Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02-15

AUTHORS

F. A. Aharonian, S. V. Bogovalov, D. Khangulyan

ABSTRACT

Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models. More... »

PAGES

507

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature10793

DOI

http://dx.doi.org/10.1038/nature10793

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028051423

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/22343893


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.419604.e", 
          "name": [
            "Dublin Institute for Advanced Studies, School of Cosmic Physics, 31 Fitzwilliam Place, Dublin 2, Ireland", 
            "Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aharonian", 
        "givenName": "F. A.", 
        "id": "sg:person.01354457257.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University (MEPhI), Kashirskoe shosse 31, Moscow, 115409, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bogovalov", 
        "givenName": "S. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khangulyan", 
        "givenName": "D.", 
        "id": "sg:person.01077024351.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077024351.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1086/527029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001866652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/379701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006934455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/708/2/1254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008857770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/708/2/1254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008857770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/185.2.297", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013633278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/420842", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019986240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/730/2/62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023478279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361:20011256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027155928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/742/1/43", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035756225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-8711.2000.03250.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037888667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0004-637x/754/1/33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041399509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mnras/167.1.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043364296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2966.2006.09957.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044110390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/318354", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050283004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361/200912101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056912842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/0004-6361/201118166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056917620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/150865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058482155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/162357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058493647"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/168340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058499630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.15.577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060768388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.15.577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060768388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1208192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062464858"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-02-15", 
    "datePublishedReg": "2012-02-15", 
    "description": "Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy \u03b3-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0)\u2009\u00d7\u200910(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature10793", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7386", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "482"
      }
    ], 
    "name": "Abrupt acceleration of a \u2018cold\u2019 ultrarelativistic wind from the Crab pulsar", 
    "pagination": "507", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85a15a6c9fc1891896e3e11ee225a1bf0856470295971a114660fcd808516013"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "22343893"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature10793"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028051423"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature10793", 
      "https://app.dimensions.ai/details/publication/pub.1028051423"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature10793"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature10793'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature10793'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature10793'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature10793'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      48 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature10793 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N9bac491f0e3c448e87f16f34e28c9511
4 schema:citation https://doi.org/10.1046/j.1365-8711.2000.03250.x
5 https://doi.org/10.1051/0004-6361/200912101
6 https://doi.org/10.1051/0004-6361/201118166
7 https://doi.org/10.1051/0004-6361:20011256
8 https://doi.org/10.1086/150865
9 https://doi.org/10.1086/162357
10 https://doi.org/10.1086/168340
11 https://doi.org/10.1086/318354
12 https://doi.org/10.1086/379701
13 https://doi.org/10.1086/420842
14 https://doi.org/10.1086/527029
15 https://doi.org/10.1088/0004-637x/708/2/1254
16 https://doi.org/10.1088/0004-637x/730/2/62
17 https://doi.org/10.1088/0004-637x/742/1/43
18 https://doi.org/10.1088/0004-637x/754/1/33
19 https://doi.org/10.1093/mnras/167.1.1
20 https://doi.org/10.1093/mnras/185.2.297
21 https://doi.org/10.1103/physrevlett.15.577
22 https://doi.org/10.1111/j.1365-2966.2006.09957.x
23 https://doi.org/10.1126/science.1208192
24 schema:datePublished 2012-02-15
25 schema:datePublishedReg 2012-02-15
26 schema:description Pulsars are thought to eject electron-positron winds that energize the surrounding environment, with the formation of a pulsar wind nebula. The pulsar wind originates close to the light cylinder, the surface at which the pulsar co-rotation velocity equals the speed of light, and carries away much of the rotational energy lost by the pulsar. Initially the wind is dominated by electromagnetic energy (Poynting flux) but later this is converted to the kinetic energy of bulk motion. It is unclear exactly where this takes place and to what speed the wind is accelerated. Although some preferred models imply a gradual acceleration over the entire distance from the magnetosphere to the point at which the wind terminates, a rapid acceleration close to the light cylinder cannot be excluded. Here we report that the recent observations of pulsed, very high-energy γ-ray emission from the Crab pulsar are explained by the presence of a cold (in the sense of the low energy of the electrons in the frame of the moving plasma) ultrarelativistic wind dominated by kinetic energy. The conversion of the Poynting flux to kinetic energy should take place abruptly in the narrow cylindrical zone of radius between 20 and 50 light-cylinder radii centred on the axis of rotation of the pulsar, and should accelerate the wind to a Lorentz factor of (0.5-1.0) × 10(6). Although the ultrarelativistic nature of the wind does support the general model of pulsars, the requirement of the very high acceleration of the wind in a narrow zone not far from the light cylinder challenges current models.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf Nc2d79cf7275b4528a6f258f685e92b1e
31 Nd11a0a430d134ee29130b8f35a5f59dd
32 sg:journal.1018957
33 schema:name Abrupt acceleration of a ‘cold’ ultrarelativistic wind from the Crab pulsar
34 schema:pagination 507
35 schema:productId N152e7055c71543a0bc6000887e7a6f79
36 N206a82b6f7a347608bb4b3e3b1f143e2
37 N3688937a2c4a43029496baec09758a19
38 N8ad745da5f4449a4b92658d598258888
39 Nfeb9d15cb1dd47acaa92a0cdbd99cb56
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028051423
41 https://doi.org/10.1038/nature10793
42 schema:sdDatePublished 2019-04-10T23:13
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Na413172f30b04d81b686b69882acd88c
45 schema:url https://www.nature.com/articles/nature10793
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N152e7055c71543a0bc6000887e7a6f79 schema:name dimensions_id
50 schema:value pub.1028051423
51 rdf:type schema:PropertyValue
52 N206a82b6f7a347608bb4b3e3b1f143e2 schema:name readcube_id
53 schema:value 85a15a6c9fc1891896e3e11ee225a1bf0856470295971a114660fcd808516013
54 rdf:type schema:PropertyValue
55 N3688937a2c4a43029496baec09758a19 schema:name pubmed_id
56 schema:value 22343893
57 rdf:type schema:PropertyValue
58 N7a6c5d4146c44b6290ef2e56237d0a75 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
59 schema:familyName Bogovalov
60 schema:givenName S. V.
61 rdf:type schema:Person
62 N8ad745da5f4449a4b92658d598258888 schema:name doi
63 schema:value 10.1038/nature10793
64 rdf:type schema:PropertyValue
65 N9bac491f0e3c448e87f16f34e28c9511 rdf:first sg:person.01354457257.24
66 rdf:rest Nfd219e77d4434e40887aebf5d3162caf
67 Na413172f30b04d81b686b69882acd88c schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 Na5dbb9ede75d4a828666c5f709f59763 schema:name Institute of Space and Astronautical Science/JAXA, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
70 rdf:type schema:Organization
71 Na6525ba0b92f4f249f059be4d9a7ae24 rdf:first sg:person.01077024351.07
72 rdf:rest rdf:nil
73 Nc2d79cf7275b4528a6f258f685e92b1e schema:issueNumber 7386
74 rdf:type schema:PublicationIssue
75 Nd11a0a430d134ee29130b8f35a5f59dd schema:volumeNumber 482
76 rdf:type schema:PublicationVolume
77 Nfd219e77d4434e40887aebf5d3162caf rdf:first N7a6c5d4146c44b6290ef2e56237d0a75
78 rdf:rest Na6525ba0b92f4f249f059be4d9a7ae24
79 Nfeb9d15cb1dd47acaa92a0cdbd99cb56 schema:name nlm_unique_id
80 schema:value 0410462
81 rdf:type schema:PropertyValue
82 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
83 schema:name Physical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
86 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
87 rdf:type schema:DefinedTerm
88 sg:journal.1018957 schema:issn 0090-0028
89 1476-4687
90 schema:name Nature
91 rdf:type schema:Periodical
92 sg:person.01077024351.07 schema:affiliation Na5dbb9ede75d4a828666c5f709f59763
93 schema:familyName Khangulyan
94 schema:givenName D.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077024351.07
96 rdf:type schema:Person
97 sg:person.01354457257.24 schema:affiliation https://www.grid.ac/institutes/grid.419604.e
98 schema:familyName Aharonian
99 schema:givenName F. A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24
101 rdf:type schema:Person
102 https://doi.org/10.1046/j.1365-8711.2000.03250.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037888667
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1051/0004-6361/200912101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056912842
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1051/0004-6361/201118166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056917620
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1051/0004-6361:20011256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027155928
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1086/150865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058482155
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1086/162357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058493647
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1086/168340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058499630
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1086/318354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283004
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1086/379701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006934455
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1086/420842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019986240
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1086/527029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001866652
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1088/0004-637x/708/2/1254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008857770
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1088/0004-637x/730/2/62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023478279
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1088/0004-637x/742/1/43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035756225
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1088/0004-637x/754/1/33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041399509
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1093/mnras/167.1.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043364296
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1093/mnras/185.2.297 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013633278
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/physrevlett.15.577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060768388
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1111/j.1365-2966.2006.09957.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044110390
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1126/science.1208192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062464858
141 rdf:type schema:CreativeWork
142 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
143 schema:name National Research Nuclear University (MEPhI), Kashirskoe shosse 31, Moscow, 115409, Russia
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.419604.e schema:alternateName Max Planck Institute for Nuclear Physics
146 schema:name Dublin Institute for Advanced Studies, School of Cosmic Physics, 31 Fitzwilliam Place, Dublin 2, Ireland
147 Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...