Inference of human population history from individual whole-genome sequences View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-07

AUTHORS

Heng Li, Richard Durbin

ABSTRACT

The history of human population size is important for understanding human evolution. Various studies have found evidence for a founder event (bottleneck) in East Asian and European populations, associated with the human dispersal out-of-Africa event around 60 thousand years (kyr) ago. However, these studies have had to assume simplified demographic models with few parameters, and they do not provide a precise date for the start and stop times of the bottleneck. Here, with fewer assumptions on population size changes, we present a more detailed history of human population sizes between approximately ten thousand and a million years ago, using the pairwise sequentially Markovian coalescent model applied to the complete diploid genome sequences of a Chinese male (YH), a Korean male (SJK), three European individuals (J. C. Venter, NA12891 and NA12878 (ref. 9)) and two Yoruba males (NA18507 (ref. 10) and NA19239). We infer that European and Chinese populations had very similar population-size histories before 10-20 kyr ago. Both populations experienced a severe bottleneck 10-60 kyr ago, whereas African populations experienced a milder bottleneck from which they recovered earlier. All three populations have an elevated effective population size between 60 and 250 kyr ago, possibly due to population substructure. We also infer that the differentiation of genetically modern humans may have started as early as 100-120 kyr ago, but considerable genetic exchanges may still have occurred until 20-40 kyr ago. More... »

PAGES

493

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature10231

DOI

http://dx.doi.org/10.1038/nature10231

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045247164

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21753753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genetics, Population", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genomics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Genetic", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Dynamics", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, DNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Broad Institute", 
          "id": "https://www.grid.ac/institutes/grid.66859.34", 
          "name": [
            "The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK", 
            "Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Heng", 
        "id": "sg:person.01043045063.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043045063.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Durbin", 
        "givenName": "Richard", 
        "id": "sg:person.012246531224.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246531224.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1188021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002597304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1188021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002597304"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msm277", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005829404"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2005.1673", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007754939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007950827", 
          "https://doi.org/10.1038/ng.303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0510792103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008022341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010416752", 
          "https://doi.org/10.1038/nature04521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010416752", 
          "https://doi.org/10.1038/nature04521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010416752", 
          "https://doi.org/10.1038/nature04521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010608717", 
          "https://doi.org/10.1038/nature09534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature09534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010608717", 
          "https://doi.org/10.1038/nature09534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.2.337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016789793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07484", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016969839", 
          "https://doi.org/10.1038/nature07484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.166.1.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020190319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1534/genetics.166.1.351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020190319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ajhg.2008.04.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020801428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021995395", 
          "https://doi.org/10.1038/nbt.1740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0020105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025161467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.20188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027833563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.0050254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028942453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.107524.110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032096953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0708280104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034701799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.092197.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035862153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gde.2006.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039486363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.0030007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041445247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.3709305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043284437"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pgen.1000695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046660436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049252964", 
          "https://doi.org/10.1038/35075590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35075590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049252964", 
          "https://doi.org/10.1038/35075590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925719", 
          "https://doi.org/10.1038/nature07517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng2116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053487198", 
          "https://doi.org/10.1038/ng2116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/sqb.1987.052.01.094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060405973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1128402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074695934", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-07", 
    "datePublishedReg": "2011-07-01", 
    "description": "The history of human population size is important for understanding human evolution. Various studies have found evidence for a founder event (bottleneck) in East Asian and European populations, associated with the human dispersal out-of-Africa event around 60 thousand years (kyr) ago. However, these studies have had to assume simplified demographic models with few parameters, and they do not provide a precise date for the start and stop times of the bottleneck. Here, with fewer assumptions on population size changes, we present a more detailed history of human population sizes between approximately ten thousand and a million years ago, using the pairwise sequentially Markovian coalescent model applied to the complete diploid genome sequences of a Chinese male (YH), a Korean male (SJK), three European individuals (J. C. Venter, NA12891 and NA12878 (ref. 9)) and two Yoruba males (NA18507 (ref. 10) and NA19239). We infer that European and Chinese populations had very similar population-size histories before 10-20\u2009kyr ago. Both populations experienced a severe bottleneck 10-60\u2009kyr ago, whereas African populations experienced a milder bottleneck from which they recovered earlier. All three populations have an elevated effective population size between 60 and 250\u2009kyr ago, possibly due to population substructure. We also infer that the differentiation of genetically modern humans may have started as early as 100-120\u2009kyr ago, but considerable genetic exchanges may still have occurred until 20-40\u2009kyr ago.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature10231", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7357", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "475"
      }
    ], 
    "name": "Inference of human population history from individual whole-genome sequences", 
    "pagination": "493", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d787286a3a9541020085d87c7a705116a4e2d6e5f13bef1f23b4887e05855971"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21753753"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature10231"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045247164"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature10231", 
      "https://app.dimensions.ai/details/publication/pub.1045247164"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000434.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature10231"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature10231'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature10231'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature10231'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature10231'


 

This table displays all metadata directly associated to this object as RDF triples.

217 TRIPLES      21 PREDICATES      69 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature10231 schema:about N05866752932b45a68a3796792078ab8f
2 N1187ac7af17942c0bea1d885533833b7
3 N467700189bc24b3cb01a1ac941ba76d5
4 N4c11b4854836434fb58fb8d6345febec
5 N5ff4b757d9ff42f99189b7e0c1d3aa89
6 N9d4a09e4c6d7494999fead37fec0859b
7 Na634ed5ecd8541d69789a8c1bc6b5ee1
8 Nb7894ed3307945e5a101d5a299b306e5
9 Nc05d62b57700413d9bbad8f6d26032d0
10 Nf0434abfb83541a7a18f342a3e82878f
11 anzsrc-for:06
12 anzsrc-for:0604
13 schema:author N5b3a8055b8634f4eb70f7727d73e699f
14 schema:citation sg:pub.10.1038/35075590
15 sg:pub.10.1038/nature04521
16 sg:pub.10.1038/nature07484
17 sg:pub.10.1038/nature07517
18 sg:pub.10.1038/nature09534
19 sg:pub.10.1038/nbt.1740
20 sg:pub.10.1038/ng.303
21 sg:pub.10.1038/ng2116
22 https://app.dimensions.ai/details/publication/pub.1074695934
23 https://doi.org/10.1002/ajpa.20188
24 https://doi.org/10.1016/j.ajhg.2008.04.002
25 https://doi.org/10.1016/j.gde.2006.09.006
26 https://doi.org/10.1073/pnas.0510792103
27 https://doi.org/10.1073/pnas.0708280104
28 https://doi.org/10.1093/bioinformatics/18.2.337
29 https://doi.org/10.1093/bioinformatics/btp324
30 https://doi.org/10.1093/bioinformatics/btp352
31 https://doi.org/10.1093/molbev/msm277
32 https://doi.org/10.1098/rstb.2005.1673
33 https://doi.org/10.1101/gr.092197.109
34 https://doi.org/10.1101/gr.107524.110
35 https://doi.org/10.1101/gr.3709305
36 https://doi.org/10.1101/sqb.1987.052.01.094
37 https://doi.org/10.1126/science.1128402
38 https://doi.org/10.1126/science.1188021
39 https://doi.org/10.1371/journal.pbio.0050254
40 https://doi.org/10.1371/journal.pgen.0020105
41 https://doi.org/10.1371/journal.pgen.0030007
42 https://doi.org/10.1371/journal.pgen.1000695
43 https://doi.org/10.1534/genetics.166.1.351
44 schema:datePublished 2011-07
45 schema:datePublishedReg 2011-07-01
46 schema:description The history of human population size is important for understanding human evolution. Various studies have found evidence for a founder event (bottleneck) in East Asian and European populations, associated with the human dispersal out-of-Africa event around 60 thousand years (kyr) ago. However, these studies have had to assume simplified demographic models with few parameters, and they do not provide a precise date for the start and stop times of the bottleneck. Here, with fewer assumptions on population size changes, we present a more detailed history of human population sizes between approximately ten thousand and a million years ago, using the pairwise sequentially Markovian coalescent model applied to the complete diploid genome sequences of a Chinese male (YH), a Korean male (SJK), three European individuals (J. C. Venter, NA12891 and NA12878 (ref. 9)) and two Yoruba males (NA18507 (ref. 10) and NA19239). We infer that European and Chinese populations had very similar population-size histories before 10-20 kyr ago. Both populations experienced a severe bottleneck 10-60 kyr ago, whereas African populations experienced a milder bottleneck from which they recovered earlier. All three populations have an elevated effective population size between 60 and 250 kyr ago, possibly due to population substructure. We also infer that the differentiation of genetically modern humans may have started as early as 100-120 kyr ago, but considerable genetic exchanges may still have occurred until 20-40 kyr ago.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N305959ced28f42a6b311106b3d6f5c33
51 N3be837f0d3894d7c988a6defa1b57227
52 sg:journal.1018957
53 schema:name Inference of human population history from individual whole-genome sequences
54 schema:pagination 493
55 schema:productId N8dd81b2e54e04aa9bcce72d40834b6f1
56 N9add742407c84dab8de0561eaf34fa35
57 N9efd66e35cdb47b5837cd0755b9ecb7e
58 Ncbdb63dc74b64e318c154625fe602c50
59 Ne4e42b69fc964eed8815656ce5b69c36
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045247164
61 https://doi.org/10.1038/nature10231
62 schema:sdDatePublished 2019-04-10T17:20
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N05e2bea4674a49b58e1dedad3a6edef1
65 schema:url https://www.nature.com/articles/nature10231
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N00b53ec40528413b9f150ff3438d2f89 rdf:first sg:person.012246531224.10
70 rdf:rest rdf:nil
71 N05866752932b45a68a3796792078ab8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
72 schema:name Female
73 rdf:type schema:DefinedTerm
74 N05e2bea4674a49b58e1dedad3a6edef1 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N1187ac7af17942c0bea1d885533833b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Genomics
78 rdf:type schema:DefinedTerm
79 N305959ced28f42a6b311106b3d6f5c33 schema:volumeNumber 475
80 rdf:type schema:PublicationVolume
81 N3be837f0d3894d7c988a6defa1b57227 schema:issueNumber 7357
82 rdf:type schema:PublicationIssue
83 N467700189bc24b3cb01a1ac941ba76d5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
84 schema:name Genetics, Population
85 rdf:type schema:DefinedTerm
86 N4c11b4854836434fb58fb8d6345febec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Sequence Analysis, DNA
88 rdf:type schema:DefinedTerm
89 N5b3a8055b8634f4eb70f7727d73e699f rdf:first sg:person.01043045063.88
90 rdf:rest N00b53ec40528413b9f150ff3438d2f89
91 N5ff4b757d9ff42f99189b7e0c1d3aa89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 N8dd81b2e54e04aa9bcce72d40834b6f1 schema:name doi
95 schema:value 10.1038/nature10231
96 rdf:type schema:PropertyValue
97 N9add742407c84dab8de0561eaf34fa35 schema:name readcube_id
98 schema:value d787286a3a9541020085d87c7a705116a4e2d6e5f13bef1f23b4887e05855971
99 rdf:type schema:PropertyValue
100 N9d4a09e4c6d7494999fead37fec0859b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Male
102 rdf:type schema:DefinedTerm
103 N9efd66e35cdb47b5837cd0755b9ecb7e schema:name dimensions_id
104 schema:value pub.1045247164
105 rdf:type schema:PropertyValue
106 Na634ed5ecd8541d69789a8c1bc6b5ee1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Population Dynamics
108 rdf:type schema:DefinedTerm
109 Nb7894ed3307945e5a101d5a299b306e5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Population Density
111 rdf:type schema:DefinedTerm
112 Nc05d62b57700413d9bbad8f6d26032d0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Models, Genetic
114 rdf:type schema:DefinedTerm
115 Ncbdb63dc74b64e318c154625fe602c50 schema:name nlm_unique_id
116 schema:value 0410462
117 rdf:type schema:PropertyValue
118 Ne4e42b69fc964eed8815656ce5b69c36 schema:name pubmed_id
119 schema:value 21753753
120 rdf:type schema:PropertyValue
121 Nf0434abfb83541a7a18f342a3e82878f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Computer Simulation
123 rdf:type schema:DefinedTerm
124 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
125 schema:name Biological Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
128 schema:name Genetics
129 rdf:type schema:DefinedTerm
130 sg:journal.1018957 schema:issn 0090-0028
131 1476-4687
132 schema:name Nature
133 rdf:type schema:Periodical
134 sg:person.01043045063.88 schema:affiliation https://www.grid.ac/institutes/grid.66859.34
135 schema:familyName Li
136 schema:givenName Heng
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043045063.88
138 rdf:type schema:Person
139 sg:person.012246531224.10 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
140 schema:familyName Durbin
141 schema:givenName Richard
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012246531224.10
143 rdf:type schema:Person
144 sg:pub.10.1038/35075590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049252964
145 https://doi.org/10.1038/35075590
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature04521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010416752
148 https://doi.org/10.1038/nature04521
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature07484 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016969839
151 https://doi.org/10.1038/nature07484
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
154 https://doi.org/10.1038/nature07517
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature09534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010608717
157 https://doi.org/10.1038/nature09534
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nbt.1740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021995395
160 https://doi.org/10.1038/nbt.1740
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/ng.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007950827
163 https://doi.org/10.1038/ng.303
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/ng2116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053487198
166 https://doi.org/10.1038/ng2116
167 rdf:type schema:CreativeWork
168 https://app.dimensions.ai/details/publication/pub.1074695934 schema:CreativeWork
169 https://doi.org/10.1002/ajpa.20188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027833563
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ajhg.2008.04.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020801428
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.gde.2006.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039486363
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1073/pnas.0510792103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008022341
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1073/pnas.0708280104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034701799
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1093/bioinformatics/18.2.337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016789793
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/molbev/msm277 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005829404
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1098/rstb.2005.1673 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007754939
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1101/gr.092197.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035862153
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1101/gr.107524.110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032096953
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1101/gr.3709305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043284437
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1101/sqb.1987.052.01.094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060405973
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1126/science.1128402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453857
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1126/science.1188021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002597304
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1371/journal.pbio.0050254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028942453
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1371/journal.pgen.0020105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025161467
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1371/journal.pgen.0030007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041445247
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1371/journal.pgen.1000695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046660436
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1534/genetics.166.1.351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020190319
210 rdf:type schema:CreativeWork
211 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
212 schema:name The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.66859.34 schema:alternateName Broad Institute
215 schema:name Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
216 The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
217 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...