Bacterial charity work leads to population-wide resistance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-09

AUTHORS

Henry H. Lee, Michael N. Molla, Charles R. Cantor, James J. Collins

ABSTRACT

Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments. More... »

PAGES

82

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09354

DOI

http://dx.doi.org/10.1038/nature09354

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025588858

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20811456


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0605", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Microbiology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Anti-Bacterial Agents", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Drug Resistance, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Escherichia coli", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gene Expression Profiling", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Genome, Bacterial", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Indoles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Sensitivity Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microbial Viability", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Mutation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Norfloxacin", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA", 
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Henry H.", 
        "id": "sg:person.0705257563.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705257563.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA", 
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molla", 
        "givenName": "Michael N.", 
        "id": "sg:person.01356603346.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356603346.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Boston University", 
          "id": "https://www.grid.ac/institutes/grid.189504.1", 
          "name": [
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cantor", 
        "givenName": "Charles R.", 
        "id": "sg:person.01370465677.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370465677.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Harvard University", 
          "id": "https://www.grid.ac/institutes/grid.38142.3c", 
          "name": [
            "Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA", 
            "Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA", 
            "Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collins", 
        "givenName": "James J.", 
        "id": "sg:person.0633456602.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633456602.93"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004277286", 
          "https://doi.org/10.1038/ng1906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng1906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004277286", 
          "https://doi.org/10.1038/ng1906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007788508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007788508"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchembio.2007.27", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010932712", 
          "https://doi.org/10.1038/nchembio.2007.27"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012041215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012041215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0570369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014871162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bj0570369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014871162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2180-7-42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015160760", 
          "https://doi.org/10.1186/1471-2180-7-42"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-0691.2006.01492.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015423343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0092-8674(00)80312-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016055951"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.38.8.1773", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016942897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.00475-08", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017642168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2958.2004.04449.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020880594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2007.06.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021664271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/344654", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021923223"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1574-6976.2009.00204.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026403576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1082240", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026408774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.micro.50.1.625", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027757826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0005043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030203221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031974053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.00039-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036931630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.45.5.1515-1521.2001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040966658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2008.09.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041251573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tim.2009.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990604", 
          "https://doi.org/10.1038/nrmicro1461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrmicro1461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044990604", 
          "https://doi.org/10.1038/nrmicro1461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molcel.2010.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045834913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/jb.00217-06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047576176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051874367", 
          "https://doi.org/10.1038/nmeth805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051874367", 
          "https://doi.org/10.1038/nmeth805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052925719", 
          "https://doi.org/10.1038/nature07517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082926605", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083250216", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1128/aac.43.1.62", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083368577"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09354", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3066162", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2355067", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7311", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "467"
      }
    ], 
    "name": "Bacterial charity work leads to population-wide resistance", 
    "pagination": "82", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "79e8368c45dafa518571b0142ef0c97761b394e8c0bfb183eecb971663b55890"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20811456"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09354"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025588858"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09354", 
      "https://app.dimensions.ai/details/publication/pub.1025588858"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77567_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09354"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09354'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09354'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09354'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09354'


 

This table displays all metadata directly associated to this object as RDF triples.

234 TRIPLES      21 PREDICATES      69 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09354 schema:about N13a8fa61e4a146889bccbbb7bbe776bc
2 N53c8246020934057b709cb8d87d307a3
3 N745c7b7b3be24b43b25ae0386fe256df
4 N7a003326aba5417187245679427f40d4
5 N80e0beb1bbde4240aa64a352387ff3dc
6 N8e354fb5ced64d60814592b966d3aabc
7 N964093c9eb4c4614a519564e3b300a34
8 Nb82075dd913343de9a89bc3386c48a5e
9 Nc024bfa0d2bc4cb2ab66b6b2ed431953
10 Nc802d22c993e4ac1aec4651ea4925d73
11 anzsrc-for:06
12 anzsrc-for:0605
13 schema:author N9ef22e1b6d0043cc9b5ff194bee66e9d
14 schema:citation sg:pub.10.1038/nature07517
15 sg:pub.10.1038/nchembio.2007.27
16 sg:pub.10.1038/ng1906
17 sg:pub.10.1038/nmeth805
18 sg:pub.10.1038/nrmicro1461
19 sg:pub.10.1186/1471-2180-7-42
20 https://app.dimensions.ai/details/publication/pub.1082926605
21 https://app.dimensions.ai/details/publication/pub.1083250216
22 https://doi.org/10.1016/j.cell.2007.06.049
23 https://doi.org/10.1016/j.cell.2008.09.038
24 https://doi.org/10.1016/j.molcel.2010.01.003
25 https://doi.org/10.1016/j.tim.2009.12.009
26 https://doi.org/10.1016/s0092-8674(00)80312-8
27 https://doi.org/10.1038/msb4100050
28 https://doi.org/10.1038/msb4100135
29 https://doi.org/10.1042/bj0570369
30 https://doi.org/10.1086/344654
31 https://doi.org/10.1093/bioinformatics/btm478
32 https://doi.org/10.1111/j.1365-2958.2004.04449.x
33 https://doi.org/10.1111/j.1469-0691.2006.01492.x
34 https://doi.org/10.1111/j.1574-6976.2009.00204.x
35 https://doi.org/10.1126/science.1082240
36 https://doi.org/10.1128/aac.00039-06
37 https://doi.org/10.1128/aac.00475-08
38 https://doi.org/10.1128/aac.38.8.1773
39 https://doi.org/10.1128/aac.43.1.62
40 https://doi.org/10.1128/aac.45.5.1515-1521.2001
41 https://doi.org/10.1128/jb.00217-06
42 https://doi.org/10.1146/annurev.micro.50.1.625
43 https://doi.org/10.1371/journal.pone.0005043
44 schema:datePublished 2010-09
45 schema:datePublishedReg 2010-09-01
46 schema:description Bacteria show remarkable adaptability in the face of antibiotic therapeutics. Resistance alleles in drug target-specific sites and general stress responses have been identified in individual end-point isolates. Less is known, however, about the population dynamics during the development of antibiotic-resistant strains. Here we follow a continuous culture of Escherichia coli facing increasing levels of antibiotic and show that the vast majority of isolates are less resistant than the population as a whole. We find that the few highly resistant mutants improve the survival of the population's less resistant constituents, in part by producing indole, a signalling molecule generated by actively growing, unstressed cells. We show, through transcriptional profiling, that indole serves to turn on drug efflux pumps and oxidative-stress protective mechanisms. The indole production comes at a fitness cost to the highly resistant isolates, and whole-genome sequencing reveals that this bacterial altruism is made possible by drug-resistance mutations unrelated to indole production. This work establishes a population-based resistance mechanism constituting a form of kin selection whereby a small number of resistant mutants can, at some cost to themselves, provide protection to other, more vulnerable, cells, enhancing the survival capacity of the overall population in stressful environments.
47 schema:genre research_article
48 schema:inLanguage en
49 schema:isAccessibleForFree true
50 schema:isPartOf N409eb3f0749440978b163897b50f2a62
51 Nb742850e4e8f4582a4197594efe6d387
52 sg:journal.1018957
53 schema:name Bacterial charity work leads to population-wide resistance
54 schema:pagination 82
55 schema:productId N0120ce81c9314b3299b37e3338fa7830
56 N3d54e0152175486290cd93f296a76e6f
57 N58a7f138c5c240dd80098b184355a6a7
58 N8d5d6bb30b0f48f087d4dab9e6314c8d
59 Nbc8917e6bec54d6fa07e4cac8b1d31d8
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025588858
61 https://doi.org/10.1038/nature09354
62 schema:sdDatePublished 2019-04-11T10:49
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher Nde065f7f6e03441b95f3d5d3c5171692
65 schema:url https://www.nature.com/articles/nature09354
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N0120ce81c9314b3299b37e3338fa7830 schema:name pubmed_id
70 schema:value 20811456
71 rdf:type schema:PropertyValue
72 N13a8fa61e4a146889bccbbb7bbe776bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
73 schema:name Anti-Bacterial Agents
74 rdf:type schema:DefinedTerm
75 N39e08705cd1b4e9da707a38b572fd93d rdf:first sg:person.01370465677.06
76 rdf:rest N6cc4963b8f1a4eb8bd4e95fa377a114a
77 N3d54e0152175486290cd93f296a76e6f schema:name nlm_unique_id
78 schema:value 0410462
79 rdf:type schema:PropertyValue
80 N409eb3f0749440978b163897b50f2a62 schema:issueNumber 7311
81 rdf:type schema:PublicationIssue
82 N53c8246020934057b709cb8d87d307a3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Genome, Bacterial
84 rdf:type schema:DefinedTerm
85 N58a7f138c5c240dd80098b184355a6a7 schema:name dimensions_id
86 schema:value pub.1025588858
87 rdf:type schema:PropertyValue
88 N6cc4963b8f1a4eb8bd4e95fa377a114a rdf:first sg:person.0633456602.93
89 rdf:rest rdf:nil
90 N7406e12e0d82463996e37a98d2ae7880 rdf:first sg:person.01356603346.24
91 rdf:rest N39e08705cd1b4e9da707a38b572fd93d
92 N745c7b7b3be24b43b25ae0386fe256df schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Gene Expression Profiling
94 rdf:type schema:DefinedTerm
95 N7a003326aba5417187245679427f40d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
96 schema:name Norfloxacin
97 rdf:type schema:DefinedTerm
98 N80e0beb1bbde4240aa64a352387ff3dc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Mutation
100 rdf:type schema:DefinedTerm
101 N8d5d6bb30b0f48f087d4dab9e6314c8d schema:name doi
102 schema:value 10.1038/nature09354
103 rdf:type schema:PropertyValue
104 N8e354fb5ced64d60814592b966d3aabc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Microbial Viability
106 rdf:type schema:DefinedTerm
107 N964093c9eb4c4614a519564e3b300a34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Indoles
109 rdf:type schema:DefinedTerm
110 N9ef22e1b6d0043cc9b5ff194bee66e9d rdf:first sg:person.0705257563.52
111 rdf:rest N7406e12e0d82463996e37a98d2ae7880
112 Nb742850e4e8f4582a4197594efe6d387 schema:volumeNumber 467
113 rdf:type schema:PublicationVolume
114 Nb82075dd913343de9a89bc3386c48a5e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Microbial Sensitivity Tests
116 rdf:type schema:DefinedTerm
117 Nbc8917e6bec54d6fa07e4cac8b1d31d8 schema:name readcube_id
118 schema:value 79e8368c45dafa518571b0142ef0c97761b394e8c0bfb183eecb971663b55890
119 rdf:type schema:PropertyValue
120 Nc024bfa0d2bc4cb2ab66b6b2ed431953 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Escherichia coli
122 rdf:type schema:DefinedTerm
123 Nc802d22c993e4ac1aec4651ea4925d73 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Drug Resistance, Bacterial
125 rdf:type schema:DefinedTerm
126 Nde065f7f6e03441b95f3d5d3c5171692 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
129 schema:name Biological Sciences
130 rdf:type schema:DefinedTerm
131 anzsrc-for:0605 schema:inDefinedTermSet anzsrc-for:
132 schema:name Microbiology
133 rdf:type schema:DefinedTerm
134 sg:grant.2355067 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09354
135 rdf:type schema:MonetaryGrant
136 sg:grant.3066162 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09354
137 rdf:type schema:MonetaryGrant
138 sg:journal.1018957 schema:issn 0090-0028
139 1476-4687
140 schema:name Nature
141 rdf:type schema:Periodical
142 sg:person.01356603346.24 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
143 schema:familyName Molla
144 schema:givenName Michael N.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356603346.24
146 rdf:type schema:Person
147 sg:person.01370465677.06 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
148 schema:familyName Cantor
149 schema:givenName Charles R.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370465677.06
151 rdf:type schema:Person
152 sg:person.0633456602.93 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
153 schema:familyName Collins
154 schema:givenName James J.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0633456602.93
156 rdf:type schema:Person
157 sg:person.0705257563.52 schema:affiliation https://www.grid.ac/institutes/grid.189504.1
158 schema:familyName Lee
159 schema:givenName Henry H.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705257563.52
161 rdf:type schema:Person
162 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
163 https://doi.org/10.1038/nature07517
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nchembio.2007.27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010932712
166 https://doi.org/10.1038/nchembio.2007.27
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/ng1906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004277286
169 https://doi.org/10.1038/ng1906
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nmeth805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051874367
172 https://doi.org/10.1038/nmeth805
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/nrmicro1461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044990604
175 https://doi.org/10.1038/nrmicro1461
176 rdf:type schema:CreativeWork
177 sg:pub.10.1186/1471-2180-7-42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015160760
178 https://doi.org/10.1186/1471-2180-7-42
179 rdf:type schema:CreativeWork
180 https://app.dimensions.ai/details/publication/pub.1082926605 schema:CreativeWork
181 https://app.dimensions.ai/details/publication/pub.1083250216 schema:CreativeWork
182 https://doi.org/10.1016/j.cell.2007.06.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021664271
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.cell.2008.09.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041251573
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.molcel.2010.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045834913
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.tim.2009.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042155173
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/s0092-8674(00)80312-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016055951
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1038/msb4100050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007788508
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1038/msb4100135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012041215
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1042/bj0570369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014871162
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1086/344654 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021923223
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/bioinformatics/btm478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031974053
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1111/j.1365-2958.2004.04449.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1020880594
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1469-0691.2006.01492.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015423343
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1111/j.1574-6976.2009.00204.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1026403576
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1082240 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026408774
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1128/aac.00039-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036931630
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1128/aac.00475-08 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017642168
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1128/aac.38.8.1773 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016942897
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1128/aac.43.1.62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083368577
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1128/aac.45.5.1515-1521.2001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040966658
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1128/jb.00217-06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047576176
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1146/annurev.micro.50.1.625 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027757826
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1371/journal.pone.0005043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030203221
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.189504.1 schema:alternateName Boston University
227 schema:name Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
228 Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA
229 rdf:type schema:Organization
230 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
231 schema:name Center for Advanced Biotechnology, Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, USA
232 Howard Hughes Medical Institute, Center for BioDynamics, Boston, Massachusetts 02115, USA
233 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02215, USA
234 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...