Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-08

AUTHORS

Ioan Mihai Miron, Kevin Garello, Gilles Gaudin, Pierre-Jean Zermatten, Marius V. Costache, Stéphane Auffret, Sébastien Bandiera, Bernard Rodmacq, Alain Schuhl, Pietro Gambardella

ABSTRACT

Modern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors, as well as with the torque induced by the spin Hall effect in the platinum layer. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple, scalable and compatible with present-day magnetic recording technology. More... »

PAGES

189

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature10309

DOI

http://dx.doi.org/10.1038/nature10309

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021879031

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21804568


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut Catal\u00e0 de Nanoci\u00e8ncia i Nanotecnologia", 
          "id": "https://www.grid.ac/institutes/grid.424584.b", 
          "name": [
            "Catalan Institute of Nanotechnology (ICN-CIN2), E-08193 Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miron", 
        "givenName": "Ioan Mihai", 
        "id": "sg:person.01250325047.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250325047.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Catal\u00e0 de Nanoci\u00e8ncia i Nanotecnologia", 
          "id": "https://www.grid.ac/institutes/grid.424584.b", 
          "name": [
            "Catalan Institute of Nanotechnology (ICN-CIN2), E-08193 Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garello", 
        "givenName": "Kevin", 
        "id": "sg:person.01363172526.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363172526.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaudin", 
        "givenName": "Gilles", 
        "id": "sg:person.0637566426.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637566426.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zermatten", 
        "givenName": "Pierre-Jean", 
        "id": "sg:person.0705701626.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705701626.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Catal\u00e0 de Nanoci\u00e8ncia i Nanotecnologia", 
          "id": "https://www.grid.ac/institutes/grid.424584.b", 
          "name": [
            "Catalan Institute of Nanotechnology (ICN-CIN2), E-08193 Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Costache", 
        "givenName": "Marius V.", 
        "id": "sg:person.01105614761.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105614761.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Auffret", 
        "givenName": "St\u00e9phane", 
        "id": "sg:person.01364553447.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364553447.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bandiera", 
        "givenName": "S\u00e9bastien", 
        "id": "sg:person.012725502672.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012725502672.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodmacq", 
        "givenName": "Bernard", 
        "id": "sg:person.01246322063.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246322063.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuhl", 
        "givenName": "Alain", 
        "id": "sg:person.01136740742.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136740742.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats", 
          "id": "https://www.grid.ac/institutes/grid.425902.8", 
          "name": [
            "Catalan Institute of Nanotechnology (ICN-CIN2), E-08193 Barcelona, Spain", 
            "Departament de F\u00edsica, Universitat Autonoma de Barcelona, E-08193 Barcelona, Spain", 
            "Instituci\u00f3 Catalana de Recerca i Estudis Avan\u00e7ats (ICREA), E-08010 Barcelona, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gambardella", 
        "givenName": "Pietro", 
        "id": "sg:person.01053105020.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053105020.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1082857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001269532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001294135", 
          "https://doi.org/10.1038/nphys1362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002220407", 
          "https://doi.org/10.1038/nmat2024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physics.2.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003251356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physics.2.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003251356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.201403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004032162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.201403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004032162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004880669", 
          "https://doi.org/10.1038/nature07318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005987470", 
          "https://doi.org/10.1038/nmat2613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35050040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006678613", 
          "https://doi.org/10.1038/35050040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35050040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006678613", 
          "https://doi.org/10.1038/35050040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2005.10.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006704049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011128704", 
          "https://doi.org/10.1038/nature02438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011128704", 
          "https://doi.org/10.1038/nature02438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018605241", 
          "https://doi.org/10.1038/nature02014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018605241", 
          "https://doi.org/10.1038/nature02014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.036601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023427898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.036601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023427898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.036602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034042702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.98.036602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034042702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3502596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037610730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039260956", 
          "https://doi.org/10.1038/nature02202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039260956", 
          "https://doi.org/10.1038/nature02202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.134403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042974760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.134403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042974760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.126603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043027731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.126603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043027731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/35/19/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046461523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.176601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048920560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.176601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048920560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051608903", 
          "https://doi.org/10.1038/nphys675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmmm.2007.12.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053616451"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1833565", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057825608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.212405", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060626740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.024423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.024423", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060627110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.036601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.036601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060753778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2003.821163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061676271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5429.867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062566192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijnt.2010.031735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067482278"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08", 
    "datePublishedReg": "2011-08-01", 
    "description": "Modern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors, as well as with the torque induced by the spin Hall effect in the platinum layer. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple, scalable and compatible with present-day magnetic recording technology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature10309", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3780027", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7359", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "476"
      }
    ], 
    "name": "Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection", 
    "pagination": "189", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "683cc0ad9f278f319e11f732219ac2b692783cb5a3260a6e22872062e5f93024"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21804568"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature10309"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021879031"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature10309", 
      "https://app.dimensions.ai/details/publication/pub.1021879031"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000435.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature10309"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature10309'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature10309'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature10309'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature10309'


 

This table displays all metadata directly associated to this object as RDF triples.

244 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature10309 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne7d254885f064d0cb1a881be9c53cd8b
4 schema:citation sg:pub.10.1038/35050040
5 sg:pub.10.1038/nature02014
6 sg:pub.10.1038/nature02202
7 sg:pub.10.1038/nature02438
8 sg:pub.10.1038/nature07318
9 sg:pub.10.1038/nmat2024
10 sg:pub.10.1038/nmat2613
11 sg:pub.10.1038/nphys1362
12 sg:pub.10.1038/nphys675
13 https://doi.org/10.1016/j.jmmm.2005.10.048
14 https://doi.org/10.1016/j.jmmm.2007.12.019
15 https://doi.org/10.1063/1.1833565
16 https://doi.org/10.1063/1.3502596
17 https://doi.org/10.1088/0022-3727/35/19/201
18 https://doi.org/10.1103/physics.2.50
19 https://doi.org/10.1103/physrevb.71.201403
20 https://doi.org/10.1103/physrevb.78.212405
21 https://doi.org/10.1103/physrevb.79.024423
22 https://doi.org/10.1103/physrevb.80.134403
23 https://doi.org/10.1103/physrevlett.101.036601
24 https://doi.org/10.1103/physrevlett.106.036601
25 https://doi.org/10.1103/physrevlett.93.176601
26 https://doi.org/10.1103/physrevlett.97.126603
27 https://doi.org/10.1103/physrevlett.98.036602
28 https://doi.org/10.1109/tmag.2003.821163
29 https://doi.org/10.1126/science.1082857
30 https://doi.org/10.1126/science.285.5429.867
31 https://doi.org/10.1504/ijnt.2010.031735
32 schema:datePublished 2011-08
33 schema:datePublishedReg 2011-08-01
34 schema:description Modern computing technology is based on writing, storing and retrieving information encoded as magnetic bits. Although the giant magnetoresistance effect has improved the electrical read out of memory elements, magnetic writing remains the object of major research efforts. Despite several reports of methods to reverse the polarity of nanosized magnets by means of local electric fields and currents, the simple reversal of a high-coercivity, single-layer ferromagnet remains a challenge. Materials with large coercivity and perpendicular magnetic anisotropy represent the mainstay of data storage media, owing to their ability to retain a stable magnetization state over long periods of time and their amenability to miniaturization. However, the same anisotropy properties that make a material attractive for storage also make it hard to write to. Here we demonstrate switching of a perpendicularly magnetized cobalt dot driven by in-plane current injection at room temperature. Our device is composed of a thin cobalt layer with strong perpendicular anisotropy and Rashba interaction induced by asymmetric platinum and AlOx interface layers. The effective switching field is orthogonal to the direction of the magnetization and to the Rashba field. The symmetry of the switching field is consistent with the spin accumulation induced by the Rashba interaction and the spin-dependent mobility observed in non-magnetic semiconductors, as well as with the torque induced by the spin Hall effect in the platinum layer. Our measurements indicate that the switching efficiency increases with the magnetic anisotropy of the cobalt layer and the oxidation of the aluminium layer, which is uppermost, suggesting that the Rashba interaction has a key role in the reversal mechanism. To prove the potential of in-plane current switching for spintronic applications, we construct a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures. This device is simple, scalable and compatible with present-day magnetic recording technology.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Nc85f00c2f49b43e3a8ab6f2bbeb3b0aa
39 Nfec2642d891645c79ae38df1618c1e99
40 sg:journal.1018957
41 schema:name Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection
42 schema:pagination 189
43 schema:productId N1b6076eb020448d4be02e975554e5792
44 N72c725de2a93496c831b024073586d36
45 N871f52c6f324441bbfb5b4d9152037e7
46 N8db73b03df38407b9d218a7aac247d68
47 Nb1bd68dd7da54287a47322c6ae603fcf
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879031
49 https://doi.org/10.1038/nature10309
50 schema:sdDatePublished 2019-04-10T13:57
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N8f8d969476aa452290001e7a439f971a
53 schema:url https://www.nature.com/articles/nature10309
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N1b6076eb020448d4be02e975554e5792 schema:name nlm_unique_id
58 schema:value 0410462
59 rdf:type schema:PropertyValue
60 N395fcdc04c58452394400e4d38545f55 rdf:first sg:person.01136740742.83
61 rdf:rest N6a0686b5ce0c4d42adc74e20d67d69a7
62 N44a84403194e48d0b23eabc4a6f388ce rdf:first sg:person.0705701626.95
63 rdf:rest Na774264c1b464ab4bb33fbb51ba4a916
64 N4a6473b8abc048d79d8f8c8f367eddb5 rdf:first sg:person.0637566426.29
65 rdf:rest N44a84403194e48d0b23eabc4a6f388ce
66 N5134dfc6940d4f0597834615ed7f7168 schema:name SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France
67 rdf:type schema:Organization
68 N6a0686b5ce0c4d42adc74e20d67d69a7 rdf:first sg:person.01053105020.09
69 rdf:rest rdf:nil
70 N6b25e15fd6754bca875e8a7ab0d59e24 rdf:first sg:person.012725502672.45
71 rdf:rest N8b81aea76f334739bc893a050062b517
72 N72c725de2a93496c831b024073586d36 schema:name pubmed_id
73 schema:value 21804568
74 rdf:type schema:PropertyValue
75 N7e7d93f8dc1d4aa29614f1872233213a schema:name SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France
76 rdf:type schema:Organization
77 N7f4e891d112e4050a2090362d09bd630 schema:name SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France
78 rdf:type schema:Organization
79 N871f52c6f324441bbfb5b4d9152037e7 schema:name readcube_id
80 schema:value 683cc0ad9f278f319e11f732219ac2b692783cb5a3260a6e22872062e5f93024
81 rdf:type schema:PropertyValue
82 N8b81aea76f334739bc893a050062b517 rdf:first sg:person.01246322063.17
83 rdf:rest N395fcdc04c58452394400e4d38545f55
84 N8db73b03df38407b9d218a7aac247d68 schema:name doi
85 schema:value 10.1038/nature10309
86 rdf:type schema:PropertyValue
87 N8f8d969476aa452290001e7a439f971a schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 Na229ed7851444fa0a802d66d84f2d15a schema:name SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France
90 rdf:type schema:Organization
91 Na24757e4755b4a0dbd70931a66352727 rdf:first sg:person.01363172526.20
92 rdf:rest N4a6473b8abc048d79d8f8c8f367eddb5
93 Na774264c1b464ab4bb33fbb51ba4a916 rdf:first sg:person.01105614761.00
94 rdf:rest Ncfc735d50dc746d9a60d9d10edb4ae90
95 Nb1bd68dd7da54287a47322c6ae603fcf schema:name dimensions_id
96 schema:value pub.1021879031
97 rdf:type schema:PropertyValue
98 Nc85f00c2f49b43e3a8ab6f2bbeb3b0aa schema:volumeNumber 476
99 rdf:type schema:PublicationVolume
100 Ncfc735d50dc746d9a60d9d10edb4ae90 rdf:first sg:person.01364553447.97
101 rdf:rest N6b25e15fd6754bca875e8a7ab0d59e24
102 Ne7d254885f064d0cb1a881be9c53cd8b rdf:first sg:person.01250325047.37
103 rdf:rest Na24757e4755b4a0dbd70931a66352727
104 Need07b8190cc4376a0838d8927ec1af5 schema:name SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France
105 rdf:type schema:Organization
106 Nf140292bb07044d19ba557dca4072d82 schema:name SPINTEC, UMR-8191, CEA/CNRS/UJF/GINP, INAC, F-38054 Grenoble, France
107 rdf:type schema:Organization
108 Nfec2642d891645c79ae38df1618c1e99 schema:issueNumber 7359
109 rdf:type schema:PublicationIssue
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
114 schema:name Materials Engineering
115 rdf:type schema:DefinedTerm
116 sg:grant.3780027 http://pending.schema.org/fundedItem sg:pub.10.1038/nature10309
117 rdf:type schema:MonetaryGrant
118 sg:journal.1018957 schema:issn 0090-0028
119 1476-4687
120 schema:name Nature
121 rdf:type schema:Periodical
122 sg:person.01053105020.09 schema:affiliation https://www.grid.ac/institutes/grid.425902.8
123 schema:familyName Gambardella
124 schema:givenName Pietro
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01053105020.09
126 rdf:type schema:Person
127 sg:person.01105614761.00 schema:affiliation https://www.grid.ac/institutes/grid.424584.b
128 schema:familyName Costache
129 schema:givenName Marius V.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01105614761.00
131 rdf:type schema:Person
132 sg:person.01136740742.83 schema:affiliation N7f4e891d112e4050a2090362d09bd630
133 schema:familyName Schuhl
134 schema:givenName Alain
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01136740742.83
136 rdf:type schema:Person
137 sg:person.01246322063.17 schema:affiliation N5134dfc6940d4f0597834615ed7f7168
138 schema:familyName Rodmacq
139 schema:givenName Bernard
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246322063.17
141 rdf:type schema:Person
142 sg:person.01250325047.37 schema:affiliation https://www.grid.ac/institutes/grid.424584.b
143 schema:familyName Miron
144 schema:givenName Ioan Mihai
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01250325047.37
146 rdf:type schema:Person
147 sg:person.012725502672.45 schema:affiliation Nf140292bb07044d19ba557dca4072d82
148 schema:familyName Bandiera
149 schema:givenName Sébastien
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012725502672.45
151 rdf:type schema:Person
152 sg:person.01363172526.20 schema:affiliation https://www.grid.ac/institutes/grid.424584.b
153 schema:familyName Garello
154 schema:givenName Kevin
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01363172526.20
156 rdf:type schema:Person
157 sg:person.01364553447.97 schema:affiliation Need07b8190cc4376a0838d8927ec1af5
158 schema:familyName Auffret
159 schema:givenName Stéphane
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364553447.97
161 rdf:type schema:Person
162 sg:person.0637566426.29 schema:affiliation Na229ed7851444fa0a802d66d84f2d15a
163 schema:familyName Gaudin
164 schema:givenName Gilles
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637566426.29
166 rdf:type schema:Person
167 sg:person.0705701626.95 schema:affiliation N7e7d93f8dc1d4aa29614f1872233213a
168 schema:familyName Zermatten
169 schema:givenName Pierre-Jean
170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705701626.95
171 rdf:type schema:Person
172 sg:pub.10.1038/35050040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006678613
173 https://doi.org/10.1038/35050040
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/nature02014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018605241
176 https://doi.org/10.1038/nature02014
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/nature02202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039260956
179 https://doi.org/10.1038/nature02202
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature02438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011128704
182 https://doi.org/10.1038/nature02438
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature07318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004880669
185 https://doi.org/10.1038/nature07318
186 rdf:type schema:CreativeWork
187 sg:pub.10.1038/nmat2024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002220407
188 https://doi.org/10.1038/nmat2024
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/nmat2613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005987470
191 https://doi.org/10.1038/nmat2613
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/nphys1362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001294135
194 https://doi.org/10.1038/nphys1362
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nphys675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051608903
197 https://doi.org/10.1038/nphys675
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jmmm.2005.10.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006704049
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jmmm.2007.12.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053616451
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1063/1.1833565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057825608
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1063/1.3502596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037610730
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1088/0022-3727/35/19/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046461523
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1103/physics.2.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003251356
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1103/physrevb.71.201403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004032162
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1103/physrevb.78.212405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060626740
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1103/physrevb.79.024423 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060627110
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1103/physrevb.80.134403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042974760
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1103/physrevlett.101.036601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060753778
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1103/physrevlett.106.036601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023427898
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1103/physrevlett.93.176601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048920560
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevlett.97.126603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043027731
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevlett.98.036602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034042702
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1109/tmag.2003.821163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061676271
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1126/science.1082857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001269532
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1126/science.285.5429.867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062566192
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1504/ijnt.2010.031735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067482278
236 rdf:type schema:CreativeWork
237 https://www.grid.ac/institutes/grid.424584.b schema:alternateName Institut Català de Nanociència i Nanotecnologia
238 schema:name Catalan Institute of Nanotechnology (ICN-CIN2), E-08193 Barcelona, Spain
239 rdf:type schema:Organization
240 https://www.grid.ac/institutes/grid.425902.8 schema:alternateName Institució Catalana de Recerca i Estudis Avançats
241 schema:name Catalan Institute of Nanotechnology (ICN-CIN2), E-08193 Barcelona, Spain
242 Departament de Física, Universitat Autonoma de Barcelona, E-08193 Barcelona, Spain
243 Institució Catalana de Recerca i Estudis Avançats (ICREA), E-08010 Barcelona, Spain
244 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...