Controllability of complex networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-05-12

AUTHORS

Yang-Yu Liu, Jean-Jacques Slotine, Albert-László Barabási

ABSTRACT

The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network's degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the high-degree nodes. More... »

PAGES

167

References to SciGraph publications

  • 2000-07. Error and attack tolerance of complex networks in NATURE
  • 1998-03. Rate control for communication networks: shadow prices, proportional fairness and stability in JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY
  • 2001-12. Core percolation in random graphs: a critical phenomena analysis in THE EUROPEAN PHYSICAL JOURNAL B
  • 2001-03. Exploring complex networks in NATURE
  • 2004-03. Cut-offs and finite size effects in scale-free networks in THE EUROPEAN PHYSICAL JOURNAL B
  • 2001-03. The Bethe lattice spin glass revisited in THE EUROPEAN PHYSICAL JOURNAL B
  • 2002-11. Connected Components in Random Graphs with Given Expected Degree Sequences in ANNALS OF COMBINATORICS
  • 2005-01. On partial contraction analysis for coupled nonlinear oscillators in BIOLOGICAL CYBERNETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1038/nature10011

    DOI

    http://dx.doi.org/10.1038/nature10011

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045479836

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21562557


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computer Simulation", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Theoretical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neural Networks (Computer)", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Dana\u2013Farber Cancer Institute", 
              "id": "https://www.grid.ac/institutes/grid.65499.37", 
              "name": [
                "Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University, Boston, Massachusetts 02115, USA", 
                "Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yang-Yu", 
            "id": "sg:person.01013373644.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013373644.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Nonlinear Systems Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA", 
                "Department of Mechanical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Slotine", 
            "givenName": "Jean-Jacques", 
            "id": "sg:person.01061507044.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061507044.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Dana\u2013Farber Cancer Institute", 
              "id": "https://www.grid.ac/institutes/grid.65499.37", 
              "name": [
                "Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University, Boston, Massachusetts 02115, USA", 
                "Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA", 
                "Department of Medicine, Brigham and Women\u2019s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barab\u00e1si", 
            "givenName": "Albert-L\u00e1szl\u00f3", 
            "id": "sg:person.0632511150.69", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632511150.69"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.85.5468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000282463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.5468", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000282463"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.automatica.2008.07.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003497415"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005249327", 
              "https://doi.org/10.1038/35065725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35065725", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005249327", 
              "https://doi.org/10.1038/35065725"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/11/11/113047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005628271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1367-2630/11/11/113047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005628271"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-004-0527-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005767461", 
              "https://doi.org/10.1007/s00422-004-0527-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00422-004-0527-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005767461", 
              "https://doi.org/10.1007/s00422-004-0527-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35019019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008269744", 
              "https://doi.org/10.1038/35019019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35019019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008269744", 
              "https://doi.org/10.1038/35019019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.74.47", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008594690"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.4626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009810049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.85.4626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009810049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.286.5439.509", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010080128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00012580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012231554", 
              "https://doi.org/10.1007/pl00012580"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.208701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012572068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.89.208701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012572068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.258701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017006771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.258701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017006771"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0005-1098(98)00019-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018918630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.3200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018922144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.86.3200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018922144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00018730110112519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019965146"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10051-001-8683-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025893919", 
              "https://doi.org/10.1007/s10051-001-8683-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.75.046103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032043230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.75.046103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032043230"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.298.5594.824", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033238539"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1742-5468/2006/05/p05003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033887345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0378-4371(02)00772-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034411919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.278701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041724189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.87.278701", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041724189"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1057/palgrave.jors.2600523", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042605113", 
              "https://doi.org/10.1057/palgrave.jors.2600523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0609152103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043701131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjb/e2004-00038-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045137838", 
              "https://doi.org/10.1140/epjb/e2004-00038-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2008.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048101821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1038/msb.2008.1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048101821"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1065103", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048235090"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00011099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049515662", 
              "https://doi.org/10.1007/pl00011099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0008083", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050650048"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.014101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051707383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.91.014101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051707383"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.75.056110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060735952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreve.75.056110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060735952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jproc.2006.887322", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061296688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.1974.1100557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061471278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.1976.1101198", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061471803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tac.2008.919548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061476913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tsmcb.2009.2031624", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061797144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0202019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062841207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0301010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/060674909", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062849872"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1515/9781400835355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096909962"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1017/cbo9780511610905", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098666412"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/chel/367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1098755840"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-05-12", 
        "datePublishedReg": "2011-05-12", 
        "description": "The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network's degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the high-degree nodes.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1038/nature10011", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018957", 
            "issn": [
              "0090-0028", 
              "1476-4687"
            ], 
            "name": "Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7346", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "473"
          }
        ], 
        "name": "Controllability of complex networks", 
        "pagination": "167", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "d8a3b7dcba7669f970a845ca72d1bfe7f3c766925c52f596fc84d7d081d6c003"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21562557"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0410462"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1038/nature10011"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045479836"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1038/nature10011", 
          "https://app.dimensions.ai/details/publication/pub.1045479836"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:46", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000434.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://www.nature.com/articles/nature10011"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature10011'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature10011'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature10011'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature10011'


     

    This table displays all metadata directly associated to this object as RDF triples.

    240 TRIPLES      21 PREDICATES      74 URIs      25 LITERALS      14 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1038/nature10011 schema:about N07b3b2c540a14b22ba7d93a1c9babbeb
    2 N2cf76b7294dc4f31be1433dd309d0753
    3 N5bcff8eae31c43bf8f312df302ff8cdd
    4 N7ff12c11d146437ab4b57d4c1017d323
    5 Ncf162d9f234c42d4a42e5a151581b976
    6 anzsrc-for:01
    7 anzsrc-for:0102
    8 schema:author Nb23164a2acb74a9695c21abec4365ad7
    9 schema:citation sg:pub.10.1007/pl00011099
    10 sg:pub.10.1007/pl00012580
    11 sg:pub.10.1007/s00422-004-0527-x
    12 sg:pub.10.1007/s10051-001-8683-4
    13 sg:pub.10.1038/35019019
    14 sg:pub.10.1038/35065725
    15 sg:pub.10.1057/palgrave.jors.2600523
    16 sg:pub.10.1140/epjb/e2004-00038-8
    17 https://doi.org/10.1016/j.automatica.2008.07.016
    18 https://doi.org/10.1016/s0005-1098(98)00019-3
    19 https://doi.org/10.1016/s0378-4371(02)00772-0
    20 https://doi.org/10.1017/cbo9780511610905
    21 https://doi.org/10.1038/msb.2008.1
    22 https://doi.org/10.1073/pnas.0609152103
    23 https://doi.org/10.1080/00018730110112519
    24 https://doi.org/10.1088/1367-2630/11/11/113047
    25 https://doi.org/10.1088/1742-5468/2006/05/p05003
    26 https://doi.org/10.1090/chel/367
    27 https://doi.org/10.1103/physreve.75.046103
    28 https://doi.org/10.1103/physreve.75.056110
    29 https://doi.org/10.1103/physrevlett.85.4626
    30 https://doi.org/10.1103/physrevlett.85.5468
    31 https://doi.org/10.1103/physrevlett.86.3200
    32 https://doi.org/10.1103/physrevlett.87.258701
    33 https://doi.org/10.1103/physrevlett.87.278701
    34 https://doi.org/10.1103/physrevlett.89.208701
    35 https://doi.org/10.1103/physrevlett.91.014101
    36 https://doi.org/10.1103/revmodphys.74.47
    37 https://doi.org/10.1109/jproc.2006.887322
    38 https://doi.org/10.1109/tac.1974.1100557
    39 https://doi.org/10.1109/tac.1976.1101198
    40 https://doi.org/10.1109/tac.2008.919548
    41 https://doi.org/10.1109/tsmcb.2009.2031624
    42 https://doi.org/10.1126/science.1065103
    43 https://doi.org/10.1126/science.286.5439.509
    44 https://doi.org/10.1126/science.298.5594.824
    45 https://doi.org/10.1137/0202019
    46 https://doi.org/10.1137/0301010
    47 https://doi.org/10.1137/060674909
    48 https://doi.org/10.1371/journal.pone.0008083
    49 https://doi.org/10.1515/9781400835355
    50 schema:datePublished 2011-05-12
    51 schema:datePublishedReg 2011-05-12
    52 schema:description The ultimate proof of our understanding of natural or technological systems is reflected in our ability to control them. Although control theory offers mathematical tools for steering engineered and natural systems towards a desired state, a framework to control complex self-organized systems is lacking. Here we develop analytical tools to study the controllability of an arbitrary complex directed network, identifying the set of driver nodes with time-dependent control that can guide the system's entire dynamics. We apply these tools to several real networks, finding that the number of driver nodes is determined mainly by the network's degree distribution. We show that sparse inhomogeneous networks, which emerge in many real complex systems, are the most difficult to control, but that dense and homogeneous networks can be controlled using a few driver nodes. Counterintuitively, we find that in both model and real systems the driver nodes tend to avoid the high-degree nodes.
    53 schema:genre research_article
    54 schema:inLanguage en
    55 schema:isAccessibleForFree false
    56 schema:isPartOf N6daa99da55fe43d6b62c17ebc45534b6
    57 Nef833496b6854584be070bc1882cf41e
    58 sg:journal.1018957
    59 schema:name Controllability of complex networks
    60 schema:pagination 167
    61 schema:productId N0bcb78276c4749e4b3396350b0c95fd4
    62 N6ebef9758c3144d7845f0c4c0af40ffd
    63 Nc06e2d699e964d6b87540a5830441082
    64 Nd4bc1d616f8b44b193a52b8dc43cddf1
    65 Ne2c3df4e63d545e0950266ab3fa0adbe
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045479836
    67 https://doi.org/10.1038/nature10011
    68 schema:sdDatePublished 2019-04-10T19:46
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher N47b82443e0584b7d86865aed8e72d989
    71 schema:url https://www.nature.com/articles/nature10011
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N05fe2128c69a4480bf53ac0c64050e52 rdf:first sg:person.01061507044.11
    76 rdf:rest Ne351a393bcf6423dbe23c4610060f73e
    77 N07b3b2c540a14b22ba7d93a1c9babbeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    78 schema:name Algorithms
    79 rdf:type schema:DefinedTerm
    80 N0bcb78276c4749e4b3396350b0c95fd4 schema:name pubmed_id
    81 schema:value 21562557
    82 rdf:type schema:PropertyValue
    83 N2cf76b7294dc4f31be1433dd309d0753 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    84 schema:name Computer Simulation
    85 rdf:type schema:DefinedTerm
    86 N47b82443e0584b7d86865aed8e72d989 schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 N5bcff8eae31c43bf8f312df302ff8cdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    89 schema:name Models, Theoretical
    90 rdf:type schema:DefinedTerm
    91 N6daa99da55fe43d6b62c17ebc45534b6 schema:issueNumber 7346
    92 rdf:type schema:PublicationIssue
    93 N6ebef9758c3144d7845f0c4c0af40ffd schema:name readcube_id
    94 schema:value d8a3b7dcba7669f970a845ca72d1bfe7f3c766925c52f596fc84d7d081d6c003
    95 rdf:type schema:PropertyValue
    96 N7ff12c11d146437ab4b57d4c1017d323 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    97 schema:name Neural Networks (Computer)
    98 rdf:type schema:DefinedTerm
    99 Nb23164a2acb74a9695c21abec4365ad7 rdf:first sg:person.01013373644.11
    100 rdf:rest N05fe2128c69a4480bf53ac0c64050e52
    101 Nc06e2d699e964d6b87540a5830441082 schema:name doi
    102 schema:value 10.1038/nature10011
    103 rdf:type schema:PropertyValue
    104 Ncf162d9f234c42d4a42e5a151581b976 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    105 schema:name Animals
    106 rdf:type schema:DefinedTerm
    107 Nd4bc1d616f8b44b193a52b8dc43cddf1 schema:name nlm_unique_id
    108 schema:value 0410462
    109 rdf:type schema:PropertyValue
    110 Ne2c3df4e63d545e0950266ab3fa0adbe schema:name dimensions_id
    111 schema:value pub.1045479836
    112 rdf:type schema:PropertyValue
    113 Ne351a393bcf6423dbe23c4610060f73e rdf:first sg:person.0632511150.69
    114 rdf:rest rdf:nil
    115 Nef833496b6854584be070bc1882cf41e schema:volumeNumber 473
    116 rdf:type schema:PublicationVolume
    117 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    118 schema:name Mathematical Sciences
    119 rdf:type schema:DefinedTerm
    120 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Applied Mathematics
    122 rdf:type schema:DefinedTerm
    123 sg:journal.1018957 schema:issn 0090-0028
    124 1476-4687
    125 schema:name Nature
    126 rdf:type schema:Periodical
    127 sg:person.01013373644.11 schema:affiliation https://www.grid.ac/institutes/grid.65499.37
    128 schema:familyName Liu
    129 schema:givenName Yang-Yu
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01013373644.11
    131 rdf:type schema:Person
    132 sg:person.01061507044.11 schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    133 schema:familyName Slotine
    134 schema:givenName Jean-Jacques
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061507044.11
    136 rdf:type schema:Person
    137 sg:person.0632511150.69 schema:affiliation https://www.grid.ac/institutes/grid.65499.37
    138 schema:familyName Barabási
    139 schema:givenName Albert-László
    140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632511150.69
    141 rdf:type schema:Person
    142 sg:pub.10.1007/pl00011099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049515662
    143 https://doi.org/10.1007/pl00011099
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/pl00012580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012231554
    146 https://doi.org/10.1007/pl00012580
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/s00422-004-0527-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005767461
    149 https://doi.org/10.1007/s00422-004-0527-x
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10051-001-8683-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025893919
    152 https://doi.org/10.1007/s10051-001-8683-4
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1038/35019019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008269744
    155 https://doi.org/10.1038/35019019
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1038/35065725 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005249327
    158 https://doi.org/10.1038/35065725
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1057/palgrave.jors.2600523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042605113
    161 https://doi.org/10.1057/palgrave.jors.2600523
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1140/epjb/e2004-00038-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045137838
    164 https://doi.org/10.1140/epjb/e2004-00038-8
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.automatica.2008.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003497415
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/s0005-1098(98)00019-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018918630
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/s0378-4371(02)00772-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034411919
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1017/cbo9780511610905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098666412
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1038/msb.2008.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048101821
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1073/pnas.0609152103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043701131
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1080/00018730110112519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019965146
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1088/1367-2630/11/11/113047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005628271
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1088/1742-5468/2006/05/p05003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033887345
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1090/chel/367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098755840
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1103/physreve.75.046103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032043230
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1103/physreve.75.056110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060735952
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1103/physrevlett.85.4626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009810049
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1103/physrevlett.85.5468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000282463
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1103/physrevlett.86.3200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018922144
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1103/physrevlett.87.258701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017006771
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1103/physrevlett.87.278701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041724189
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1103/physrevlett.89.208701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012572068
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1103/physrevlett.91.014101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051707383
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1103/revmodphys.74.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008594690
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1109/jproc.2006.887322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061296688
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1109/tac.1974.1100557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471278
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1109/tac.1976.1101198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471803
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1109/tac.2008.919548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061476913
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1109/tsmcb.2009.2031624 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061797144
    215 rdf:type schema:CreativeWork
    216 https://doi.org/10.1126/science.1065103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048235090
    217 rdf:type schema:CreativeWork
    218 https://doi.org/10.1126/science.286.5439.509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010080128
    219 rdf:type schema:CreativeWork
    220 https://doi.org/10.1126/science.298.5594.824 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033238539
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1137/0202019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841207
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1137/0301010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842500
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1137/060674909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062849872
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1371/journal.pone.0008083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050650048
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1515/9781400835355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096909962
    231 rdf:type schema:CreativeWork
    232 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    233 schema:name Department of Mechanical Engineering and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
    234 Nonlinear Systems Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
    235 rdf:type schema:Organization
    236 https://www.grid.ac/institutes/grid.65499.37 schema:alternateName Dana–Farber Cancer Institute
    237 schema:name Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
    238 Center for Complex Network Research and Departments of Physics, Computer Science and Biology, Northeastern University, Boston, Massachusetts 02115, USA
    239 Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
    240 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...