Grains and grain boundaries in single-layer graphene atomic patchwork quilts View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01

AUTHORS

Pinshane Y. Huang, Carlos S. Ruiz-Vargas, Arend M. van der Zande, William S. Whitney, Mark P. Levendorf, Joshua W. Kevek, Shivank Garg, Jonathan S. Alden, Caleb J. Hustedt, Ye Zhu, Jiwoong Park, Paul L. McEuen, David A. Muller

ABSTRACT

The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials. More... »

PAGES

389

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09718

DOI

http://dx.doi.org/10.1038/nature09718

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043756216

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21209615


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Copper", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Graphite", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Atomic Force", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron, Scanning Transmission", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Electron, Transmission", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Particle Size", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Pinshane Y.", 
        "id": "sg:person.01233101341.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233101341.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ruiz-Vargas", 
        "givenName": "Carlos S.", 
        "id": "sg:person.01347327741.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347327741.77"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Physics, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Zande", 
        "givenName": "Arend M.", 
        "id": "sg:person.01303561153.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303561153.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Physics, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whitney", 
        "givenName": "William S.", 
        "id": "sg:person.01016211463.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016211463.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Levendorf", 
        "givenName": "Mark P.", 
        "id": "sg:person.01116652741.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116652741.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Oregon State University", 
          "id": "https://www.grid.ac/institutes/grid.4391.f", 
          "name": [
            "Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kevek", 
        "givenName": "Joshua W.", 
        "id": "sg:person.01212115405.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212115405.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garg", 
        "givenName": "Shivank", 
        "id": "sg:person.0637416136.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637416136.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alden", 
        "givenName": "Jonathan S.", 
        "id": "sg:person.01345216761.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345216761.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Brigham Young University", 
          "id": "https://www.grid.ac/institutes/grid.253294.b", 
          "name": [
            "Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hustedt", 
        "givenName": "Caleb J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Ye", 
        "id": "sg:person.01072261371.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072261371.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA", 
            "Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Jiwoong", 
        "id": "sg:person.0651237114.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651237114.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "Department of Physics, Cornell University, Ithaca, New York 14853, USA", 
            "Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "McEuen", 
        "givenName": "Paul L.", 
        "id": "sg:person.01277202621.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277202621.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cornell University", 
          "id": "https://www.grid.ac/institutes/grid.5386.8", 
          "name": [
            "School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA", 
            "Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Muller", 
        "givenName": "David A.", 
        "id": "sg:person.0776327231.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776327231.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1021/nl1016706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003397206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl1016706", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003397206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2007.141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004701300", 
          "https://doi.org/10.1038/nnano.2007.141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2009.10.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005766343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1171245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006821145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl102788f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009825223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl102788f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009825223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.205119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013318392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.82.205119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013318392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013560949", 
          "https://doi.org/10.1038/nmat2830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013560949", 
          "https://doi.org/10.1038/nmat2830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013935787", 
          "https://doi.org/10.1038/nphys1399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013935787", 
          "https://doi.org/10.1038/nphys1399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014928846", 
          "https://doi.org/10.1038/nature02817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014928846", 
          "https://doi.org/10.1038/nature02817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1157996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015876496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022328266", 
          "https://doi.org/10.1038/nnano.2010.132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022328266", 
          "https://doi.org/10.1038/nnano.2010.132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl102713c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025279814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl102713c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025279814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/45/024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026186362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/45/024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026186362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.195420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033290016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.195420", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033290016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101629g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033851561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl101629g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033851561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.6082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035438285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.84.6082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035438285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2009.11.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036857103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801827v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040491531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801827v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040491531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041786680", 
          "https://doi.org/10.1038/nature08879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041786680", 
          "https://doi.org/10.1038/nature08879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3337091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046596414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja805070b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049332508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja805070b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049332508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.125411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051404887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.125411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051404887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl100988r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl100988r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056217925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801386m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl801386m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3047787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057899175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060628391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.165447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.165447", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060632463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.046809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.046809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1196893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062462833"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01", 
    "datePublishedReg": "2011-01-01", 
    "description": "The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09718", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3059967", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3020477", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3049373", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7330", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "469"
      }
    ], 
    "name": "Grains and grain boundaries in single-layer graphene atomic patchwork quilts", 
    "pagination": "389", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d06dab95629557f3020aa476bfd72b81a5e99d747b4885c2a9dd38b17e563641"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21209615"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09718"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043756216"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09718", 
      "https://app.dimensions.ai/details/publication/pub.1043756216"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000426.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09718"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09718'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09718'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09718'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09718'


 

This table displays all metadata directly associated to this object as RDF triples.

288 TRIPLES      21 PREDICATES      65 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09718 schema:about N1386a097d0234d779f3847aaa50fe900
2 N53c1dc118fbf46feafecbff8d2d4ef00
3 N7a6b748031fb42a18333dc5ee7d42033
4 N854343179ddb4023a5826f64f36f77b1
5 Ne2acd36343a24b33a1eccb275ab7e357
6 Nf355053acbf640c081a439e85a0b32ac
7 anzsrc-for:10
8 anzsrc-for:1007
9 schema:author Nef6a15aadafc46ec830a1b32886901be
10 schema:citation sg:pub.10.1038/nature02817
11 sg:pub.10.1038/nature08879
12 sg:pub.10.1038/nmat1849
13 sg:pub.10.1038/nmat2830
14 sg:pub.10.1038/nnano.2007.141
15 sg:pub.10.1038/nnano.2010.132
16 sg:pub.10.1038/nphys1399
17 https://doi.org/10.1016/j.carbon.2009.10.030
18 https://doi.org/10.1016/j.carbon.2009.11.030
19 https://doi.org/10.1021/ja805070b
20 https://doi.org/10.1021/nl100988r
21 https://doi.org/10.1021/nl101629g
22 https://doi.org/10.1021/nl1016706
23 https://doi.org/10.1021/nl102713c
24 https://doi.org/10.1021/nl102788f
25 https://doi.org/10.1021/nl801386m
26 https://doi.org/10.1021/nl801827v
27 https://doi.org/10.1063/1.3047787
28 https://doi.org/10.1063/1.3337091
29 https://doi.org/10.1088/0953-8984/17/45/024
30 https://doi.org/10.1103/physrevb.73.125411
31 https://doi.org/10.1103/physrevb.79.195429
32 https://doi.org/10.1103/physrevb.81.165447
33 https://doi.org/10.1103/physrevb.81.195420
34 https://doi.org/10.1103/physrevb.82.205119
35 https://doi.org/10.1103/physrevlett.102.046809
36 https://doi.org/10.1103/physrevlett.84.6082
37 https://doi.org/10.1126/science.1157996
38 https://doi.org/10.1126/science.1171245
39 https://doi.org/10.1126/science.1196893
40 schema:datePublished 2011-01
41 schema:datePublishedReg 2011-01-01
42 schema:description The properties of polycrystalline materials are often dominated by the size of their grains and by the atomic structure of their grain boundaries. These effects should be especially pronounced in two-dimensional materials, where even a line defect can divide and disrupt a crystal. These issues take on practical significance in graphene, which is a hexagonal, two-dimensional crystal of carbon atoms. Single-atom-thick graphene sheets can now be produced by chemical vapour deposition on scales of up to metres, making their polycrystallinity almost unavoidable. Theoretically, graphene grain boundaries are predicted to have distinct electronic, magnetic, chemical and mechanical properties that strongly depend on their atomic arrangement. Yet because of the five-order-of-magnitude size difference between grains and the atoms at grain boundaries, few experiments have fully explored the graphene grain structure. Here we use a combination of old and new transmission electron microscopy techniques to bridge these length scales. Using atomic-resolution imaging, we determine the location and identity of every atom at a grain boundary and find that different grains stitch together predominantly through pentagon-heptagon pairs. Rather than individually imaging the several billion atoms in each grain, we use diffraction-filtered imaging to rapidly map the location, orientation and shape of several hundred grains and boundaries, where only a handful have been previously reported. The resulting images reveal an unexpectedly small and intricate patchwork of grains connected by tilt boundaries. By correlating grain imaging with scanning probe and transport measurements, we show that these grain boundaries severely weaken the mechanical strength of graphene membranes but do not as drastically alter their electrical properties. These techniques open a new window for studies on the structure, properties and control of grains and grain boundaries in graphene and other two-dimensional materials.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf N3ebef5f5fb5b44229710bf7dc309dc6f
47 N498b6006e5504576a5c017fd3268c45b
48 sg:journal.1018957
49 schema:name Grains and grain boundaries in single-layer graphene atomic patchwork quilts
50 schema:pagination 389
51 schema:productId N074f54c4886f424588c0936fdbf96ad8
52 N0ef0a2903b7b41c2b2e0b2c0d965c2cf
53 Nb64eb82279c04011b75910ff34932c81
54 Nc855197837f84c4d9b4193a711b0a894
55 Ne442908342df4d5ebf875d6790752017
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043756216
57 https://doi.org/10.1038/nature09718
58 schema:sdDatePublished 2019-04-10T16:29
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Nf5b0f6cb564340afa00b676ad7a42dbf
61 schema:url https://www.nature.com/articles/nature09718
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N052faee08c72440d9414ae9d36ba29d4 rdf:first Nf04aafb114f347729dd4719fa6084c53
66 rdf:rest N0c4782ba64b94f28b6f8b4296245796c
67 N074f54c4886f424588c0936fdbf96ad8 schema:name readcube_id
68 schema:value d06dab95629557f3020aa476bfd72b81a5e99d747b4885c2a9dd38b17e563641
69 rdf:type schema:PropertyValue
70 N0a357c82797f4f378b9064f07f498ad6 rdf:first sg:person.01277202621.80
71 rdf:rest Na78f926c77c24671b6bac8d46bc454e4
72 N0ac036bb233943a5951b0c154b9a8b27 rdf:first sg:person.01303561153.93
73 rdf:rest N81a5cf5573ae4a6ab27570bde1aa4ae7
74 N0c4782ba64b94f28b6f8b4296245796c rdf:first sg:person.01072261371.15
75 rdf:rest N7e6a569852a841719577a1b2766577a9
76 N0ef0a2903b7b41c2b2e0b2c0d965c2cf schema:name doi
77 schema:value 10.1038/nature09718
78 rdf:type schema:PropertyValue
79 N1125a223e8ef44edbfd20a9e30a1aa50 rdf:first sg:person.01212115405.72
80 rdf:rest N77fe445ffb864a238c309160cef68d05
81 N1386a097d0234d779f3847aaa50fe900 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Copper
83 rdf:type schema:DefinedTerm
84 N3ebef5f5fb5b44229710bf7dc309dc6f schema:issueNumber 7330
85 rdf:type schema:PublicationIssue
86 N498b6006e5504576a5c017fd3268c45b schema:volumeNumber 469
87 rdf:type schema:PublicationVolume
88 N53c1dc118fbf46feafecbff8d2d4ef00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Particle Size
90 rdf:type schema:DefinedTerm
91 N70f72e9f1b9d491b9b9f96b06c467aac rdf:first sg:person.01345216761.20
92 rdf:rest N052faee08c72440d9414ae9d36ba29d4
93 N74b01eaa11ca4f3580b72aa4a9e9018b rdf:first sg:person.01347327741.77
94 rdf:rest N0ac036bb233943a5951b0c154b9a8b27
95 N77fe445ffb864a238c309160cef68d05 rdf:first sg:person.0637416136.61
96 rdf:rest N70f72e9f1b9d491b9b9f96b06c467aac
97 N7a6b748031fb42a18333dc5ee7d42033 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Graphite
99 rdf:type schema:DefinedTerm
100 N7e6a569852a841719577a1b2766577a9 rdf:first sg:person.0651237114.21
101 rdf:rest N0a357c82797f4f378b9064f07f498ad6
102 N81a5cf5573ae4a6ab27570bde1aa4ae7 rdf:first sg:person.01016211463.25
103 rdf:rest Ne0a84ea00c124077a95b50367fada3c9
104 N854343179ddb4023a5826f64f36f77b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Microscopy, Electron, Transmission
106 rdf:type schema:DefinedTerm
107 Na78f926c77c24671b6bac8d46bc454e4 rdf:first sg:person.0776327231.15
108 rdf:rest rdf:nil
109 Nb64eb82279c04011b75910ff34932c81 schema:name nlm_unique_id
110 schema:value 0410462
111 rdf:type schema:PropertyValue
112 Nc855197837f84c4d9b4193a711b0a894 schema:name dimensions_id
113 schema:value pub.1043756216
114 rdf:type schema:PropertyValue
115 Ne0a84ea00c124077a95b50367fada3c9 rdf:first sg:person.01116652741.62
116 rdf:rest N1125a223e8ef44edbfd20a9e30a1aa50
117 Ne2acd36343a24b33a1eccb275ab7e357 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Microscopy, Atomic Force
119 rdf:type schema:DefinedTerm
120 Ne442908342df4d5ebf875d6790752017 schema:name pubmed_id
121 schema:value 21209615
122 rdf:type schema:PropertyValue
123 Nef6a15aadafc46ec830a1b32886901be rdf:first sg:person.01233101341.30
124 rdf:rest N74b01eaa11ca4f3580b72aa4a9e9018b
125 Nf04aafb114f347729dd4719fa6084c53 schema:affiliation https://www.grid.ac/institutes/grid.253294.b
126 schema:familyName Hustedt
127 schema:givenName Caleb J.
128 rdf:type schema:Person
129 Nf355053acbf640c081a439e85a0b32ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Microscopy, Electron, Scanning Transmission
131 rdf:type schema:DefinedTerm
132 Nf5b0f6cb564340afa00b676ad7a42dbf schema:name Springer Nature - SN SciGraph project
133 rdf:type schema:Organization
134 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
135 schema:name Technology
136 rdf:type schema:DefinedTerm
137 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
138 schema:name Nanotechnology
139 rdf:type schema:DefinedTerm
140 sg:grant.3020477 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09718
141 rdf:type schema:MonetaryGrant
142 sg:grant.3049373 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09718
143 rdf:type schema:MonetaryGrant
144 sg:grant.3059967 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09718
145 rdf:type schema:MonetaryGrant
146 sg:journal.1018957 schema:issn 0090-0028
147 1476-4687
148 schema:name Nature
149 rdf:type schema:Periodical
150 sg:person.01016211463.25 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
151 schema:familyName Whitney
152 schema:givenName William S.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016211463.25
154 rdf:type schema:Person
155 sg:person.01072261371.15 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
156 schema:familyName Zhu
157 schema:givenName Ye
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072261371.15
159 rdf:type schema:Person
160 sg:person.01116652741.62 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
161 schema:familyName Levendorf
162 schema:givenName Mark P.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01116652741.62
164 rdf:type schema:Person
165 sg:person.01212115405.72 schema:affiliation https://www.grid.ac/institutes/grid.4391.f
166 schema:familyName Kevek
167 schema:givenName Joshua W.
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01212115405.72
169 rdf:type schema:Person
170 sg:person.01233101341.30 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
171 schema:familyName Huang
172 schema:givenName Pinshane Y.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233101341.30
174 rdf:type schema:Person
175 sg:person.01277202621.80 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
176 schema:familyName McEuen
177 schema:givenName Paul L.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01277202621.80
179 rdf:type schema:Person
180 sg:person.01303561153.93 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
181 schema:familyName van der Zande
182 schema:givenName Arend M.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303561153.93
184 rdf:type schema:Person
185 sg:person.01345216761.20 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
186 schema:familyName Alden
187 schema:givenName Jonathan S.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01345216761.20
189 rdf:type schema:Person
190 sg:person.01347327741.77 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
191 schema:familyName Ruiz-Vargas
192 schema:givenName Carlos S.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01347327741.77
194 rdf:type schema:Person
195 sg:person.0637416136.61 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
196 schema:familyName Garg
197 schema:givenName Shivank
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637416136.61
199 rdf:type schema:Person
200 sg:person.0651237114.21 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
201 schema:familyName Park
202 schema:givenName Jiwoong
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0651237114.21
204 rdf:type schema:Person
205 sg:person.0776327231.15 schema:affiliation https://www.grid.ac/institutes/grid.5386.8
206 schema:familyName Muller
207 schema:givenName David A.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776327231.15
209 rdf:type schema:Person
210 sg:pub.10.1038/nature02817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014928846
211 https://doi.org/10.1038/nature02817
212 rdf:type schema:CreativeWork
213 sg:pub.10.1038/nature08879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041786680
214 https://doi.org/10.1038/nature08879
215 rdf:type schema:CreativeWork
216 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
217 https://doi.org/10.1038/nmat1849
218 rdf:type schema:CreativeWork
219 sg:pub.10.1038/nmat2830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013560949
220 https://doi.org/10.1038/nmat2830
221 rdf:type schema:CreativeWork
222 sg:pub.10.1038/nnano.2007.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004701300
223 https://doi.org/10.1038/nnano.2007.141
224 rdf:type schema:CreativeWork
225 sg:pub.10.1038/nnano.2010.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022328266
226 https://doi.org/10.1038/nnano.2010.132
227 rdf:type schema:CreativeWork
228 sg:pub.10.1038/nphys1399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013935787
229 https://doi.org/10.1038/nphys1399
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1016/j.carbon.2009.10.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005766343
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1016/j.carbon.2009.11.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036857103
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1021/ja805070b schema:sameAs https://app.dimensions.ai/details/publication/pub.1049332508
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1021/nl100988r schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217925
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1021/nl101629g schema:sameAs https://app.dimensions.ai/details/publication/pub.1033851561
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1021/nl1016706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003397206
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1021/nl102713c schema:sameAs https://app.dimensions.ai/details/publication/pub.1025279814
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1021/nl102788f schema:sameAs https://app.dimensions.ai/details/publication/pub.1009825223
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1021/nl801386m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221308
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1021/nl801827v schema:sameAs https://app.dimensions.ai/details/publication/pub.1040491531
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1063/1.3047787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057899175
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1063/1.3337091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046596414
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1088/0953-8984/17/45/024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026186362
256 rdf:type schema:CreativeWork
257 https://doi.org/10.1103/physrevb.73.125411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051404887
258 rdf:type schema:CreativeWork
259 https://doi.org/10.1103/physrevb.79.195429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060628391
260 rdf:type schema:CreativeWork
261 https://doi.org/10.1103/physrevb.81.165447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060632463
262 rdf:type schema:CreativeWork
263 https://doi.org/10.1103/physrevb.81.195420 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033290016
264 rdf:type schema:CreativeWork
265 https://doi.org/10.1103/physrevb.82.205119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013318392
266 rdf:type schema:CreativeWork
267 https://doi.org/10.1103/physrevlett.102.046809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754729
268 rdf:type schema:CreativeWork
269 https://doi.org/10.1103/physrevlett.84.6082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035438285
270 rdf:type schema:CreativeWork
271 https://doi.org/10.1126/science.1157996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015876496
272 rdf:type schema:CreativeWork
273 https://doi.org/10.1126/science.1171245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006821145
274 rdf:type schema:CreativeWork
275 https://doi.org/10.1126/science.1196893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062462833
276 rdf:type schema:CreativeWork
277 https://www.grid.ac/institutes/grid.253294.b schema:alternateName Brigham Young University
278 schema:name Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
279 rdf:type schema:Organization
280 https://www.grid.ac/institutes/grid.4391.f schema:alternateName Oregon State University
281 schema:name Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
282 rdf:type schema:Organization
283 https://www.grid.ac/institutes/grid.5386.8 schema:alternateName Cornell University
284 schema:name Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
285 Department of Physics, Cornell University, Ithaca, New York 14853, USA
286 Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
287 School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
288 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...