Genetic Data And Determining Chromosome Copy Number
  • Method Of Determining The Fraction Of Fetal Dna In Maternal Blood Using Hla Markers
  • Spatially Addressable Molecular Barcoding
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Methods And Systems For Detecting Genetic Variants
  • Reagent Kit, Apparatus, And Method For Detecting Chromosome Aneuploidy
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Methods For Non-Invasive Prenatal Ploidy Calling
  • Fetal Haplotype Identification
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Systems And Methods To Detect Rare Mutations And Copy Number Variation
  • Massively Parallel Single Cell Analysis
  • Methods For Multi-Resolution Analysis Of Cell-Free Nucleic Acids
  • Digital Counting Of Individual Molecules By Stochastic Attachment Of Diverse Labels
  • Massively Parallel Single Cell Analysis
  • Massively Parallel Single Cell Analysis
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature11251

    DOI

    http://dx.doi.org/10.1038/nature11251

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1038456574

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/22763444


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Chromosomes, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "DNA", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Exome", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Fetus", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genome, Human", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Haplotypes", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pregnancy", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Prenatal Diagnosis", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sensitivity and Specificity", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Bioengineering, Stanford University, Clark Center Rm E300, 318 Campus Drive, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fan", 
            "givenName": "H. Christina", 
            "id": "sg:person.01114470533.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114470533.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Bioengineering, Stanford University, Clark Center Rm E300, 318 Campus Drive, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gu", 
            "givenName": "Wei", 
            "id": "sg:person.01033355325.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033355325.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Bioengineering, Stanford University, Clark Center Rm E300, 318 Campus Drive, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Jianbin", 
            "id": "sg:person.01101470525.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101470525.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, Room HH333, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Blumenfeld", 
            "givenName": "Yair J.", 
            "id": "sg:person.012706106257.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706106257.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, Room HH333, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "El-Sayed", 
            "givenName": "Yasser Y.", 
            "id": "sg:person.010300471243.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300471243.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Stanford University", 
              "id": "https://www.grid.ac/institutes/grid.168010.e", 
              "name": [
                "Department of Bioengineering, Stanford University, Clark Center Rm E300, 318 Campus Drive, Stanford, California 94305, USA", 
                "Department of Applied Physics, Stanford University, Clark Center Room E300, 318 Campus Drive, Stanford, California 94305, USA", 
                "Howard Hughes Medical Institute, Stanford University, Clark Center Room E300, 318 Campus Drive, Stanford, California 94305, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quake", 
            "givenName": "Stephen R.", 
            "id": "sg:person.0670455354.14", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670455354.14"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1136/jech.2005.036517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002856366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/scitranslmed.3001720", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003452907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/500808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007874903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature09534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010608717", 
              "https://doi.org/10.1038/nature09534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/aog.0b013e31824fb482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/aog.0b013e31824fb482", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012772403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1373/clinchem.2011.165910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013935020"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/301800", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018747728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1105422108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025253093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0808319105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030741698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ajog.2010.12.060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034106973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-10-116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034167525", 
              "https://doi.org/10.1186/1471-2164-10-116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1975", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039257970", 
              "https://doi.org/10.1038/nbt.1975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041888819", 
              "https://doi.org/10.1038/nbt.1739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt.1739", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041888819", 
              "https://doi.org/10.1038/nbt.1739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmra1105043", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044099529"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/gim.0b013e3182368a0e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045357634", 
              "https://doi.org/10.1097/gim.0b013e3182368a0e"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1097/gim.0b013e3182368a0e", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045357634", 
              "https://doi.org/10.1097/gim.0b013e3182368a0e"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/gim.2011.73", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048993431", 
              "https://doi.org/10.1038/gim.2011.73"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/npre.2010.5373.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050302767", 
              "https://doi.org/10.1038/npre.2010.5373.1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1136/bmj.c7401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052555957"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-6736(91)91513-t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053385747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0140-6736(91)91513-t", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053385747"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077754850", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-07", 
        "datePublishedReg": "2012-07-01", 
        "description": "The vast majority of prenatal genetic testing requires invasive sampling. However, this poses a risk to the fetus, so one must make a decision that weighs the desire for genetic information against the risk of an adverse outcome due to hazards of the testing process. These issues are not required to be coupled, and it would be desirable to discover genetic information about the fetus without incurring a health risk. Here we demonstrate that it is possible to non-invasively sequence the entire prenatal genome. Our results show that molecular counting of parental haplotypes in maternal plasma by shotgun sequencing of maternal plasma DNA allows the inherited fetal genome to be deciphered non-invasively. We also applied the counting principle directly to each allele in the fetal exome by performing exome capture on maternal plasma DNA before shotgun sequencing. This approach enables non-invasive exome screening of clinically relevant and deleterious alleles that were paternally inherited or had arisen as de novo germline mutations, and complements the haplotype counting approach to provide a comprehensive view of the fetal genome. Non-invasive determination of the fetal genome may ultimately facilitate the diagnosis of all inherited and de novo genetic disease.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature11251", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.2699092", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.2355026", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7407", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "487"
          }
        ], 
        "name": "Non-invasive prenatal measurement of the fetal genome", 
        "pagination": "320", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "b73098054ce2c74277d07adafc27d6e419dd97b11e442e937378d2ba5d0658a9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "22763444"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature11251"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1038456574"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature11251", 
          "https://app.dimensions.ai/details/publication/pub.1038456574"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T15:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000551.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature11251"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature11251'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature11251'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature11251'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature11251'


     

    This table displays all metadata directly associated to this object as RDF triples.

    225 TRIPLES      21 PREDICATES      61 URIs      33 LITERALS      21 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature11251 schema:about N168f05b1161c4c8ebbf0c4845952f2db
    2 N2526fb996c2c4244b2f4fee8fd19f657
    3 N2a9140f1d1924995bd6a9c723f5fb8da
    4 N488126b2cf8047c99fc3fdb14708c6e5
    5 N4a45374690bb443489c29b403be5b0c8
    6 N5513238cde6a4999900f95d181cd1a55
    7 N59dea311d36342dfb78ee5997c30c26e
    8 N650bf712db88432188c32f5238380bf5
    9 N806287992e0c4bef863c3a26dd36655b
    10 N87b604dc565e4000a1cbc8e375f6f959
    11 Na8744d33613a46f2aea04b8e60306a99
    12 Nfcedfc449ce341cda73397affb29662c
    13 anzsrc-for:06
    14 anzsrc-for:0604
    15 schema:author N51c4b8bbb491408f8139814a0cee4e31
    16 schema:citation sg:pub.10.1038/gim.2011.73
    17 sg:pub.10.1038/nature09534
    18 sg:pub.10.1038/nbt.1739
    19 sg:pub.10.1038/nbt.1975
    20 sg:pub.10.1038/npre.2010.5373.1
    21 sg:pub.10.1097/gim.0b013e3182368a0e
    22 sg:pub.10.1186/1471-2164-10-116
    23 https://app.dimensions.ai/details/publication/pub.1077754850
    24 https://doi.org/10.1016/0140-6736(91)91513-t
    25 https://doi.org/10.1016/j.ajog.2010.12.060
    26 https://doi.org/10.1056/nejmra1105043
    27 https://doi.org/10.1073/pnas.0808319105
    28 https://doi.org/10.1073/pnas.1105422108
    29 https://doi.org/10.1086/301800
    30 https://doi.org/10.1086/500808
    31 https://doi.org/10.1097/aog.0b013e31824fb482
    32 https://doi.org/10.1126/scitranslmed.3001720
    33 https://doi.org/10.1136/bmj.c7401
    34 https://doi.org/10.1136/jech.2005.036517
    35 https://doi.org/10.1373/clinchem.2011.165910
    36 schema:datePublished 2012-07
    37 schema:datePublishedReg 2012-07-01
    38 schema:description The vast majority of prenatal genetic testing requires invasive sampling. However, this poses a risk to the fetus, so one must make a decision that weighs the desire for genetic information against the risk of an adverse outcome due to hazards of the testing process. These issues are not required to be coupled, and it would be desirable to discover genetic information about the fetus without incurring a health risk. Here we demonstrate that it is possible to non-invasively sequence the entire prenatal genome. Our results show that molecular counting of parental haplotypes in maternal plasma by shotgun sequencing of maternal plasma DNA allows the inherited fetal genome to be deciphered non-invasively. We also applied the counting principle directly to each allele in the fetal exome by performing exome capture on maternal plasma DNA before shotgun sequencing. This approach enables non-invasive exome screening of clinically relevant and deleterious alleles that were paternally inherited or had arisen as de novo germline mutations, and complements the haplotype counting approach to provide a comprehensive view of the fetal genome. Non-invasive determination of the fetal genome may ultimately facilitate the diagnosis of all inherited and de novo genetic disease.
    39 schema:genre research_article
    40 schema:inLanguage en
    41 schema:isAccessibleForFree true
    42 schema:isPartOf N01defa8e2ef940f391c37d84166b0b43
    43 N0b03040a0c9e4161be066ea8da6f709c
    44 sg:journal.1018957
    45 schema:name Non-invasive prenatal measurement of the fetal genome
    46 schema:pagination 320
    47 schema:productId N15e0ead31a1643cc96354d80b8be1989
    48 N33b89fe191e142199648bfb0ae58c810
    49 N691b270e2b4e431fb6280ad6c237310c
    50 N9fd89d80426b4cdd9dfe58a8c5aa0540
    51 Ndc414c9b57f448fc9147bead152757a9
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038456574
    53 https://doi.org/10.1038/nature11251
    54 schema:sdDatePublished 2019-04-10T15:08
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher N0c5fa6832de74139842dd777372c7bd9
    57 schema:url https://www.nature.com/articles/nature11251
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N01defa8e2ef940f391c37d84166b0b43 schema:volumeNumber 487
    62 rdf:type schema:PublicationVolume
    63 N0b03040a0c9e4161be066ea8da6f709c schema:issueNumber 7407
    64 rdf:type schema:PublicationIssue
    65 N0c5fa6832de74139842dd777372c7bd9 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N15e0ead31a1643cc96354d80b8be1989 schema:name doi
    68 schema:value 10.1038/nature11251
    69 rdf:type schema:PropertyValue
    70 N168f05b1161c4c8ebbf0c4845952f2db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    71 schema:name Exome
    72 rdf:type schema:DefinedTerm
    73 N2526fb996c2c4244b2f4fee8fd19f657 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    74 schema:name Male
    75 rdf:type schema:DefinedTerm
    76 N2a193c22ef7745e699c213c2cbba2e44 rdf:first sg:person.012706106257.12
    77 rdf:rest Nb23d584e37b245b29c6ceca760704c59
    78 N2a9140f1d1924995bd6a9c723f5fb8da schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    79 schema:name Fetus
    80 rdf:type schema:DefinedTerm
    81 N33b89fe191e142199648bfb0ae58c810 schema:name readcube_id
    82 schema:value b73098054ce2c74277d07adafc27d6e419dd97b11e442e937378d2ba5d0658a9
    83 rdf:type schema:PropertyValue
    84 N48510d6a5aab401da6b1900a8faef72e rdf:first sg:person.0670455354.14
    85 rdf:rest rdf:nil
    86 N488126b2cf8047c99fc3fdb14708c6e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    87 schema:name Haplotypes
    88 rdf:type schema:DefinedTerm
    89 N4a45374690bb443489c29b403be5b0c8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    90 schema:name Female
    91 rdf:type schema:DefinedTerm
    92 N51c4b8bbb491408f8139814a0cee4e31 rdf:first sg:person.01114470533.00
    93 rdf:rest Nbc9f8070eb084583af0846dfc3be4bfb
    94 N5513238cde6a4999900f95d181cd1a55 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    95 schema:name Sensitivity and Specificity
    96 rdf:type schema:DefinedTerm
    97 N59dea311d36342dfb78ee5997c30c26e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    98 schema:name Prenatal Diagnosis
    99 rdf:type schema:DefinedTerm
    100 N650bf712db88432188c32f5238380bf5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    101 schema:name Chromosomes, Human
    102 rdf:type schema:DefinedTerm
    103 N669a9089e69b4b78b898184fe9d59c16 rdf:first sg:person.01101470525.00
    104 rdf:rest N2a193c22ef7745e699c213c2cbba2e44
    105 N691b270e2b4e431fb6280ad6c237310c schema:name pubmed_id
    106 schema:value 22763444
    107 rdf:type schema:PropertyValue
    108 N806287992e0c4bef863c3a26dd36655b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    109 schema:name Humans
    110 rdf:type schema:DefinedTerm
    111 N87b604dc565e4000a1cbc8e375f6f959 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    112 schema:name Genome, Human
    113 rdf:type schema:DefinedTerm
    114 N9fd89d80426b4cdd9dfe58a8c5aa0540 schema:name nlm_unique_id
    115 schema:value 0410462
    116 rdf:type schema:PropertyValue
    117 Na8744d33613a46f2aea04b8e60306a99 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    118 schema:name DNA
    119 rdf:type schema:DefinedTerm
    120 Nb23d584e37b245b29c6ceca760704c59 rdf:first sg:person.010300471243.15
    121 rdf:rest N48510d6a5aab401da6b1900a8faef72e
    122 Nbc9f8070eb084583af0846dfc3be4bfb rdf:first sg:person.01033355325.91
    123 rdf:rest N669a9089e69b4b78b898184fe9d59c16
    124 Ndc414c9b57f448fc9147bead152757a9 schema:name dimensions_id
    125 schema:value pub.1038456574
    126 rdf:type schema:PropertyValue
    127 Nfcedfc449ce341cda73397affb29662c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Pregnancy
    129 rdf:type schema:DefinedTerm
    130 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    131 schema:name Biological Sciences
    132 rdf:type schema:DefinedTerm
    133 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Genetics
    135 rdf:type schema:DefinedTerm
    136 sg:grant.2355026 http://pending.schema.org/fundedItem sg:pub.10.1038/nature11251
    137 rdf:type schema:MonetaryGrant
    138 sg:grant.2699092 http://pending.schema.org/fundedItem sg:pub.10.1038/nature11251
    139 rdf:type schema:MonetaryGrant
    140 sg:journal.1018957 schema:issn 0090-0028
    141 1476-4687
    142 schema:name Nature
    143 rdf:type schema:Periodical
    144 sg:person.010300471243.15 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    145 schema:familyName El-Sayed
    146 schema:givenName Yasser Y.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300471243.15
    148 rdf:type schema:Person
    149 sg:person.01033355325.91 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    150 schema:familyName Gu
    151 schema:givenName Wei
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01033355325.91
    153 rdf:type schema:Person
    154 sg:person.01101470525.00 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    155 schema:familyName Wang
    156 schema:givenName Jianbin
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101470525.00
    158 rdf:type schema:Person
    159 sg:person.01114470533.00 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    160 schema:familyName Fan
    161 schema:givenName H. Christina
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01114470533.00
    163 rdf:type schema:Person
    164 sg:person.012706106257.12 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    165 schema:familyName Blumenfeld
    166 schema:givenName Yair J.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012706106257.12
    168 rdf:type schema:Person
    169 sg:person.0670455354.14 schema:affiliation https://www.grid.ac/institutes/grid.168010.e
    170 schema:familyName Quake
    171 schema:givenName Stephen R.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0670455354.14
    173 rdf:type schema:Person
    174 sg:pub.10.1038/gim.2011.73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048993431
    175 https://doi.org/10.1038/gim.2011.73
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
    178 https://doi.org/10.1038/nature09534
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1038/nbt.1739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041888819
    181 https://doi.org/10.1038/nbt.1739
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1038/nbt.1975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039257970
    184 https://doi.org/10.1038/nbt.1975
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1038/npre.2010.5373.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050302767
    187 https://doi.org/10.1038/npre.2010.5373.1
    188 rdf:type schema:CreativeWork
    189 sg:pub.10.1097/gim.0b013e3182368a0e schema:sameAs https://app.dimensions.ai/details/publication/pub.1045357634
    190 https://doi.org/10.1097/gim.0b013e3182368a0e
    191 rdf:type schema:CreativeWork
    192 sg:pub.10.1186/1471-2164-10-116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034167525
    193 https://doi.org/10.1186/1471-2164-10-116
    194 rdf:type schema:CreativeWork
    195 https://app.dimensions.ai/details/publication/pub.1077754850 schema:CreativeWork
    196 https://doi.org/10.1016/0140-6736(91)91513-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1053385747
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1016/j.ajog.2010.12.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034106973
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1056/nejmra1105043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044099529
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1073/pnas.0808319105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030741698
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1073/pnas.1105422108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025253093
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1086/301800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018747728
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1086/500808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007874903
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1097/aog.0b013e31824fb482 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012772403
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1126/scitranslmed.3001720 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003452907
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1136/bmj.c7401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052555957
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1136/jech.2005.036517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002856366
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1373/clinchem.2011.165910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013935020
    219 rdf:type schema:CreativeWork
    220 https://www.grid.ac/institutes/grid.168010.e schema:alternateName Stanford University
    221 schema:name Department of Applied Physics, Stanford University, Clark Center Room E300, 318 Campus Drive, Stanford, California 94305, USA
    222 Department of Bioengineering, Stanford University, Clark Center Rm E300, 318 Campus Drive, Stanford, California 94305, USA
    223 Division of Maternal-Fetal Medicine, Department of Obstetrics & Gynecology, Stanford University School of Medicine, 300 Pasteur Drive, Room HH333, Stanford, California 94305, USA
    224 Howard Hughes Medical Institute, Stanford University, Clark Center Room E300, 318 Campus Drive, Stanford, California 94305, USA
    225 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...