Bacterial charity work leads to population-wide resistance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-09

AUTHORS

Henry H. Lee, Michael N. Molla, Charles R. Cantor, James J. Collins

ABSTRACT

Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments. More... »

PAGES

82

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09354

DOI

http://dx.doi.org/10.1038/nature09354

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025588858

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20811456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Bacterial Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Indoles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Sensitivity Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Viability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Norfloxacin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA", 
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Henry H.", 
        "id": "sg:person.0705257563.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705257563.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA", 
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molla", 
        "givenName": "Michael N.", 
        "id": "sg:person.01356603346.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356603346.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cantor", 
        "givenName": "Charles R.", 
        "id": "sg:person.01370465677.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370465677.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA", 
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA", 
            "Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "James J.", 
        "id": "sg:person.0633456602.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633456602.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004277286", 
          "https://doi.org/10.1038/ng1906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004277286", 
          "https://doi.org/10.1038/ng1906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007788508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007788508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.2007.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010932712", 
          "https://doi.org/10.1038/nchembio.2007.27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012041215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012041215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0570369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014871162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0570369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014871162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-7-42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015160760", 
          "https://doi.org/10.1186/1471-2180-7-42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-0691.2006.01492.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015423343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)80312-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016055951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.38.8.1773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016942897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.00475-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017642168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2004.04449.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020880594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2007.06.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021664271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/344654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021923223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2009.00204.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026403576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1082240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026408774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.50.1.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027757826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030203221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031974053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.00039-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036931630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.45.5.1515-1521.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040966658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2008.09.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041251573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tim.2009.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990604", 
          "https://doi.org/10.1038/nrmicro1461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990604", 
          "https://doi.org/10.1038/nrmicro1461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2010.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045834913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00217-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047576176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051874367", 
          "https://doi.org/10.1038/nmeth805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051874367", 
          "https://doi.org/10.1038/nmeth805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925719", 
          "https://doi.org/10.1038/nature07517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082926605", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083250216", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.43.1.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083368577"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09354", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3066162", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2355067", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7311", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "467"
      }
    ], 
    "name": "Bacterial charity work leads to population-wide resistance", 
    "pagination": "82", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79e8368c45dafa518571b0142ef0c97761b394e8c0bfb183eecb971663b55890"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20811456"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09354"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025588858"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09354", 
      "https://app.dimensions.ai/details/publication/pub.1025588858"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77567_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09354"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09354'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09354'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09354'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09354'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      69 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09354 schema:about N27022f90e2984fb2a3435e11abfb7eaa
2 N34d0423ef9c64379b6150b24d2a06b4b
3 N4ba4613a2be44fbb8ad8cdc11d8c0c77
4 N74e8cc699f3c46c4af5f98a9c6841f5f
5 N7bcb3c9a3a504fbeae0104414d588f6a
6 N87f80dc8a41e49e8936e07766e977b16
7 N9aead6296ec441bca7e90eeeb02cc4be
8 Nb4023cd92bed42c0a9ec90ccdcc58fae
9 Nd1d31b1286d04c83aa57a9704c2db442
10 Nd6fe6df0e25540bb9d15f49d3656da98
11 anzsrc-for:06
12 anzsrc-for:0605
13 schema:author N04d1dfe14ca247a28c5ede955cedc185
14 schema:citation sg:pub.10.1038/nature07517
15 sg:pub.10.1038/nchembio.2007.27
16 sg:pub.10.1038/ng1906
17 sg:pub.10.1038/nmeth805
18 sg:pub.10.1038/nrmicro1461
19 sg:pub.10.1186/1471-2180-7-42
20 https://app.dimensions.ai/details/publication/pub.1082926605
21 https://app.dimensions.ai/details/publication/pub.1083250216
22 https://doi.org/10.1016/j.cell.2007.06.049
23 https://doi.org/10.1016/j.cell.2008.09.038
24 https://doi.org/10.1016/j.molcel.2010.01.003
25 https://doi.org/10.1016/j.tim.2009.12.009
26 https://doi.org/10.1016/s0092-8674(00)80312-8
27 https://doi.org/10.1038/msb4100050
28 https://doi.org/10.1038/msb4100135
29 https://doi.org/10.1042/bj0570369
30 https://doi.org/10.1086/344654
31 https://doi.org/10.1093/bioinformatics/btm478
32 https://doi.org/10.1111/j.1365-2958.2004.04449.x
33 https://doi.org/10.1111/j.1469-0691.2006.01492.x
34 https://doi.org/10.1111/j.1574-6976.2009.00204.x
35 https://doi.org/10.1126/science.1082240
36 https://doi.org/10.1128/aac.00039-06
37 https://doi.org/10.1128/aac.00475-08
38 https://doi.org/10.1128/aac.38.8.1773
39 https://doi.org/10.1128/aac.43.1.62
40 https://doi.org/10.1128/aac.45.5.1515-1521.2001
41 https://doi.org/10.1128/jb.00217-06
42 https://doi.org/10.1146/annurev.micro.50.1.625
43 https://doi.org/10.1371/journal.pone.0005043
44 schema:datePublished 2010-09
45 schema:datePublishedReg 2010-09-01
46 schema:description Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N4ac4453269c44151ab15596f9ef77763
51 N8c6846f0a6a245fe99304512f53e8186
52 sg:journal.1018957
53 schema:name Bacterial charity work leads to population-wide resistance
54 schema:pagination 82
55 schema:productId N0c7f6f92ca1342c0ad4a5b42a0ea15e3
56 N3a6f018a1f0844c99b2a3fca67eca35a
57 N86a5eefffb4944889d0259a5a55d4248
58 Nae1200ed80e5424dbe514033d53acea1
59 Nd1ba0cf2dfc749368f1cbec14896c16f
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025588858
61 https://doi.org/10.1038/nature09354
62 schema:sdDatePublished 2019-04-11T10:49
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N19479967191c48b6a1eaaedff70d1d3c
65 schema:url https://www.nature.com/articles/nature09354
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N04d1dfe14ca247a28c5ede955cedc185 rdf:first sg:person.0705257563.52
70 rdf:rest Nc410a4bc544b4b9c93776beaa6aab003
71 N0c7f6f92ca1342c0ad4a5b42a0ea15e3 schema:name doi
72 schema:value 10.1038/nature09354
73 rdf:type schema:PropertyValue
74 N19479967191c48b6a1eaaedff70d1d3c schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N23855b6370284b67898059f079581218 rdf:first sg:person.0633456602.93
77 rdf:rest rdf:nil
78 N27022f90e2984fb2a3435e11abfb7eaa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Norfloxacin
80 rdf:type schema:DefinedTerm
81 N34d0423ef9c64379b6150b24d2a06b4b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
82 schema:name Genome, Bacterial
83 rdf:type schema:DefinedTerm
84 N3a6f018a1f0844c99b2a3fca67eca35a schema:name pubmed_id
85 schema:value 20811456
86 rdf:type schema:PropertyValue
87 N4ac4453269c44151ab15596f9ef77763 schema:volumeNumber 467
88 rdf:type schema:PublicationVolume
89 N4ba4613a2be44fbb8ad8cdc11d8c0c77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Indoles
91 rdf:type schema:DefinedTerm
92 N5ed54e8cbc674c289d8959e4525695ae rdf:first sg:person.01370465677.06
93 rdf:rest N23855b6370284b67898059f079581218
94 N74e8cc699f3c46c4af5f98a9c6841f5f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Escherichia coli
96 rdf:type schema:DefinedTerm
97 N7bcb3c9a3a504fbeae0104414d588f6a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Drug Resistance, Bacterial
99 rdf:type schema:DefinedTerm
100 N86a5eefffb4944889d0259a5a55d4248 schema:name dimensions_id
101 schema:value pub.1025588858
102 rdf:type schema:PropertyValue
103 N87f80dc8a41e49e8936e07766e977b16 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Anti-Bacterial Agents
105 rdf:type schema:DefinedTerm
106 N8c6846f0a6a245fe99304512f53e8186 schema:issueNumber 7311
107 rdf:type schema:PublicationIssue
108 N9aead6296ec441bca7e90eeeb02cc4be schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Mutation
110 rdf:type schema:DefinedTerm
111 Nae1200ed80e5424dbe514033d53acea1 schema:name readcube_id
112 schema:value 79e8368c45dafa518571b0142ef0c97761b394e8c0bfb183eecb971663b55890
113 rdf:type schema:PropertyValue
114 Nb4023cd92bed42c0a9ec90ccdcc58fae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Gene Expression Profiling
116 rdf:type schema:DefinedTerm
117 Nc410a4bc544b4b9c93776beaa6aab003 rdf:first sg:person.01356603346.24
118 rdf:rest N5ed54e8cbc674c289d8959e4525695ae
119 Nd1ba0cf2dfc749368f1cbec14896c16f schema:name nlm_unique_id
120 schema:value 0410462
121 rdf:type schema:PropertyValue
122 Nd1d31b1286d04c83aa57a9704c2db442 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Microbial Sensitivity Tests
124 rdf:type schema:DefinedTerm
125 Nd6fe6df0e25540bb9d15f49d3656da98 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Microbial Viability
127 rdf:type schema:DefinedTerm
128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
129 schema:name Biological Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
132 schema:name Microbiology
133 rdf:type schema:DefinedTerm
134 sg:grant.2355067 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09354
135 rdf:type schema:MonetaryGrant
136 sg:grant.3066162 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09354
137 rdf:type schema:MonetaryGrant
138 sg:journal.1018957 schema:issn 0090-0028
139 1476-4687
140 schema:name Nature
141 rdf:type schema:Periodical
142 sg:person.01356603346.24 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
143 schema:familyName Molla
144 schema:givenName Michael N.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356603346.24
146 rdf:type schema:Person
147 sg:person.01370465677.06 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
148 schema:familyName Cantor
149 schema:givenName Charles R.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370465677.06
151 rdf:type schema:Person
152 sg:person.0633456602.93 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
153 schema:familyName Collins
154 schema:givenName James J.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633456602.93
156 rdf:type schema:Person
157 sg:person.0705257563.52 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
158 schema:familyName Lee
159 schema:givenName Henry H.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705257563.52
161 rdf:type schema:Person
162 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
163 https://doi.org/10.1038/nature07517
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nchembio.2007.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010932712
166 https://doi.org/10.1038/nchembio.2007.27
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ng1906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004277286
169 https://doi.org/10.1038/ng1906
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nmeth805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051874367
172 https://doi.org/10.1038/nmeth805
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nrmicro1461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990604
175 https://doi.org/10.1038/nrmicro1461
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/1471-2180-7-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015160760
178 https://doi.org/10.1186/1471-2180-7-42
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1082926605 schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1083250216 schema:CreativeWork
182 https://doi.org/10.1016/j.cell.2007.06.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021664271
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.cell.2008.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041251573
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.molcel.2010.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045834913
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.tim.2009.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042155173
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0092-8674(00)80312-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016055951
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1038/msb4100050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007788508
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1038/msb4100135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012041215
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1042/bj0570369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014871162
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1086/344654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021923223
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/btm478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031974053
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1365-2958.2004.04449.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020880594
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1469-0691.2006.01492.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015423343
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.1574-6976.2009.00204.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026403576
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1082240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026408774
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1128/aac.00039-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036931630
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1128/aac.00475-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017642168
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1128/aac.38.8.1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016942897
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1128/aac.43.1.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083368577
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1128/aac.45.5.1515-1521.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040966658
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1128/jb.00217-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047576176
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1146/annurev.micro.50.1.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027757826
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pone.0005043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030203221
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
227 schema:name Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
228 Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
231 schema:name Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
232 Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA
233 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, USA
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...