Biodiversity improves water quality through niche partitioning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-04

AUTHORS

Bradley J. Cardinale

ABSTRACT

Excessive nutrient loading of water bodies is a leading cause of water pollution worldwide, and controlling nutrient levels in watersheds is a primary objective of most environmental policy. Over the past two decades, much research has shown that ecosystems with more species are more efficient at removing nutrients from soil and water than are ecosystems with fewer species. This has led some to suggest that conservation of biodiversity might be a useful tool for managing nutrient uptake and storage, but this suggestion has been controversial, in part because the specific biological mechanisms by which species diversity influences nutrient uptake have not been identified. Here I use a model system of stream biofilms to show that niche partitioning among species of algae can increase the uptake and storage of nitrate, a nutrient pollutant of global concern. I manipulated the number of species of algae growing in the biofilms of 150 stream mesocosms that had been set up to mimic the variety of flow habitats and disturbance regimes that are typical of natural streams. Nitrogen uptake rates, as measured by using (15)N-labelled nitrate, increased linearly with species richness and were driven by niche differences among species. As different forms of algae came to dominate each unique habitat in a stream, the more diverse communities achieved a higher biomass and greater (15)N uptake. When these niche opportunities were experimentally removed by making all of the habitats in a stream uniform, diversity did not influence nitrogen uptake, and biofilms collapsed to a single dominant species. These results provide direct evidence that communities with more species take greater advantage of the niche opportunities in an environment, and this allows diverse systems to capture a greater proportion of biologically available resources such as nitrogen. One implication is that biodiversity may help to buffer natural ecosystems against the ecological impacts of nutrient pollution. More... »

PAGES

86

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09904

DOI

http://dx.doi.org/10.1038/nature09904

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011460811

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21475199


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biodiversity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biofilms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomass", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Chlorophyta", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diatoms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Environmental Policy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nitrogen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Population Density", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Rivers", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Species Specificity", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "University of Michigan, School of Natural Resources & Environment, Ann Arbor, Michigan 48109-1041, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cardinale", 
        "givenName": "Bradley J.", 
        "id": "sg:person.0732466171.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732466171.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1890/1051-0761(1998)008[0559:nposww]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000331216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001672883", 
          "https://doi.org/10.1038/35001562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35001562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001672883", 
          "https://doi.org/10.1038/35001562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35071062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003173110", 
          "https://doi.org/10.1038/35071062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35071062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003173110", 
          "https://doi.org/10.1038/35071062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0022-3646.1995.00233.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006008959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2003.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006492402"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004420050180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007976911", 
          "https://doi.org/10.1007/s004420050180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(2003)084[1539:tropda]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009685210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009873707", 
          "https://doi.org/10.1038/nature05202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009873707", 
          "https://doi.org/10.1038/nature05202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1461-0248.1998.00039.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011098712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.94.5.1857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011327521"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/plankt/19.2.263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016370278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.ecolsys.31.1.343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017467907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/10-0302.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018344424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es801217q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019260540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/es801217q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019260540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-33745-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019368444", 
          "https://doi.org/10.1007/0-387-33745-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/0-387-33745-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019368444", 
          "https://doi.org/10.1007/0-387-33745-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1529-8817.2001.037003370.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020131393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1529-8817.1986.tb00035.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020325750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06686", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021080813", 
          "https://doi.org/10.1038/nature06686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1064088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021435857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/08-1038.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024487272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0609812104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025508523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/1051-0761(1997)007[0737:haotgn]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025637250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1156401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025877449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02804901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026878621", 
          "https://doi.org/10.1007/bf02804901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02804901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026878621", 
          "https://doi.org/10.1007/bf02804901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3732/ajb.1000364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027409964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0030-1299.2004.12685.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030922452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/379718a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031128116", 
          "https://doi.org/10.1038/379718a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.277.5325.500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032328102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/04-0922", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032535936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tree.2008.11.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033896078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1529-8817.1998.340598.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036407253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4319/lo.2006.51.1_part_2.0671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038319000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1940689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042640226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1186120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044004322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35083573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045116489", 
          "https://doi.org/10.1038/35083573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35083573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045116489", 
          "https://doi.org/10.1038/35083573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/03-4101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046740760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1890/0012-9658(2006)87[2397:sdenuv]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049445254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0801915105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052597345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1127/archiv-hydrobiol/143/1998/21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062702455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1307394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069430134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1313099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069435238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1467303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069503904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1467400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069503994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1468250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069504755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1937506", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069661486"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-04", 
    "datePublishedReg": "2011-04-01", 
    "description": "Excessive nutrient loading of water bodies is a leading cause of water pollution worldwide, and controlling nutrient levels in watersheds is a primary objective of most environmental policy. Over the past two decades, much research has shown that ecosystems with more species are more efficient at removing nutrients from soil and water than are ecosystems with fewer species. This has led some to suggest that conservation of biodiversity might be a useful tool for managing nutrient uptake and storage, but this suggestion has been controversial, in part because the specific biological mechanisms by which species diversity influences nutrient uptake have not been identified. Here I use a model system of stream biofilms to show that niche partitioning among species of algae can increase the uptake and storage of nitrate, a nutrient pollutant of global concern. I manipulated the number of species of algae growing in the biofilms of 150 stream mesocosms that had been set up to mimic the variety of flow habitats and disturbance regimes that are typical of natural streams. Nitrogen uptake rates, as measured by using (15)N-labelled nitrate, increased linearly with species richness and were driven by niche differences among species. As different forms of algae came to dominate each unique habitat in a stream, the more diverse communities achieved a higher biomass and greater (15)N uptake. When these niche opportunities were experimentally removed by making all of the habitats in a stream uniform, diversity did not influence nitrogen uptake, and biofilms collapsed to a single dominant species. These results provide direct evidence that communities with more species take greater advantage of the niche opportunities in an environment, and this allows diverse systems to capture a greater proportion of biologically available resources such as nitrogen. One implication is that biodiversity may help to buffer natural ecosystems against the ecological impacts of nutrient pollution.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09904", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3120192", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3068569", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7341", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "472"
      }
    ], 
    "name": "Biodiversity improves water quality through niche partitioning", 
    "pagination": "86", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "369a8fc7d9405afad1d41c7855e2e9f5798ce2aa424454f3ac08c6abe50d9c83"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21475199"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09904"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011460811"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09904", 
      "https://app.dimensions.ai/details/publication/pub.1011460811"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000434.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09904"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09904'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09904'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09904'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09904'


 

This table displays all metadata directly associated to this object as RDF triples.

261 TRIPLES      21 PREDICATES      85 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09904 schema:about N12a53a4a2d46498795f5712af580b62b
2 N1f59ef249e42453ab097021d8e71ec21
3 N3f409c58708d4ff0a0c212009046df40
4 N71be84bde07e417ba6e798ff65f03264
5 N74881ac0dd8e4a5b94d0d40d94761362
6 N75aaf36748e44576a6d2addfbe27c3e2
7 N7a5dfbfe56b049bfbeb21a0682bc60b8
8 N7fc3d2548bcd4e2da670e94888608b78
9 N980e70d292ee4f9db347a948aab7e123
10 Nef685a84e93543339faba84c0b81177b
11 Nf3789bd725d9411da7ba8de96918b34e
12 anzsrc-for:06
13 anzsrc-for:0602
14 schema:author N5310f980d8ed43d9a4d21a11a3ca5c95
15 schema:citation sg:pub.10.1007/0-387-33745-8
16 sg:pub.10.1007/bf02804901
17 sg:pub.10.1007/s004420050180
18 sg:pub.10.1038/35001562
19 sg:pub.10.1038/35071062
20 sg:pub.10.1038/35083573
21 sg:pub.10.1038/379718a0
22 sg:pub.10.1038/nature05202
23 sg:pub.10.1038/nature06686
24 https://doi.org/10.1016/j.tree.2003.10.013
25 https://doi.org/10.1016/j.tree.2008.11.009
26 https://doi.org/10.1021/es801217q
27 https://doi.org/10.1046/j.1461-0248.1998.00039.x
28 https://doi.org/10.1046/j.1529-8817.1998.340598.x
29 https://doi.org/10.1046/j.1529-8817.2001.037003370.x
30 https://doi.org/10.1073/pnas.0609812104
31 https://doi.org/10.1073/pnas.0801915105
32 https://doi.org/10.1073/pnas.94.5.1857
33 https://doi.org/10.1093/plankt/19.2.263
34 https://doi.org/10.1111/j.0022-3646.1995.00233.x
35 https://doi.org/10.1111/j.0030-1299.2004.12685.x
36 https://doi.org/10.1111/j.1529-8817.1986.tb00035.x
37 https://doi.org/10.1126/science.1064088
38 https://doi.org/10.1126/science.1156401
39 https://doi.org/10.1126/science.1186120
40 https://doi.org/10.1126/science.277.5325.500
41 https://doi.org/10.1127/archiv-hydrobiol/143/1998/21
42 https://doi.org/10.1146/annurev.ecolsys.31.1.343
43 https://doi.org/10.1890/0012-9658(2003)084[1539:tropda]2.0.co;2
44 https://doi.org/10.1890/0012-9658(2006)87[2397:sdenuv]2.0.co;2
45 https://doi.org/10.1890/03-4101
46 https://doi.org/10.1890/04-0922
47 https://doi.org/10.1890/08-1038.1
48 https://doi.org/10.1890/10-0302.1
49 https://doi.org/10.1890/1051-0761(1997)007[0737:haotgn]2.0.co;2
50 https://doi.org/10.1890/1051-0761(1998)008[0559:nposww]2.0.co;2
51 https://doi.org/10.2307/1307394
52 https://doi.org/10.2307/1313099
53 https://doi.org/10.2307/1467303
54 https://doi.org/10.2307/1467400
55 https://doi.org/10.2307/1468250
56 https://doi.org/10.2307/1937506
57 https://doi.org/10.2307/1940689
58 https://doi.org/10.3732/ajb.1000364
59 https://doi.org/10.4319/lo.2006.51.1_part_2.0671
60 schema:datePublished 2011-04
61 schema:datePublishedReg 2011-04-01
62 schema:description Excessive nutrient loading of water bodies is a leading cause of water pollution worldwide, and controlling nutrient levels in watersheds is a primary objective of most environmental policy. Over the past two decades, much research has shown that ecosystems with more species are more efficient at removing nutrients from soil and water than are ecosystems with fewer species. This has led some to suggest that conservation of biodiversity might be a useful tool for managing nutrient uptake and storage, but this suggestion has been controversial, in part because the specific biological mechanisms by which species diversity influences nutrient uptake have not been identified. Here I use a model system of stream biofilms to show that niche partitioning among species of algae can increase the uptake and storage of nitrate, a nutrient pollutant of global concern. I manipulated the number of species of algae growing in the biofilms of 150 stream mesocosms that had been set up to mimic the variety of flow habitats and disturbance regimes that are typical of natural streams. Nitrogen uptake rates, as measured by using (15)N-labelled nitrate, increased linearly with species richness and were driven by niche differences among species. As different forms of algae came to dominate each unique habitat in a stream, the more diverse communities achieved a higher biomass and greater (15)N uptake. When these niche opportunities were experimentally removed by making all of the habitats in a stream uniform, diversity did not influence nitrogen uptake, and biofilms collapsed to a single dominant species. These results provide direct evidence that communities with more species take greater advantage of the niche opportunities in an environment, and this allows diverse systems to capture a greater proportion of biologically available resources such as nitrogen. One implication is that biodiversity may help to buffer natural ecosystems against the ecological impacts of nutrient pollution.
63 schema:genre research_article
64 schema:inLanguage en
65 schema:isAccessibleForFree false
66 schema:isPartOf N002f16fac2654f6bb22ab0d5047d358a
67 N0971c19199a949a1aa4d4b2990b280de
68 sg:journal.1018957
69 schema:name Biodiversity improves water quality through niche partitioning
70 schema:pagination 86
71 schema:productId N066d8672e29549a19b6757d30620e10b
72 N33c6a341a41e4f5da5c1fe826cbd4ffd
73 N5b08e26cb9574ba49f2838ac6c99b2ed
74 N9fb381dbc9734b1db8b2b3f7b3e29750
75 Na76aa52a5f504aef8023b1aaf0a11e18
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011460811
77 https://doi.org/10.1038/nature09904
78 schema:sdDatePublished 2019-04-10T21:25
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N252a5e0c8a4c49f998f33cac762f8ae3
81 schema:url https://www.nature.com/articles/nature09904
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N002f16fac2654f6bb22ab0d5047d358a schema:volumeNumber 472
86 rdf:type schema:PublicationVolume
87 N066d8672e29549a19b6757d30620e10b schema:name nlm_unique_id
88 schema:value 0410462
89 rdf:type schema:PropertyValue
90 N0971c19199a949a1aa4d4b2990b280de schema:issueNumber 7341
91 rdf:type schema:PublicationIssue
92 N12a53a4a2d46498795f5712af580b62b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Population Density
94 rdf:type schema:DefinedTerm
95 N1f59ef249e42453ab097021d8e71ec21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Biomass
97 rdf:type schema:DefinedTerm
98 N252a5e0c8a4c49f998f33cac762f8ae3 schema:name Springer Nature - SN SciGraph project
99 rdf:type schema:Organization
100 N33c6a341a41e4f5da5c1fe826cbd4ffd schema:name pubmed_id
101 schema:value 21475199
102 rdf:type schema:PropertyValue
103 N3f409c58708d4ff0a0c212009046df40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Environmental Policy
105 rdf:type schema:DefinedTerm
106 N5310f980d8ed43d9a4d21a11a3ca5c95 rdf:first sg:person.0732466171.68
107 rdf:rest rdf:nil
108 N5b08e26cb9574ba49f2838ac6c99b2ed schema:name doi
109 schema:value 10.1038/nature09904
110 rdf:type schema:PropertyValue
111 N71be84bde07e417ba6e798ff65f03264 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Diatoms
113 rdf:type schema:DefinedTerm
114 N74881ac0dd8e4a5b94d0d40d94761362 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Biofilms
116 rdf:type schema:DefinedTerm
117 N75aaf36748e44576a6d2addfbe27c3e2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Chlorophyta
119 rdf:type schema:DefinedTerm
120 N7a5dfbfe56b049bfbeb21a0682bc60b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Nitrogen
122 rdf:type schema:DefinedTerm
123 N7fc3d2548bcd4e2da670e94888608b78 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Models, Biological
125 rdf:type schema:DefinedTerm
126 N980e70d292ee4f9db347a948aab7e123 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Biodiversity
128 rdf:type schema:DefinedTerm
129 N9fb381dbc9734b1db8b2b3f7b3e29750 schema:name dimensions_id
130 schema:value pub.1011460811
131 rdf:type schema:PropertyValue
132 Na76aa52a5f504aef8023b1aaf0a11e18 schema:name readcube_id
133 schema:value 369a8fc7d9405afad1d41c7855e2e9f5798ce2aa424454f3ac08c6abe50d9c83
134 rdf:type schema:PropertyValue
135 Nef685a84e93543339faba84c0b81177b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Rivers
137 rdf:type schema:DefinedTerm
138 Nf3789bd725d9411da7ba8de96918b34e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Species Specificity
140 rdf:type schema:DefinedTerm
141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biological Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
145 schema:name Ecology
146 rdf:type schema:DefinedTerm
147 sg:grant.3068569 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09904
148 rdf:type schema:MonetaryGrant
149 sg:grant.3120192 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09904
150 rdf:type schema:MonetaryGrant
151 sg:journal.1018957 schema:issn 0090-0028
152 1476-4687
153 schema:name Nature
154 rdf:type schema:Periodical
155 sg:person.0732466171.68 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
156 schema:familyName Cardinale
157 schema:givenName Bradley J.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732466171.68
159 rdf:type schema:Person
160 sg:pub.10.1007/0-387-33745-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019368444
161 https://doi.org/10.1007/0-387-33745-8
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/bf02804901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026878621
164 https://doi.org/10.1007/bf02804901
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s004420050180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007976911
167 https://doi.org/10.1007/s004420050180
168 rdf:type schema:CreativeWork
169 sg:pub.10.1038/35001562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001672883
170 https://doi.org/10.1038/35001562
171 rdf:type schema:CreativeWork
172 sg:pub.10.1038/35071062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003173110
173 https://doi.org/10.1038/35071062
174 rdf:type schema:CreativeWork
175 sg:pub.10.1038/35083573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045116489
176 https://doi.org/10.1038/35083573
177 rdf:type schema:CreativeWork
178 sg:pub.10.1038/379718a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031128116
179 https://doi.org/10.1038/379718a0
180 rdf:type schema:CreativeWork
181 sg:pub.10.1038/nature05202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009873707
182 https://doi.org/10.1038/nature05202
183 rdf:type schema:CreativeWork
184 sg:pub.10.1038/nature06686 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021080813
185 https://doi.org/10.1038/nature06686
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/j.tree.2003.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006492402
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.tree.2008.11.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033896078
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/es801217q schema:sameAs https://app.dimensions.ai/details/publication/pub.1019260540
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1046/j.1461-0248.1998.00039.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011098712
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1046/j.1529-8817.1998.340598.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036407253
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1046/j.1529-8817.2001.037003370.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020131393
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1073/pnas.0609812104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025508523
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1073/pnas.0801915105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052597345
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1073/pnas.94.5.1857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011327521
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1093/plankt/19.2.263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016370278
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1111/j.0022-3646.1995.00233.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006008959
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1111/j.0030-1299.2004.12685.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030922452
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1111/j.1529-8817.1986.tb00035.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020325750
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1126/science.1064088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021435857
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1126/science.1156401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025877449
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1126/science.1186120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044004322
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1126/science.277.5325.500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032328102
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1127/archiv-hydrobiol/143/1998/21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062702455
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1146/annurev.ecolsys.31.1.343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017467907
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1890/0012-9658(2003)084[1539:tropda]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009685210
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1890/0012-9658(2006)87[2397:sdenuv]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049445254
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1890/03-4101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046740760
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1890/04-0922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032535936
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1890/08-1038.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024487272
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1890/10-0302.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018344424
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1890/1051-0761(1997)007[0737:haotgn]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025637250
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1890/1051-0761(1998)008[0559:nposww]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000331216
240 rdf:type schema:CreativeWork
241 https://doi.org/10.2307/1307394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069430134
242 rdf:type schema:CreativeWork
243 https://doi.org/10.2307/1313099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069435238
244 rdf:type schema:CreativeWork
245 https://doi.org/10.2307/1467303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069503904
246 rdf:type schema:CreativeWork
247 https://doi.org/10.2307/1467400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069503994
248 rdf:type schema:CreativeWork
249 https://doi.org/10.2307/1468250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069504755
250 rdf:type schema:CreativeWork
251 https://doi.org/10.2307/1937506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069661486
252 rdf:type schema:CreativeWork
253 https://doi.org/10.2307/1940689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042640226
254 rdf:type schema:CreativeWork
255 https://doi.org/10.3732/ajb.1000364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027409964
256 rdf:type schema:CreativeWork
257 https://doi.org/10.4319/lo.2006.51.1_part_2.0671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038319000
258 rdf:type schema:CreativeWork
259 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
260 schema:name University of Michigan, School of Natural Resources & Environment, Ann Arbor, Michigan 48109-1041, USA
261 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...