Bacterial charity work leads to population-wide resistance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-09

AUTHORS

Henry H. Lee, Michael N. Molla, Charles R. Cantor, James J. Collins

ABSTRACT

Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments. More... »

PAGES

82

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09354

DOI

http://dx.doi.org/10.1038/nature09354

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025588858

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20811456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Bacterial Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Indoles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Sensitivity Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Viability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Norfloxacin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA", 
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Henry H.", 
        "id": "sg:person.0705257563.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705257563.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA", 
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molla", 
        "givenName": "Michael N.", 
        "id": "sg:person.01356603346.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356603346.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cantor", 
        "givenName": "Charles R.", 
        "id": "sg:person.01370465677.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370465677.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA", 
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA", 
            "Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "James J.", 
        "id": "sg:person.0633456602.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633456602.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004277286", 
          "https://doi.org/10.1038/ng1906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004277286", 
          "https://doi.org/10.1038/ng1906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007788508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007788508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.2007.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010932712", 
          "https://doi.org/10.1038/nchembio.2007.27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012041215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012041215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0570369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014871162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0570369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014871162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-7-42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015160760", 
          "https://doi.org/10.1186/1471-2180-7-42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-0691.2006.01492.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015423343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)80312-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016055951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.38.8.1773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016942897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.00475-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017642168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2004.04449.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020880594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2007.06.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021664271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/344654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021923223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2009.00204.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026403576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1082240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026408774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.50.1.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027757826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030203221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031974053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.00039-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036931630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.45.5.1515-1521.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040966658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2008.09.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041251573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tim.2009.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990604", 
          "https://doi.org/10.1038/nrmicro1461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990604", 
          "https://doi.org/10.1038/nrmicro1461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2010.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045834913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00217-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047576176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051874367", 
          "https://doi.org/10.1038/nmeth805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051874367", 
          "https://doi.org/10.1038/nmeth805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925719", 
          "https://doi.org/10.1038/nature07517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082926605", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083250216", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.43.1.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083368577"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09354", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3066162", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2355067", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7311", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "467"
      }
    ], 
    "name": "Bacterial charity work leads to population-wide resistance", 
    "pagination": "82", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79e8368c45dafa518571b0142ef0c97761b394e8c0bfb183eecb971663b55890"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20811456"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09354"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025588858"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09354", 
      "https://app.dimensions.ai/details/publication/pub.1025588858"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77567_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09354"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09354'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09354'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09354'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09354'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      69 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09354 schema:about N0efff3218742458f9fe204ad38a6dbb3
2 N2266d9cc03e843af8e2abeb958bec3c7
3 N2bb719ae0a024473a2012c8a0895d3f4
4 N648bde72cbdb40d28067ab9660a2b9b0
5 N7188e9cbfb6d47868424027ee73a4a3a
6 N744bd09807854012bb9ce92fd60bf9fb
7 N76fa893cf9394c188efae71437c05b1e
8 Nae2a882e2a7045f1a688dd4b3a1e168a
9 Ne9d85a8338674a16aa0e6a938f267ae1
10 Nefcf7636e525477fb82c72054d1d470a
11 anzsrc-for:06
12 anzsrc-for:0605
13 schema:author N7c9218b98d14406ba44000adda1716d2
14 schema:citation sg:pub.10.1038/nature07517
15 sg:pub.10.1038/nchembio.2007.27
16 sg:pub.10.1038/ng1906
17 sg:pub.10.1038/nmeth805
18 sg:pub.10.1038/nrmicro1461
19 sg:pub.10.1186/1471-2180-7-42
20 https://app.dimensions.ai/details/publication/pub.1082926605
21 https://app.dimensions.ai/details/publication/pub.1083250216
22 https://doi.org/10.1016/j.cell.2007.06.049
23 https://doi.org/10.1016/j.cell.2008.09.038
24 https://doi.org/10.1016/j.molcel.2010.01.003
25 https://doi.org/10.1016/j.tim.2009.12.009
26 https://doi.org/10.1016/s0092-8674(00)80312-8
27 https://doi.org/10.1038/msb4100050
28 https://doi.org/10.1038/msb4100135
29 https://doi.org/10.1042/bj0570369
30 https://doi.org/10.1086/344654
31 https://doi.org/10.1093/bioinformatics/btm478
32 https://doi.org/10.1111/j.1365-2958.2004.04449.x
33 https://doi.org/10.1111/j.1469-0691.2006.01492.x
34 https://doi.org/10.1111/j.1574-6976.2009.00204.x
35 https://doi.org/10.1126/science.1082240
36 https://doi.org/10.1128/aac.00039-06
37 https://doi.org/10.1128/aac.00475-08
38 https://doi.org/10.1128/aac.38.8.1773
39 https://doi.org/10.1128/aac.43.1.62
40 https://doi.org/10.1128/aac.45.5.1515-1521.2001
41 https://doi.org/10.1128/jb.00217-06
42 https://doi.org/10.1146/annurev.micro.50.1.625
43 https://doi.org/10.1371/journal.pone.0005043
44 schema:datePublished 2010-09
45 schema:datePublishedReg 2010-09-01
46 schema:description Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N2e10dde270554edfa99b74f6047524b2
51 N7b576af8aebb4e08a791013c48f5e441
52 sg:journal.1018957
53 schema:name Bacterial charity work leads to population-wide resistance
54 schema:pagination 82
55 schema:productId N0816c9c6514d4fe68720ec5e7666e064
56 N5229df300ce24c38b450bcb19acfa9f1
57 N5ca367d4409c4705b1ee50f24cd6e732
58 N612daf97c5ef471cb344cb655c3614f9
59 N73b9f29816914a6f969e6a03f1f64776
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025588858
61 https://doi.org/10.1038/nature09354
62 schema:sdDatePublished 2019-04-11T10:49
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Ndbf15ab7311540908d64a908c419ddc7
65 schema:url https://www.nature.com/articles/nature09354
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N07afe7f4975e4302b9d26c231c3d2669 rdf:first sg:person.01370465677.06
70 rdf:rest N393ca7ff307940399a7d45a51531d6e6
71 N0816c9c6514d4fe68720ec5e7666e064 schema:name readcube_id
72 schema:value 79e8368c45dafa518571b0142ef0c97761b394e8c0bfb183eecb971663b55890
73 rdf:type schema:PropertyValue
74 N0efff3218742458f9fe204ad38a6dbb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
75 schema:name Norfloxacin
76 rdf:type schema:DefinedTerm
77 N2266d9cc03e843af8e2abeb958bec3c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
78 schema:name Escherichia coli
79 rdf:type schema:DefinedTerm
80 N2bb719ae0a024473a2012c8a0895d3f4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
81 schema:name Anti-Bacterial Agents
82 rdf:type schema:DefinedTerm
83 N2e10dde270554edfa99b74f6047524b2 schema:issueNumber 7311
84 rdf:type schema:PublicationIssue
85 N393ca7ff307940399a7d45a51531d6e6 rdf:first sg:person.0633456602.93
86 rdf:rest rdf:nil
87 N5229df300ce24c38b450bcb19acfa9f1 schema:name pubmed_id
88 schema:value 20811456
89 rdf:type schema:PropertyValue
90 N5ca367d4409c4705b1ee50f24cd6e732 schema:name doi
91 schema:value 10.1038/nature09354
92 rdf:type schema:PropertyValue
93 N612daf97c5ef471cb344cb655c3614f9 schema:name nlm_unique_id
94 schema:value 0410462
95 rdf:type schema:PropertyValue
96 N648bde72cbdb40d28067ab9660a2b9b0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Gene Expression Profiling
98 rdf:type schema:DefinedTerm
99 N7188e9cbfb6d47868424027ee73a4a3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Indoles
101 rdf:type schema:DefinedTerm
102 N73b9f29816914a6f969e6a03f1f64776 schema:name dimensions_id
103 schema:value pub.1025588858
104 rdf:type schema:PropertyValue
105 N744bd09807854012bb9ce92fd60bf9fb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Microbial Viability
107 rdf:type schema:DefinedTerm
108 N76fa893cf9394c188efae71437c05b1e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Drug Resistance, Bacterial
110 rdf:type schema:DefinedTerm
111 N7b576af8aebb4e08a791013c48f5e441 schema:volumeNumber 467
112 rdf:type schema:PublicationVolume
113 N7c9218b98d14406ba44000adda1716d2 rdf:first sg:person.0705257563.52
114 rdf:rest N862e8421dec64e9ca6041fde016a7355
115 N862e8421dec64e9ca6041fde016a7355 rdf:first sg:person.01356603346.24
116 rdf:rest N07afe7f4975e4302b9d26c231c3d2669
117 Nae2a882e2a7045f1a688dd4b3a1e168a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Microbial Sensitivity Tests
119 rdf:type schema:DefinedTerm
120 Ndbf15ab7311540908d64a908c419ddc7 schema:name Springer Nature - SN SciGraph project
121 rdf:type schema:Organization
122 Ne9d85a8338674a16aa0e6a938f267ae1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Genome, Bacterial
124 rdf:type schema:DefinedTerm
125 Nefcf7636e525477fb82c72054d1d470a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Mutation
127 rdf:type schema:DefinedTerm
128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
129 schema:name Biological Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
132 schema:name Microbiology
133 rdf:type schema:DefinedTerm
134 sg:grant.2355067 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09354
135 rdf:type schema:MonetaryGrant
136 sg:grant.3066162 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09354
137 rdf:type schema:MonetaryGrant
138 sg:journal.1018957 schema:issn 0090-0028
139 1476-4687
140 schema:name Nature
141 rdf:type schema:Periodical
142 sg:person.01356603346.24 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
143 schema:familyName Molla
144 schema:givenName Michael N.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356603346.24
146 rdf:type schema:Person
147 sg:person.01370465677.06 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
148 schema:familyName Cantor
149 schema:givenName Charles R.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370465677.06
151 rdf:type schema:Person
152 sg:person.0633456602.93 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
153 schema:familyName Collins
154 schema:givenName James J.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633456602.93
156 rdf:type schema:Person
157 sg:person.0705257563.52 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
158 schema:familyName Lee
159 schema:givenName Henry H.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705257563.52
161 rdf:type schema:Person
162 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
163 https://doi.org/10.1038/nature07517
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nchembio.2007.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010932712
166 https://doi.org/10.1038/nchembio.2007.27
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ng1906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004277286
169 https://doi.org/10.1038/ng1906
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nmeth805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051874367
172 https://doi.org/10.1038/nmeth805
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nrmicro1461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990604
175 https://doi.org/10.1038/nrmicro1461
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/1471-2180-7-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015160760
178 https://doi.org/10.1186/1471-2180-7-42
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1082926605 schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1083250216 schema:CreativeWork
182 https://doi.org/10.1016/j.cell.2007.06.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021664271
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.cell.2008.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041251573
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.molcel.2010.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045834913
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.tim.2009.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042155173
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0092-8674(00)80312-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016055951
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1038/msb4100050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007788508
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1038/msb4100135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012041215
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1042/bj0570369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014871162
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1086/344654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021923223
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/btm478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031974053
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1365-2958.2004.04449.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020880594
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1469-0691.2006.01492.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015423343
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.1574-6976.2009.00204.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026403576
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1082240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026408774
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1128/aac.00039-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036931630
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1128/aac.00475-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017642168
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1128/aac.38.8.1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016942897
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1128/aac.43.1.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083368577
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1128/aac.45.5.1515-1521.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040966658
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1128/jb.00217-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047576176
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1146/annurev.micro.50.1.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027757826
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pone.0005043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030203221
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
227 schema:name Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
228 Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
231 schema:name Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
232 Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA
233 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, USA
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...