Directed self-assembly of a colloidal kagome lattice View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-01

AUTHORS

Qian Chen, Sung Chul Bae, Steve Granick

ABSTRACT

A challenging goal in materials chemistry and physics is spontaneously to form intended superstructures from designed building blocks. In fields such as crystal engineering and the design of porous materials, this typically involves building blocks of organic molecules, sometimes operating together with metallic ions or clusters. The translation of such ideas to nanoparticles and colloidal-sized building blocks would potentially open doors to new materials and new properties, but the pathways to achieve this goal are still undetermined. Here we show how colloidal spheres can be induced to self-assemble into a complex predetermined colloidal crystal-in this case a colloidal kagome lattice-through decoration of their surfaces with a simple pattern of hydrophobic domains. The building blocks are simple micrometre-sized spheres with interactions (electrostatic repulsion in the middle, hydrophobic attraction at the poles, which we call 'triblock Janus') that are also simple, but the self-assembly of the spheres into an open kagome structure contrasts with previously known close-packed periodic arrangements of spheres. This open network is of interest for several theoretical reasons. With a view to possible enhanced functionality, the resulting lattice structure possesses two families of pores, one that is hydrophobic on the rims of the pores and another that is hydrophilic. This strategy of 'convergent' self-assembly from easily fabricated colloidal building blocks encodes the target supracolloidal architecture, not in localized attractive spots but instead in large redundantly attractive regions, and can be extended to form other supracolloidal networks. More... »

PAGES

381

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09713

DOI

http://dx.doi.org/10.1038/nature09713

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025657982

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/21248847


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Qian", 
        "id": "sg:person.0725775051.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725775051.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bae", 
        "givenName": "Sung Chul", 
        "id": "sg:person.011576570012.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011576570012.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Illinois at Urbana Champaign", 
          "id": "https://www.grid.ac/institutes/grid.35403.31", 
          "name": [
            "Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA", 
            "Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA", 
            "Department of Physics, University of Illinois, Urbana, Illinois 61801, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Granick", 
        "givenName": "Steve", 
        "id": "sg:person.01042553250.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042553250.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature06560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006800579", 
          "https://doi.org/10.1038/nature06560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200802957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007483321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013073750", 
          "https://doi.org/10.1038/nmat1949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014530345", 
          "https://doi.org/10.1038/nature01328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014530345", 
          "https://doi.org/10.1038/nature01328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602302", 
          "https://doi.org/10.1038/nature04414"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017985578", 
          "https://doi.org/10.1038/nmat740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017985578", 
          "https://doi.org/10.1038/nmat740"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la7030818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020713143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la7030818", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020713143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/anie.200700534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021264516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/10/104105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023265879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/10/104105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023265879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416811a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023939497", 
          "https://doi.org/10.1038/416811a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/416811a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023939497", 
          "https://doi.org/10.1038/416811a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027719504", 
          "https://doi.org/10.1038/nature01650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027719504", 
          "https://doi.org/10.1038/nature01650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1058457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028221946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1188605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029181588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1188605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029181588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/31/15/010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029505103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b910593j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032289418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b910593j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032289418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035352969", 
          "https://doi.org/10.1038/nmat2496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035352969", 
          "https://doi.org/10.1038/nmat2496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1189457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035695707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1189457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035695707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.205503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039758507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.205503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039758507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3415490", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048679251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048812165", 
          "https://doi.org/10.1038/nchem.517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048812165", 
          "https://doi.org/10.1038/nchem.517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051955834", 
          "https://doi.org/10.1038/nature06508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.200300002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053539258"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm9031946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055417732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm9031946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055417732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8028119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055858433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja8028119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055858433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la703005z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056161922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la703005z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056161922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.018101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.018101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.248305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.248305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757123"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-01", 
    "datePublishedReg": "2011-01-01", 
    "description": "A challenging goal in materials chemistry and physics is spontaneously to form intended superstructures from designed building blocks. In fields such as crystal engineering and the design of porous materials, this typically involves building blocks of organic molecules, sometimes operating together with metallic ions or clusters. The translation of such ideas to nanoparticles and colloidal-sized building blocks would potentially open doors to new materials and new properties, but the pathways to achieve this goal are still undetermined. Here we show how colloidal spheres can be induced to self-assemble into a complex predetermined colloidal crystal-in this case a colloidal kagome lattice-through decoration of their surfaces with a simple pattern of hydrophobic domains. The building blocks are simple micrometre-sized spheres with interactions (electrostatic repulsion in the middle, hydrophobic attraction at the poles, which we call 'triblock Janus') that are also simple, but the self-assembly of the spheres into an open kagome structure contrasts with previously known close-packed periodic arrangements of spheres. This open network is of interest for several theoretical reasons. With a view to possible enhanced functionality, the resulting lattice structure possesses two families of pores, one that is hydrophobic on the rims of the pores and another that is hydrophilic. This strategy of 'convergent' self-assembly from easily fabricated colloidal building blocks encodes the target supracolloidal architecture, not in localized attractive spots but instead in large redundantly attractive regions, and can be extended to form other supracolloidal networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09713", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4319740", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3097264", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7330", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "469"
      }
    ], 
    "name": "Directed self-assembly of a colloidal kagome lattice", 
    "pagination": "381", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7a3c3b401c5f9089d7870f675a26a13cb1253ab3764a6b58a8f7df6f5e8b2df4"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "21248847"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09713"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025657982"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09713", 
      "https://app.dimensions.ai/details/publication/pub.1025657982"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000434.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09713"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09713'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09713'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09713'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09713'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      56 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09713 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N1c4aca91de6a427ebf5af44fe6648a05
4 schema:citation sg:pub.10.1038/416811a
5 sg:pub.10.1038/nature01328
6 sg:pub.10.1038/nature01650
7 sg:pub.10.1038/nature04414
8 sg:pub.10.1038/nature06508
9 sg:pub.10.1038/nature06560
10 sg:pub.10.1038/nchem.517
11 sg:pub.10.1038/nmat1949
12 sg:pub.10.1038/nmat2496
13 sg:pub.10.1038/nmat740
14 https://doi.org/10.1002/adfm.200300002
15 https://doi.org/10.1002/anie.200700534
16 https://doi.org/10.1002/anie.200802957
17 https://doi.org/10.1021/cm9031946
18 https://doi.org/10.1021/ja8028119
19 https://doi.org/10.1021/la703005z
20 https://doi.org/10.1021/la7030818
21 https://doi.org/10.1039/b910593j
22 https://doi.org/10.1063/1.3415490
23 https://doi.org/10.1088/0305-4470/31/15/010
24 https://doi.org/10.1088/0953-8984/22/10/104105
25 https://doi.org/10.1103/physrevlett.103.018101
26 https://doi.org/10.1103/physrevlett.103.205503
27 https://doi.org/10.1103/physrevlett.104.248305
28 https://doi.org/10.1126/science.1058457
29 https://doi.org/10.1126/science.1188605
30 https://doi.org/10.1126/science.1189457
31 schema:datePublished 2011-01
32 schema:datePublishedReg 2011-01-01
33 schema:description A challenging goal in materials chemistry and physics is spontaneously to form intended superstructures from designed building blocks. In fields such as crystal engineering and the design of porous materials, this typically involves building blocks of organic molecules, sometimes operating together with metallic ions or clusters. The translation of such ideas to nanoparticles and colloidal-sized building blocks would potentially open doors to new materials and new properties, but the pathways to achieve this goal are still undetermined. Here we show how colloidal spheres can be induced to self-assemble into a complex predetermined colloidal crystal-in this case a colloidal kagome lattice-through decoration of their surfaces with a simple pattern of hydrophobic domains. The building blocks are simple micrometre-sized spheres with interactions (electrostatic repulsion in the middle, hydrophobic attraction at the poles, which we call 'triblock Janus') that are also simple, but the self-assembly of the spheres into an open kagome structure contrasts with previously known close-packed periodic arrangements of spheres. This open network is of interest for several theoretical reasons. With a view to possible enhanced functionality, the resulting lattice structure possesses two families of pores, one that is hydrophobic on the rims of the pores and another that is hydrophilic. This strategy of 'convergent' self-assembly from easily fabricated colloidal building blocks encodes the target supracolloidal architecture, not in localized attractive spots but instead in large redundantly attractive regions, and can be extended to form other supracolloidal networks.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N8881e5d693094aa09e5058a05b9f84cc
38 Nd5f7e5f8360043758be32d9c35d7e95f
39 sg:journal.1018957
40 schema:name Directed self-assembly of a colloidal kagome lattice
41 schema:pagination 381
42 schema:productId N12e5a0827fe04bc4af97873b5818be4c
43 N82618d1c33564c99b43739b77cbe6080
44 N96f19089030f43feb5d5d04535462e21
45 Nbdcda974713848048693517438542145
46 Nbedbd60674074b9cbb3759c3cfb4d2cd
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025657982
48 https://doi.org/10.1038/nature09713
49 schema:sdDatePublished 2019-04-10T15:39
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N76742429c0f44427bba9c10660041fdf
52 schema:url https://www.nature.com/articles/nature09713
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N12e5a0827fe04bc4af97873b5818be4c schema:name doi
57 schema:value 10.1038/nature09713
58 rdf:type schema:PropertyValue
59 N1c4aca91de6a427ebf5af44fe6648a05 rdf:first sg:person.0725775051.36
60 rdf:rest N4e27c316db24489f8e95a11bab5621f0
61 N4e27c316db24489f8e95a11bab5621f0 rdf:first sg:person.011576570012.06
62 rdf:rest Nab0e5e745eb54de4a18bf772d6b8f777
63 N76742429c0f44427bba9c10660041fdf schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N82618d1c33564c99b43739b77cbe6080 schema:name nlm_unique_id
66 schema:value 0410462
67 rdf:type schema:PropertyValue
68 N8881e5d693094aa09e5058a05b9f84cc schema:volumeNumber 469
69 rdf:type schema:PublicationVolume
70 N96f19089030f43feb5d5d04535462e21 schema:name dimensions_id
71 schema:value pub.1025657982
72 rdf:type schema:PropertyValue
73 Nab0e5e745eb54de4a18bf772d6b8f777 rdf:first sg:person.01042553250.50
74 rdf:rest rdf:nil
75 Nbdcda974713848048693517438542145 schema:name readcube_id
76 schema:value 7a3c3b401c5f9089d7870f675a26a13cb1253ab3764a6b58a8f7df6f5e8b2df4
77 rdf:type schema:PropertyValue
78 Nbedbd60674074b9cbb3759c3cfb4d2cd schema:name pubmed_id
79 schema:value 21248847
80 rdf:type schema:PropertyValue
81 Nd5f7e5f8360043758be32d9c35d7e95f schema:issueNumber 7330
82 rdf:type schema:PublicationIssue
83 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
84 schema:name Chemical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
87 schema:name Physical Chemistry (incl. Structural)
88 rdf:type schema:DefinedTerm
89 sg:grant.3097264 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09713
90 rdf:type schema:MonetaryGrant
91 sg:grant.4319740 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09713
92 rdf:type schema:MonetaryGrant
93 sg:journal.1018957 schema:issn 0090-0028
94 1476-4687
95 schema:name Nature
96 rdf:type schema:Periodical
97 sg:person.01042553250.50 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
98 schema:familyName Granick
99 schema:givenName Steve
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042553250.50
101 rdf:type schema:Person
102 sg:person.011576570012.06 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
103 schema:familyName Bae
104 schema:givenName Sung Chul
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011576570012.06
106 rdf:type schema:Person
107 sg:person.0725775051.36 schema:affiliation https://www.grid.ac/institutes/grid.35403.31
108 schema:familyName Chen
109 schema:givenName Qian
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725775051.36
111 rdf:type schema:Person
112 sg:pub.10.1038/416811a schema:sameAs https://app.dimensions.ai/details/publication/pub.1023939497
113 https://doi.org/10.1038/416811a
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/nature01328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014530345
116 https://doi.org/10.1038/nature01328
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/nature01650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027719504
119 https://doi.org/10.1038/nature01650
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/nature04414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017602302
122 https://doi.org/10.1038/nature04414
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nature06508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051955834
125 https://doi.org/10.1038/nature06508
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nature06560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006800579
128 https://doi.org/10.1038/nature06560
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nchem.517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048812165
131 https://doi.org/10.1038/nchem.517
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/nmat1949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013073750
134 https://doi.org/10.1038/nmat1949
135 rdf:type schema:CreativeWork
136 sg:pub.10.1038/nmat2496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035352969
137 https://doi.org/10.1038/nmat2496
138 rdf:type schema:CreativeWork
139 sg:pub.10.1038/nmat740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017985578
140 https://doi.org/10.1038/nmat740
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1002/adfm.200300002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053539258
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1002/anie.200700534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021264516
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1002/anie.200802957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007483321
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/cm9031946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055417732
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/ja8028119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055858433
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/la703005z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056161922
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/la7030818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020713143
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1039/b910593j schema:sameAs https://app.dimensions.ai/details/publication/pub.1032289418
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1063/1.3415490 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048679251
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1088/0305-4470/31/15/010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029505103
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1088/0953-8984/22/10/104105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023265879
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1103/physrevlett.103.018101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755633
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1103/physrevlett.103.205503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039758507
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1103/physrevlett.104.248305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757123
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1126/science.1058457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028221946
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1126/science.1188605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029181588
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1126/science.1189457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035695707
175 rdf:type schema:CreativeWork
176 https://www.grid.ac/institutes/grid.35403.31 schema:alternateName University of Illinois at Urbana Champaign
177 schema:name Department of Chemistry, University of Illinois, Urbana, Illinois 61801, USA
178 Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, USA
179 Department of Physics, University of Illinois, Urbana, Illinois 61801, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...