Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-04-25

AUTHORS

Joseph W. Britton, Brian C. Sawyer, Adam C. Keith, C.-C. Joseph Wang, James K. Freericks, Hermann Uys, Michael J. Biercuk, John J. Bollinger

ABSTRACT

The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed-matter systems, potentially including high-temperature superconductivity. However, many properties of exotic, strongly correlated spin systems, such as spin liquids, have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N ≈ 30 particles. Feynman predicted that a quantum simulator--a special-purpose 'analogue' processor built using quantum bits (qubits)--would be inherently suited to solving such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach, but simulations allowing controlled, tunable interactions between spins localized on two- or three-dimensional lattices of more than a few tens of qubits have yet to be demonstrated, in part because of the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin interaction, J(i,j), on a naturally occurring, two-dimensional triangular crystal lattice of hundreds of spin-half particles (beryllium ions stored in a Penning trap). This is a computationally relevant scale more than an order of magnitude larger than previous experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction J(i,j) proportional variant d(-a)(i,j), where 0 ≤ a ≤ 3 and d(i,j) is the distance between spin pairs. These power laws correspond physically to infinite-range (a = 0), Coulomb-like (a = 1), monopole-dipole (a = 2) and dipole-dipole (a = 3) couplings. Experimentally, we demonstrate excellent agreement with a theory for 0.05 ≲ a ≲ 1.4. This demonstration, coupled with the high spin count, excellent quantum control and low technical complexity of the Penning trap, brings within reach the simulation of otherwise computationally intractable problems in quantum magnetism. More... »

PAGES

489

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature10981

DOI

http://dx.doi.org/10.1038/nature10981

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1036293260

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22538611


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "US National Institute of Standards and Technology, Time and Frequency Division, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Britton", 
        "givenName": "Joseph W.", 
        "id": "sg:person.01336036273.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336036273.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "US National Institute of Standards and Technology, Time and Frequency Division, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sawyer", 
        "givenName": "Brian C.", 
        "id": "sg:person.0612432173.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612432173.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Carolina State University", 
          "id": "https://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Physics, Georgetown University, Washington DC 20057, USA", 
            "Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keith", 
        "givenName": "Adam C.", 
        "id": "sg:person.0660545373.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660545373.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgetown University", 
          "id": "https://www.grid.ac/institutes/grid.213910.8", 
          "name": [
            "Department of Physics, Georgetown University, Washington DC 20057, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "C.-C. Joseph", 
        "id": "sg:person.0726660573.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726660573.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgetown University", 
          "id": "https://www.grid.ac/institutes/grid.213910.8", 
          "name": [
            "Department of Physics, Georgetown University, Washington DC 20057, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freericks", 
        "givenName": "James K.", 
        "id": "sg:person.015114034344.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015114034344.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Council for Scientific and Industrial Research", 
          "id": "https://www.grid.ac/institutes/grid.7327.1", 
          "name": [
            "National Laser Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Uys", 
        "givenName": "Hermann", 
        "id": "sg:person.01154215064.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154215064.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Sydney", 
          "id": "https://www.grid.ac/institutes/grid.1013.3", 
          "name": [
            "Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, New South Wales 2006, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Biercuk", 
        "givenName": "Michael J.", 
        "id": "sg:person.01111222373.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111222373.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "US National Institute of Standards and Technology, Time and Frequency Division, Boulder, Colorado 80305, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bollinger", 
        "givenName": "John J.", 
        "id": "sg:person.010625046742.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010625046742.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.108.213003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003306202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.213003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003306202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.120502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007361589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.120502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007361589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.233002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008437034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.233002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008437034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008801399", 
          "https://doi.org/10.1038/nature08609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008801399", 
          "https://doi.org/10.1038/nature08609"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013088353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013088353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.107204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014478434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.107204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014478434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016542767", 
          "https://doi.org/10.1038/nphys1032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019747044", 
          "https://doi.org/10.1038/nature09071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019747044", 
          "https://doi.org/10.1038/nature09071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030664301", 
          "https://doi.org/10.1038/ncomms1374"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018730701223200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036059558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037325462", 
          "https://doi.org/10.1038/nphys749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02650179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038336282", 
          "https://doi.org/10.1007/bf02650179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042830450", 
          "https://doi.org/10.1038/nature08917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042830450", 
          "https://doi.org/10.1038/nature08917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.250501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045625754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.250501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045625754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046917020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.4457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046917020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.077201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047100531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.107.077201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047100531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047225147", 
          "https://doi.org/10.1038/nature01492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047225147", 
          "https://doi.org/10.1038/nature01492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.137204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047727051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.137204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047727051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09994", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048118119", 
          "https://doi.org/10.1038/nature09994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051980057", 
          "https://doi.org/10.1038/nphys1919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2711623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057858821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1154622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062457509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1177838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1208001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.235.4793.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062533830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.282.5392.1290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062563189"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-04-25", 
    "datePublishedReg": "2012-04-25", 
    "description": "The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed-matter systems, potentially including high-temperature superconductivity. However, many properties of exotic, strongly correlated spin systems, such as spin liquids, have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N\u2009\u2248\u200930 particles. Feynman predicted that a quantum simulator--a special-purpose 'analogue' processor built using quantum bits (qubits)--would be inherently suited to solving such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach, but simulations allowing controlled, tunable interactions between spins localized on two- or three-dimensional lattices of more than a few tens of qubits have yet to be demonstrated, in part because of the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin interaction, J(i,j), on a naturally occurring, two-dimensional triangular crystal lattice of hundreds of spin-half particles (beryllium ions stored in a Penning trap). This is a computationally relevant scale more than an order of magnitude larger than previous experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction J(i,j) proportional variant d(-a)(i,j), where 0\u2009\u2264\u2009a\u2009\u2264\u20093 and d(i,j) is the distance between spin pairs. These power laws correspond physically to infinite-range (a = 0), Coulomb-like (a = 1), monopole-dipole (a = 2) and dipole-dipole (a = 3) couplings. Experimentally, we demonstrate excellent agreement with a theory for 0.05\u2009\u2272\u2009a\u2009\u2272\u20091.4. This demonstration, coupled with the high spin count, excellent quantum control and low technical complexity of the Penning trap, brings within reach the simulation of otherwise computationally intractable problems in quantum magnetism.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature10981", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3112952", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7395", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "484"
      }
    ], 
    "name": "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins", 
    "pagination": "489", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ace2f89638f967ebda06d88ed87b3eb7fa0f8693bc4eb10ab42e46c5bbe471e1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22538611"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature10981"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1036293260"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature10981", 
      "https://app.dimensions.ai/details/publication/pub.1036293260"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000434.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature10981"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature10981'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature10981'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature10981'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature10981'


 

This table displays all metadata directly associated to this object as RDF triples.

230 TRIPLES      21 PREDICATES      56 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature10981 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N80454ed2f70e44ec95f29ba5e024f208
4 schema:citation sg:pub.10.1007/bf02650179
5 sg:pub.10.1038/nature01492
6 sg:pub.10.1038/nature08609
7 sg:pub.10.1038/nature08917
8 sg:pub.10.1038/nature09071
9 sg:pub.10.1038/nature09994
10 sg:pub.10.1038/ncomms1374
11 sg:pub.10.1038/nphys1032
12 sg:pub.10.1038/nphys1919
13 sg:pub.10.1038/nphys749
14 https://doi.org/10.1063/1.2711623
15 https://doi.org/10.1080/00018730701223200
16 https://doi.org/10.1103/physrevlett.102.233002
17 https://doi.org/10.1103/physrevlett.103.120502
18 https://doi.org/10.1103/physrevlett.104.137204
19 https://doi.org/10.1103/physrevlett.107.077201
20 https://doi.org/10.1103/physrevlett.108.213003
21 https://doi.org/10.1103/physrevlett.84.4457
22 https://doi.org/10.1103/physrevlett.96.250501
23 https://doi.org/10.1103/physrevlett.98.107204
24 https://doi.org/10.1103/revmodphys.80.885
25 https://doi.org/10.1126/science.1150841
26 https://doi.org/10.1126/science.1154622
27 https://doi.org/10.1126/science.1177112
28 https://doi.org/10.1126/science.1177838
29 https://doi.org/10.1126/science.1208001
30 https://doi.org/10.1126/science.235.4793.1196
31 https://doi.org/10.1126/science.282.5392.1290
32 schema:datePublished 2012-04-25
33 schema:datePublishedReg 2012-04-25
34 schema:description The presence of long-range quantum spin correlations underlies a variety of physical phenomena in condensed-matter systems, potentially including high-temperature superconductivity. However, many properties of exotic, strongly correlated spin systems, such as spin liquids, have proved difficult to study, in part because calculations involving N-body entanglement become intractable for as few as N ≈ 30 particles. Feynman predicted that a quantum simulator--a special-purpose 'analogue' processor built using quantum bits (qubits)--would be inherently suited to solving such problems. In the context of quantum magnetism, a number of experiments have demonstrated the feasibility of this approach, but simulations allowing controlled, tunable interactions between spins localized on two- or three-dimensional lattices of more than a few tens of qubits have yet to be demonstrated, in part because of the technical challenge of realizing large-scale qubit arrays. Here we demonstrate a variable-range Ising-type spin-spin interaction, J(i,j), on a naturally occurring, two-dimensional triangular crystal lattice of hundreds of spin-half particles (beryllium ions stored in a Penning trap). This is a computationally relevant scale more than an order of magnitude larger than previous experiments. We show that a spin-dependent optical dipole force can produce an antiferromagnetic interaction J(i,j) proportional variant d(-a)(i,j), where 0 ≤ a ≤ 3 and d(i,j) is the distance between spin pairs. These power laws correspond physically to infinite-range (a = 0), Coulomb-like (a = 1), monopole-dipole (a = 2) and dipole-dipole (a = 3) couplings. Experimentally, we demonstrate excellent agreement with a theory for 0.05 ≲ a ≲ 1.4. This demonstration, coupled with the high spin count, excellent quantum control and low technical complexity of the Penning trap, brings within reach the simulation of otherwise computationally intractable problems in quantum magnetism.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N4d548ee923864cd1a8e242b6e289a4b1
39 N59bcd803b10a45a98cca392809a1e383
40 sg:journal.1018957
41 schema:name Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins
42 schema:pagination 489
43 schema:productId N078b80cbca5c403c86edd72c86fc5276
44 N297352faa0fa4d669ec75f0f5c93d329
45 N6d402c9c763744a681a0582c11502e60
46 N8520a8fe13be47d79c2eefd1bb4ab85d
47 N893a9805fdfc4374bdcf2a0cf301e666
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036293260
49 https://doi.org/10.1038/nature10981
50 schema:sdDatePublished 2019-04-10T23:13
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N09ad6d3741b848cd8201b37978b84954
53 schema:url https://www.nature.com/articles/nature10981
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N078b80cbca5c403c86edd72c86fc5276 schema:name dimensions_id
58 schema:value pub.1036293260
59 rdf:type schema:PropertyValue
60 N09ad6d3741b848cd8201b37978b84954 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 N15db957347004a6ba9e40d57eeb7ffd6 rdf:first sg:person.0660545373.11
63 rdf:rest Nf811af7733984dc9abfc9e285896f156
64 N297352faa0fa4d669ec75f0f5c93d329 schema:name doi
65 schema:value 10.1038/nature10981
66 rdf:type schema:PropertyValue
67 N3c104c5cd68d434a8ffac14d8fc8cea3 rdf:first sg:person.01111222373.22
68 rdf:rest Nac6d6b5cab554c5fb0b30dc2477be83a
69 N4d548ee923864cd1a8e242b6e289a4b1 schema:volumeNumber 484
70 rdf:type schema:PublicationVolume
71 N547cb77bace14981bdcaa161189ce4c1 rdf:first sg:person.015114034344.62
72 rdf:rest Nb48dc7db87af4b4888fab2d3db3fa6d4
73 N59bcd803b10a45a98cca392809a1e383 schema:issueNumber 7395
74 rdf:type schema:PublicationIssue
75 N6d402c9c763744a681a0582c11502e60 schema:name pubmed_id
76 schema:value 22538611
77 rdf:type schema:PropertyValue
78 N80454ed2f70e44ec95f29ba5e024f208 rdf:first sg:person.01336036273.19
79 rdf:rest Nbd6686a005484d3ba9b00aadbb7befae
80 N8520a8fe13be47d79c2eefd1bb4ab85d schema:name nlm_unique_id
81 schema:value 0410462
82 rdf:type schema:PropertyValue
83 N893a9805fdfc4374bdcf2a0cf301e666 schema:name readcube_id
84 schema:value ace2f89638f967ebda06d88ed87b3eb7fa0f8693bc4eb10ab42e46c5bbe471e1
85 rdf:type schema:PropertyValue
86 N8a5222d7c64f4d61bedc936d7b3827b7 schema:name US National Institute of Standards and Technology, Time and Frequency Division, Boulder, Colorado 80305, USA
87 rdf:type schema:Organization
88 N9e55303a656a4a8f8a0df3159944f1ca schema:name US National Institute of Standards and Technology, Time and Frequency Division, Boulder, Colorado 80305, USA
89 rdf:type schema:Organization
90 Nac6d6b5cab554c5fb0b30dc2477be83a rdf:first sg:person.010625046742.20
91 rdf:rest rdf:nil
92 Nb48dc7db87af4b4888fab2d3db3fa6d4 rdf:first sg:person.01154215064.36
93 rdf:rest N3c104c5cd68d434a8ffac14d8fc8cea3
94 Nbd6686a005484d3ba9b00aadbb7befae rdf:first sg:person.0612432173.92
95 rdf:rest N15db957347004a6ba9e40d57eeb7ffd6
96 Nf811af7733984dc9abfc9e285896f156 rdf:first sg:person.0726660573.16
97 rdf:rest N547cb77bace14981bdcaa161189ce4c1
98 Nf9b730e9ba024af286614c1e0ee6a848 schema:name US National Institute of Standards and Technology, Time and Frequency Division, Boulder, Colorado 80305, USA
99 rdf:type schema:Organization
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
104 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
105 rdf:type schema:DefinedTerm
106 sg:grant.3112952 http://pending.schema.org/fundedItem sg:pub.10.1038/nature10981
107 rdf:type schema:MonetaryGrant
108 sg:journal.1018957 schema:issn 0090-0028
109 1476-4687
110 schema:name Nature
111 rdf:type schema:Periodical
112 sg:person.010625046742.20 schema:affiliation N8a5222d7c64f4d61bedc936d7b3827b7
113 schema:familyName Bollinger
114 schema:givenName John J.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010625046742.20
116 rdf:type schema:Person
117 sg:person.01111222373.22 schema:affiliation https://www.grid.ac/institutes/grid.1013.3
118 schema:familyName Biercuk
119 schema:givenName Michael J.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111222373.22
121 rdf:type schema:Person
122 sg:person.01154215064.36 schema:affiliation https://www.grid.ac/institutes/grid.7327.1
123 schema:familyName Uys
124 schema:givenName Hermann
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01154215064.36
126 rdf:type schema:Person
127 sg:person.01336036273.19 schema:affiliation N9e55303a656a4a8f8a0df3159944f1ca
128 schema:familyName Britton
129 schema:givenName Joseph W.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01336036273.19
131 rdf:type schema:Person
132 sg:person.015114034344.62 schema:affiliation https://www.grid.ac/institutes/grid.213910.8
133 schema:familyName Freericks
134 schema:givenName James K.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015114034344.62
136 rdf:type schema:Person
137 sg:person.0612432173.92 schema:affiliation Nf9b730e9ba024af286614c1e0ee6a848
138 schema:familyName Sawyer
139 schema:givenName Brian C.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612432173.92
141 rdf:type schema:Person
142 sg:person.0660545373.11 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
143 schema:familyName Keith
144 schema:givenName Adam C.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0660545373.11
146 rdf:type schema:Person
147 sg:person.0726660573.16 schema:affiliation https://www.grid.ac/institutes/grid.213910.8
148 schema:familyName Wang
149 schema:givenName C.-C. Joseph
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726660573.16
151 rdf:type schema:Person
152 sg:pub.10.1007/bf02650179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038336282
153 https://doi.org/10.1007/bf02650179
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nature01492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047225147
156 https://doi.org/10.1038/nature01492
157 rdf:type schema:CreativeWork
158 sg:pub.10.1038/nature08609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008801399
159 https://doi.org/10.1038/nature08609
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/nature08917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042830450
162 https://doi.org/10.1038/nature08917
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/nature09071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019747044
165 https://doi.org/10.1038/nature09071
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/nature09994 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048118119
168 https://doi.org/10.1038/nature09994
169 rdf:type schema:CreativeWork
170 sg:pub.10.1038/ncomms1374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030664301
171 https://doi.org/10.1038/ncomms1374
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nphys1032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016542767
174 https://doi.org/10.1038/nphys1032
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nphys1919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051980057
177 https://doi.org/10.1038/nphys1919
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nphys749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037325462
180 https://doi.org/10.1038/nphys749
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.2711623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057858821
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1080/00018730701223200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036059558
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.102.233002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008437034
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.103.120502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007361589
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.104.137204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047727051
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.107.077201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047100531
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.108.213003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003306202
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.84.4457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046917020
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.96.250501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045625754
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.98.107204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014478434
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/revmodphys.80.885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013088353
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.1150841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457162
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.1154622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062457509
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1177112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460404
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1177838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460456
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.1208001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464845
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1126/science.235.4793.1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062533830
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1126/science.282.5392.1290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062563189
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.1013.3 schema:alternateName University of Sydney
219 schema:name Centre for Engineered Quantum Systems, School of Physics, The University of Sydney, New South Wales 2006, Australia
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.213910.8 schema:alternateName Georgetown University
222 schema:name Department of Physics, Georgetown University, Washington DC 20057, USA
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.40803.3f schema:alternateName North Carolina State University
225 schema:name Department of Physics, Georgetown University, Washington DC 20057, USA
226 Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
227 rdf:type schema:Organization
228 https://www.grid.ac/institutes/grid.7327.1 schema:alternateName Council for Scientific and Industrial Research
229 schema:name National Laser Centre, Council for Scientific and Industrial Research, Pretoria 0001, South Africa
230 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...