Water and its influence on the lithosphere–asthenosphere boundary View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

David H. Green, William O. Hibberson, István Kovács, Anja Rosenthal

ABSTRACT

The Earth has distinctive convective behaviour, described by the plate tectonics model, in which lateral motion of the oceanic lithosphere of basaltic crust and peridotitic uppermost mantle is decoupled from the underlying mechanically weaker upper mantle (asthenosphere). The reason for differentiation at the lithosphere-asthenosphere boundary is currently being debated with relevant observations from geophysics (including seismology) and geochemistry (including experimental petrology). Water is thought to have an important effect on mantle rheology, either by weakening the crystal structure of olivine and pyroxenes by dilute solid solution, or by causing low-temperature partial melting. Here we present a novel experimental approach to clarify the role of water in the uppermost mantle at pressures up to 6 GPa, equivalent to a depth of 190 km. We found that for lherzolite in which a water-rich vapour is present, the temperature at which a silicate melt first appears (the vapour-saturated solidus) increases from a minimum of 970 °C at 1.5 GPa to 1,350 °C at 6 GPa. We have measured the water content in lherzolite to be approximately 180 parts per million, retained in nominally anhydrous minerals at 2.5 and 4 GPa at temperatures above and below the vapour-saturated solidus. The hydrous mineral pargasite is the main water-storage site in the uppermost mantle, and the instability of pargasite at pressures greater than 3 GPa (equivalent to more than about 90 km depth) causes a sharp drop in both the water-storage capacity and the solidus temperature of fertile upper-mantle lherzolite. The presence of interstitial melt in mantle with more than 180 parts per million of water at pressures greater than 3 GPa alters mantle rheology and defines the lithosphere-asthenosphere boundary. Modern asthenospheric mantle acting as the source for mid-oceanic ridge basalts has a water content of 50-200 parts per million (refs 3-5). We show that this matches the water content of residual nominally anhydrous minerals after incipient melting of lherzolite at the vapour-saturated solidus at high pressure. More... »

PAGES

448

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09369

DOI

http://dx.doi.org/10.1038/nature09369

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052557484

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20865000


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Australian National University", 
          "id": "https://www.grid.ac/institutes/grid.1001.0", 
          "name": [
            "School of Earth Sciences and Centre for Ore Deposit Studies, University of Tasmania, Hobart 7001, Tasmania, Australia", 
            "Research School of Earth Sciences, The Australian National University, Mills Road, Canberra, Australian Capital Territory 0200, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Green", 
        "givenName": "David H.", 
        "id": "sg:person.0675047632.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675047632.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Australian National University", 
          "id": "https://www.grid.ac/institutes/grid.1001.0", 
          "name": [
            "Research School of Earth Sciences, The Australian National University, Mills Road, Canberra, Australian Capital Territory 0200, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hibberson", 
        "givenName": "William O.", 
        "id": "sg:person.07740422034.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07740422034.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Australian National University", 
          "id": "https://www.grid.ac/institutes/grid.1001.0", 
          "name": [
            "Research School of Earth Sciences, The Australian National University, Mills Road, Canberra, Australian Capital Territory 0200, Australia", 
            "Department of Data Management, E\u00f6tv\u00f6s Lor\u00e1nd Geophysical Institute of Hungary, Columbus utca 17\u201323, H-1145 Budapest, Hungary"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kov\u00e1cs", 
        "givenName": "Istv\u00e1n", 
        "id": "sg:person.01074163346.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074163346.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Australian National University", 
          "id": "https://www.grid.ac/institutes/grid.1001.0", 
          "name": [
            "Research School of Earth Sciences, The Australian National University, Mills Road, Canberra, Australian Capital Territory 0200, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rosenthal", 
        "givenName": "Anja", 
        "id": "sg:person.0774550210.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550210.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0031-9201(01)00208-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001452349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jb004125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001487107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/petrology/41.8.1329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004668413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.1971.0022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010477811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gca.2006.06.894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013846834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsl.2006.06.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014506019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(96)00154-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016083480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.chemgeo.2008.12.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020537198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003gc000568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024714249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.earth.34.031405.125211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026669401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35073556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026835534", 
          "https://doi.org/10.1038/35073556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35073556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026835534", 
          "https://doi.org/10.1038/35073556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00374364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027889250", 
          "https://doi.org/10.1007/bf00374364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(95)00203-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028083136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0016-7606(1949)60[439:tsm]2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031196961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s004100050495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036541515", 
          "https://doi.org/10.1007/s004100050495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1130/0091-7613(1975)3<11:edoteo>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039234516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(73)90176-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039770702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(73)90176-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039770702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tecto.2005.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040347510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2001jb000679", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041844112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.epsl.2005.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047553906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(73)90214-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048290905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0012-821x(73)90214-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048290905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/petrology/29.3.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049728343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.lithos.2008.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050755140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006jb004586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052467338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2138/am.2008.2656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053366908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/628007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058823789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/649737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058840263"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2138/am-1995-5-607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069055272"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "The Earth has distinctive convective behaviour, described by the plate tectonics model, in which lateral motion of the oceanic lithosphere of basaltic crust and peridotitic uppermost mantle is decoupled from the underlying mechanically weaker upper mantle (asthenosphere). The reason for differentiation at the lithosphere-asthenosphere boundary is currently being debated with relevant observations from geophysics (including seismology) and geochemistry (including experimental petrology). Water is thought to have an important effect on mantle rheology, either by weakening the crystal structure of olivine and pyroxenes by dilute solid solution, or by causing low-temperature partial melting. Here we present a novel experimental approach to clarify the role of water in the uppermost mantle at pressures up to 6\u2009GPa, equivalent to a depth of 190\u2009km. We found that for lherzolite in which a water-rich vapour is present, the temperature at which a silicate melt first appears (the vapour-saturated solidus) increases from a minimum of 970\u2009\u00b0C at 1.5\u2009GPa to 1,350\u2009\u00b0C at 6\u2009GPa. We have measured the water content in lherzolite to be approximately 180\u2009parts per million, retained in nominally anhydrous minerals at 2.5 and 4\u2009GPa at temperatures above and below the vapour-saturated solidus. The hydrous mineral pargasite is the main water-storage site in the uppermost mantle, and the instability of pargasite at pressures greater than 3\u2009GPa (equivalent to more than about 90\u2009km depth) causes a sharp drop in both the water-storage capacity and the solidus temperature of fertile upper-mantle lherzolite. The presence of interstitial melt in mantle with more than 180\u2009parts per million of water at pressures greater than 3\u2009GPa alters mantle rheology and defines the lithosphere-asthenosphere boundary. Modern asthenospheric mantle acting as the source for mid-oceanic ridge basalts has a water content of 50-200\u2009parts per million (refs 3-5). We show that this matches the water content of residual nominally anhydrous minerals after incipient melting of lherzolite at the vapour-saturated solidus at high pressure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09369", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3774610", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7314", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "467"
      }
    ], 
    "name": "Water and its influence on the lithosphere\u2013asthenosphere boundary", 
    "pagination": "448", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa5939ca764fe326320c02a6136bb655d8e10734bbf1f56331243687d1bc53d9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20865000"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09369"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052557484"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09369", 
      "https://app.dimensions.ai/details/publication/pub.1052557484"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000351_0000000351/records_43252_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09369"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09369'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09369'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09369'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09369'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09369 schema:about anzsrc-for:04
2 anzsrc-for:0403
3 schema:author N47d9a7bcf473442c8bfae49272bb2bf6
4 schema:citation sg:pub.10.1007/bf00374364
5 sg:pub.10.1007/s004100050495
6 sg:pub.10.1038/35073556
7 https://doi.org/10.1016/0012-821x(73)90176-3
8 https://doi.org/10.1016/0012-821x(73)90214-8
9 https://doi.org/10.1016/0012-821x(95)00203-o
10 https://doi.org/10.1016/0012-821x(96)00154-9
11 https://doi.org/10.1016/j.chemgeo.2008.12.006
12 https://doi.org/10.1016/j.epsl.2005.06.018
13 https://doi.org/10.1016/j.epsl.2006.06.043
14 https://doi.org/10.1016/j.gca.2006.06.894
15 https://doi.org/10.1016/j.lithos.2008.09.015
16 https://doi.org/10.1016/j.tecto.2005.11.021
17 https://doi.org/10.1016/s0031-9201(01)00208-4
18 https://doi.org/10.1029/2001jb000679
19 https://doi.org/10.1029/2003gc000568
20 https://doi.org/10.1029/2005jb004125
21 https://doi.org/10.1029/2006jb004586
22 https://doi.org/10.1086/628007
23 https://doi.org/10.1086/649737
24 https://doi.org/10.1093/petrology/29.3.625
25 https://doi.org/10.1093/petrology/41.8.1329
26 https://doi.org/10.1098/rsta.1971.0022
27 https://doi.org/10.1130/0016-7606(1949)60[439:tsm]2.0.co;2
28 https://doi.org/10.1130/0091-7613(1975)3<11:edoteo>2.0.co;2
29 https://doi.org/10.1146/annurev.earth.34.031405.125211
30 https://doi.org/10.2138/am-1995-5-607
31 https://doi.org/10.2138/am.2008.2656
32 schema:datePublished 2010-09
33 schema:datePublishedReg 2010-09-01
34 schema:description The Earth has distinctive convective behaviour, described by the plate tectonics model, in which lateral motion of the oceanic lithosphere of basaltic crust and peridotitic uppermost mantle is decoupled from the underlying mechanically weaker upper mantle (asthenosphere). The reason for differentiation at the lithosphere-asthenosphere boundary is currently being debated with relevant observations from geophysics (including seismology) and geochemistry (including experimental petrology). Water is thought to have an important effect on mantle rheology, either by weakening the crystal structure of olivine and pyroxenes by dilute solid solution, or by causing low-temperature partial melting. Here we present a novel experimental approach to clarify the role of water in the uppermost mantle at pressures up to 6 GPa, equivalent to a depth of 190 km. We found that for lherzolite in which a water-rich vapour is present, the temperature at which a silicate melt first appears (the vapour-saturated solidus) increases from a minimum of 970 °C at 1.5 GPa to 1,350 °C at 6 GPa. We have measured the water content in lherzolite to be approximately 180 parts per million, retained in nominally anhydrous minerals at 2.5 and 4 GPa at temperatures above and below the vapour-saturated solidus. The hydrous mineral pargasite is the main water-storage site in the uppermost mantle, and the instability of pargasite at pressures greater than 3 GPa (equivalent to more than about 90 km depth) causes a sharp drop in both the water-storage capacity and the solidus temperature of fertile upper-mantle lherzolite. The presence of interstitial melt in mantle with more than 180 parts per million of water at pressures greater than 3 GPa alters mantle rheology and defines the lithosphere-asthenosphere boundary. Modern asthenospheric mantle acting as the source for mid-oceanic ridge basalts has a water content of 50-200 parts per million (refs 3-5). We show that this matches the water content of residual nominally anhydrous minerals after incipient melting of lherzolite at the vapour-saturated solidus at high pressure.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N205ef5c6c3a349ebbf81ad797fe5c4d3
39 N48082aac98214ee98f7b8c3cf921e148
40 sg:journal.1018957
41 schema:name Water and its influence on the lithosphere–asthenosphere boundary
42 schema:pagination 448
43 schema:productId N32dab5897d7f4069938ae555d4f4ea0a
44 N6aa231b0493640ad86cc9427918754b2
45 N88623fabc8c94e32891b431f735b3b9b
46 N9c0b87e28cbb46a28a50fdeb805c195f
47 N9ca65d19f3694602bacb4dc2e26f1468
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052557484
49 https://doi.org/10.1038/nature09369
50 schema:sdDatePublished 2019-04-11T10:54
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N3b08d5f52f934b518ea697b070905499
53 schema:url https://www.nature.com/articles/nature09369
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N205ef5c6c3a349ebbf81ad797fe5c4d3 schema:issueNumber 7314
58 rdf:type schema:PublicationIssue
59 N32dab5897d7f4069938ae555d4f4ea0a schema:name pubmed_id
60 schema:value 20865000
61 rdf:type schema:PropertyValue
62 N353e7c731637433693661fe4642f0717 rdf:first sg:person.07740422034.52
63 rdf:rest Nc5274e3ccb584d39a13affee91ea0ee1
64 N3b08d5f52f934b518ea697b070905499 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N47d9a7bcf473442c8bfae49272bb2bf6 rdf:first sg:person.0675047632.40
67 rdf:rest N353e7c731637433693661fe4642f0717
68 N48082aac98214ee98f7b8c3cf921e148 schema:volumeNumber 467
69 rdf:type schema:PublicationVolume
70 N6aa231b0493640ad86cc9427918754b2 schema:name dimensions_id
71 schema:value pub.1052557484
72 rdf:type schema:PropertyValue
73 N88623fabc8c94e32891b431f735b3b9b schema:name readcube_id
74 schema:value fa5939ca764fe326320c02a6136bb655d8e10734bbf1f56331243687d1bc53d9
75 rdf:type schema:PropertyValue
76 N9c0b87e28cbb46a28a50fdeb805c195f schema:name nlm_unique_id
77 schema:value 0410462
78 rdf:type schema:PropertyValue
79 N9ca65d19f3694602bacb4dc2e26f1468 schema:name doi
80 schema:value 10.1038/nature09369
81 rdf:type schema:PropertyValue
82 Nc5274e3ccb584d39a13affee91ea0ee1 rdf:first sg:person.01074163346.37
83 rdf:rest Ncf08ba5bb7fa480683e6529c4f86b0a9
84 Ncf08ba5bb7fa480683e6529c4f86b0a9 rdf:first sg:person.0774550210.17
85 rdf:rest rdf:nil
86 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
87 schema:name Earth Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
90 schema:name Geology
91 rdf:type schema:DefinedTerm
92 sg:grant.3774610 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09369
93 rdf:type schema:MonetaryGrant
94 sg:journal.1018957 schema:issn 0090-0028
95 1476-4687
96 schema:name Nature
97 rdf:type schema:Periodical
98 sg:person.01074163346.37 schema:affiliation https://www.grid.ac/institutes/grid.1001.0
99 schema:familyName Kovács
100 schema:givenName István
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01074163346.37
102 rdf:type schema:Person
103 sg:person.0675047632.40 schema:affiliation https://www.grid.ac/institutes/grid.1001.0
104 schema:familyName Green
105 schema:givenName David H.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675047632.40
107 rdf:type schema:Person
108 sg:person.07740422034.52 schema:affiliation https://www.grid.ac/institutes/grid.1001.0
109 schema:familyName Hibberson
110 schema:givenName William O.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07740422034.52
112 rdf:type schema:Person
113 sg:person.0774550210.17 schema:affiliation https://www.grid.ac/institutes/grid.1001.0
114 schema:familyName Rosenthal
115 schema:givenName Anja
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0774550210.17
117 rdf:type schema:Person
118 sg:pub.10.1007/bf00374364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027889250
119 https://doi.org/10.1007/bf00374364
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s004100050495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036541515
122 https://doi.org/10.1007/s004100050495
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/35073556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026835534
125 https://doi.org/10.1038/35073556
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/0012-821x(73)90176-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039770702
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/0012-821x(73)90214-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048290905
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0012-821x(95)00203-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1028083136
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/0012-821x(96)00154-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016083480
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.chemgeo.2008.12.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020537198
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.epsl.2005.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047553906
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.epsl.2006.06.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014506019
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.gca.2006.06.894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013846834
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.lithos.2008.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050755140
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.tecto.2005.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040347510
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/s0031-9201(01)00208-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001452349
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1029/2001jb000679 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041844112
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1029/2003gc000568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024714249
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1029/2005jb004125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001487107
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1029/2006jb004586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052467338
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1086/628007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058823789
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1086/649737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058840263
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1093/petrology/29.3.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049728343
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1093/petrology/41.8.1329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004668413
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1098/rsta.1971.0022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010477811
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1130/0016-7606(1949)60[439:tsm]2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031196961
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1130/0091-7613(1975)3<11:edoteo>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039234516
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1146/annurev.earth.34.031405.125211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026669401
172 rdf:type schema:CreativeWork
173 https://doi.org/10.2138/am-1995-5-607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069055272
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2138/am.2008.2656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053366908
176 rdf:type schema:CreativeWork
177 https://www.grid.ac/institutes/grid.1001.0 schema:alternateName Australian National University
178 schema:name Department of Data Management, Eötvös Loránd Geophysical Institute of Hungary, Columbus utca 17–23, H-1145 Budapest, Hungary
179 Research School of Earth Sciences, The Australian National University, Mills Road, Canberra, Australian Capital Territory 0200, Australia
180 School of Earth Sciences and Centre for Ore Deposit Studies, University of Tasmania, Hobart 7001, Tasmania, Australia
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...