Polar patterns of driven filaments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-09

AUTHORS

Volker Schaller, Christoph Weber, Christine Semmrich, Erwin Frey, Andreas R. Bausch

ABSTRACT

The emergence of collective motion exhibited by systems ranging from flocks of animals to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-organization phenomenon. Similarities between these systems, such as the inherent polarity of the constituents, a density-dependent transition to ordered phases or the existence of very large density fluctuations, suggest universal principles underlying pattern formation. This idea is followed by theoretical models at all levels of description: micro- or mesoscopic models directly map local forces and interactions using only a few, preferably simple, interaction rules, and more macroscopic approaches in the hydrodynamic limit rely on the systems' generic symmetries. All these models characteristically have a broad parameter space with a manifold of possible patterns, most of which have not yet been experimentally verified. The complexity of interactions and the limited parameter control of existing experimental systems are major obstacles to our understanding of the underlying ordering principles. Here we demonstrate the emergence of collective motion in a high-density motility assay that consists of highly concentrated actin filaments propelled by immobilized molecular motors in a planar geometry. Above a critical density, the filaments self-organize to form coherently moving structures with persistent density modulations, such as clusters, swirls and interconnected bands. These polar nematic structures are long lived and can span length scales orders of magnitudes larger than their constituents. Our experimental approach, which offers control of all relevant system parameters, complemented by agent-based simulations, allows backtracking of the assembly and disassembly pathways to the underlying local interactions. We identify weak and local alignment interactions to be essential for the observed formation of patterns and their dynamics. The presented minimal polar-pattern-forming system may thus provide new insight into emerging order in the broad class of active fluids and self-propelled particles. More... »

PAGES

73

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09312

DOI

http://dx.doi.org/10.1038/nature09312

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001821281

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20811454


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actin Cytoskeleton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cytoskeleton", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microtubules", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Myosin Subfragments", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Lehrstuhl f\u00fcr Biophysik-E27, Technische Universit\u00e4t M\u00fcnchen, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaller", 
        "givenName": "Volker", 
        "id": "sg:person.0715654577.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715654577.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Arnold Sommerfeld Center for Theoretical Physics and CeNS, Department of Physics, Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, 80333 Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Weber", 
        "givenName": "Christoph", 
        "id": "sg:person.0710577026.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710577026.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Lehrstuhl f\u00fcr Biophysik-E27, Technische Universit\u00e4t M\u00fcnchen, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semmrich", 
        "givenName": "Christine", 
        "id": "sg:person.01176221254.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176221254.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ludwig Maximilian University of Munich", 
          "id": "https://www.grid.ac/institutes/grid.5252.0", 
          "name": [
            "Arnold Sommerfeld Center for Theoretical Physics and CeNS, Department of Physics, Ludwig-Maximilians-Universit\u00e4t M\u00fcnchen, 80333 Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frey", 
        "givenName": "Erwin", 
        "id": "sg:person.01217235245.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217235245.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Lehrstuhl f\u00fcr Biophysik-E27, Technische Universit\u00e4t M\u00fcnchen, 85748 Garching, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bausch", 
        "givenName": "Andreas R.", 
        "id": "sg:person.01360563054.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360563054.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.1059758", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000770172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.078101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000950540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.078101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000950540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1140414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001182614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2007.02.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001731119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003549718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003549718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1110329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007256332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.061916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008235202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.061916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008235202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1083/jcb.99.5.1867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009552807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/38532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011726815", 
          "https://doi.org/10.1038/38532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/38532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011726815", 
          "https://doi.org/10.1038/38532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.011920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013592101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.011920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013592101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1478-3975/3/4/004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016143166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.058101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018515697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.058101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018515697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2005.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018539942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aop.2005.04.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018539942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.268101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020163793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.268101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020163793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/10/2/023036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020851060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/9/11/422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029404636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.050901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029492339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.050901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029492339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.050901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029492339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrm2357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030631416", 
          "https://doi.org/10.1038/nrm2357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1139570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031452922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1154413", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034850215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041809703", 
          "https://doi.org/10.1038/nature03236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041809703", 
          "https://doi.org/10.1038/nature03236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b814985b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043766787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.046113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044053371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.77.046113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044053371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.184502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050784857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.184502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050784857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0906586106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052040535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0906586106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052040535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.1791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.54.1791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.098103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.098103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060828900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.258103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832492"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.258103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060832492"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-09", 
    "datePublishedReg": "2010-09-01", 
    "description": "The emergence of collective motion exhibited by systems ranging from flocks of animals to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-organization phenomenon. Similarities between these systems, such as the inherent polarity of the constituents, a density-dependent transition to ordered phases or the existence of very large density fluctuations, suggest universal principles underlying pattern formation. This idea is followed by theoretical models at all levels of description: micro- or mesoscopic models directly map local forces and interactions using only a few, preferably simple, interaction rules, and more macroscopic approaches in the hydrodynamic limit rely on the systems' generic symmetries. All these models characteristically have a broad parameter space with a manifold of possible patterns, most of which have not yet been experimentally verified. The complexity of interactions and the limited parameter control of existing experimental systems are major obstacles to our understanding of the underlying ordering principles. Here we demonstrate the emergence of collective motion in a high-density motility assay that consists of highly concentrated actin filaments propelled by immobilized molecular motors in a planar geometry. Above a critical density, the filaments self-organize to form coherently moving structures with persistent density modulations, such as clusters, swirls and interconnected bands. These polar nematic structures are long lived and can span length scales orders of magnitudes larger than their constituents. Our experimental approach, which offers control of all relevant system parameters, complemented by agent-based simulations, allows backtracking of the assembly and disassembly pathways to the underlying local interactions. We identify weak and local alignment interactions to be essential for the observed formation of patterns and their dynamics. The presented minimal polar-pattern-forming system may thus provide new insight into emerging order in the broad class of active fluids and self-propelled particles.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09312", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7311", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "467"
      }
    ], 
    "name": "Polar patterns of driven filaments", 
    "pagination": "73", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "08ad08b6aee51d571e1424d5ac5a872cb9a26c081cc3b3f254ad38741dd6ce34"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20811454"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09312"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001821281"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09312", 
      "https://app.dimensions.ai/details/publication/pub.1001821281"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:49", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000350_0000000350/records_77570_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09312"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09312'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09312'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09312'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09312'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      63 URIs      27 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09312 schema:about N00fdb5a403b641f78782ad96a23a43f5
2 N0169fcd868664b3199352f738ecff9d7
3 N4b1c4e37cd1e4b2a98ad33c8555d893a
4 N98b02e26da8e4029a758b0a1d40f395f
5 Nf358b9ef5cbf48339bd37453e355db0f
6 Nfe250640b843415c8db6e07ecf5c1e30
7 anzsrc-for:01
8 anzsrc-for:0102
9 schema:author Ncad2718911714d52a034190fcbc45e40
10 schema:citation sg:pub.10.1038/38532
11 sg:pub.10.1038/nature03236
12 sg:pub.10.1038/nrm2357
13 https://doi.org/10.1016/j.aop.2005.04.011
14 https://doi.org/10.1016/j.physrep.2007.02.018
15 https://doi.org/10.1039/b814985b
16 https://doi.org/10.1073/pnas.0906586106
17 https://doi.org/10.1083/jcb.99.5.1867
18 https://doi.org/10.1088/1367-2630/10/2/023036
19 https://doi.org/10.1088/1367-2630/9/11/422
20 https://doi.org/10.1088/1478-3975/3/4/004
21 https://doi.org/10.1103/physreve.54.1791
22 https://doi.org/10.1103/physreve.71.050901
23 https://doi.org/10.1103/physreve.77.011920
24 https://doi.org/10.1103/physreve.77.046113
25 https://doi.org/10.1103/physreve.81.061916
26 https://doi.org/10.1103/physrevlett.101.268101
27 https://doi.org/10.1103/physrevlett.104.184502
28 https://doi.org/10.1103/physrevlett.75.1226
29 https://doi.org/10.1103/physrevlett.89.058101
30 https://doi.org/10.1103/physrevlett.92.078101
31 https://doi.org/10.1103/physrevlett.93.098103
32 https://doi.org/10.1103/physrevlett.96.258103
33 https://doi.org/10.1126/science.1059758
34 https://doi.org/10.1126/science.1110329
35 https://doi.org/10.1126/science.1139570
36 https://doi.org/10.1126/science.1140414
37 https://doi.org/10.1126/science.1154413
38 schema:datePublished 2010-09
39 schema:datePublishedReg 2010-09-01
40 schema:description The emergence of collective motion exhibited by systems ranging from flocks of animals to self-propelled microorganisms to the cytoskeleton is a ubiquitous and fascinating self-organization phenomenon. Similarities between these systems, such as the inherent polarity of the constituents, a density-dependent transition to ordered phases or the existence of very large density fluctuations, suggest universal principles underlying pattern formation. This idea is followed by theoretical models at all levels of description: micro- or mesoscopic models directly map local forces and interactions using only a few, preferably simple, interaction rules, and more macroscopic approaches in the hydrodynamic limit rely on the systems' generic symmetries. All these models characteristically have a broad parameter space with a manifold of possible patterns, most of which have not yet been experimentally verified. The complexity of interactions and the limited parameter control of existing experimental systems are major obstacles to our understanding of the underlying ordering principles. Here we demonstrate the emergence of collective motion in a high-density motility assay that consists of highly concentrated actin filaments propelled by immobilized molecular motors in a planar geometry. Above a critical density, the filaments self-organize to form coherently moving structures with persistent density modulations, such as clusters, swirls and interconnected bands. These polar nematic structures are long lived and can span length scales orders of magnitudes larger than their constituents. Our experimental approach, which offers control of all relevant system parameters, complemented by agent-based simulations, allows backtracking of the assembly and disassembly pathways to the underlying local interactions. We identify weak and local alignment interactions to be essential for the observed formation of patterns and their dynamics. The presented minimal polar-pattern-forming system may thus provide new insight into emerging order in the broad class of active fluids and self-propelled particles.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N79eb6306c1764c9eb7e26733f759332e
45 Nd7d1bf1a5195437eb3337fb6ea667008
46 sg:journal.1018957
47 schema:name Polar patterns of driven filaments
48 schema:pagination 73
49 schema:productId N1d84d76dca9748a79d596c5d3e9abe29
50 N2e51ef348ba44010b56ae1a915eb4e8e
51 N4f873824698349aba31fe89d258e79b2
52 N907e205fd41148b19ff7f62cb84d77fb
53 Nfe189aa80be540619ebc0812a71e0ecf
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001821281
55 https://doi.org/10.1038/nature09312
56 schema:sdDatePublished 2019-04-11T10:49
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Nd0338e01760044ef98e1b608fbc11883
59 schema:url https://www.nature.com/articles/nature09312
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N00fdb5a403b641f78782ad96a23a43f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Cytoskeleton
65 rdf:type schema:DefinedTerm
66 N0169fcd868664b3199352f738ecff9d7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Myosin Subfragments
68 rdf:type schema:DefinedTerm
69 N1d84d76dca9748a79d596c5d3e9abe29 schema:name readcube_id
70 schema:value 08ad08b6aee51d571e1424d5ac5a872cb9a26c081cc3b3f254ad38741dd6ce34
71 rdf:type schema:PropertyValue
72 N2aa57c8955b84e9b95f9f84241ae72fc rdf:first sg:person.01360563054.07
73 rdf:rest rdf:nil
74 N2e51ef348ba44010b56ae1a915eb4e8e schema:name nlm_unique_id
75 schema:value 0410462
76 rdf:type schema:PropertyValue
77 N401dd49b4c464b0c992088c6b95936c7 rdf:first sg:person.0710577026.76
78 rdf:rest N7966619a8b4f42b6aab014aea2432886
79 N4b1c4e37cd1e4b2a98ad33c8555d893a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Animals
81 rdf:type schema:DefinedTerm
82 N4f873824698349aba31fe89d258e79b2 schema:name dimensions_id
83 schema:value pub.1001821281
84 rdf:type schema:PropertyValue
85 N7966619a8b4f42b6aab014aea2432886 rdf:first sg:person.01176221254.13
86 rdf:rest Nc226176ce308491d9c1cca6fdd808e9b
87 N79eb6306c1764c9eb7e26733f759332e schema:issueNumber 7311
88 rdf:type schema:PublicationIssue
89 N907e205fd41148b19ff7f62cb84d77fb schema:name doi
90 schema:value 10.1038/nature09312
91 rdf:type schema:PropertyValue
92 N98b02e26da8e4029a758b0a1d40f395f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Microtubules
94 rdf:type schema:DefinedTerm
95 Nc226176ce308491d9c1cca6fdd808e9b rdf:first sg:person.01217235245.22
96 rdf:rest N2aa57c8955b84e9b95f9f84241ae72fc
97 Ncad2718911714d52a034190fcbc45e40 rdf:first sg:person.0715654577.46
98 rdf:rest N401dd49b4c464b0c992088c6b95936c7
99 Nd0338e01760044ef98e1b608fbc11883 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nd7d1bf1a5195437eb3337fb6ea667008 schema:volumeNumber 467
102 rdf:type schema:PublicationVolume
103 Nf358b9ef5cbf48339bd37453e355db0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
104 schema:name Actin Cytoskeleton
105 rdf:type schema:DefinedTerm
106 Nfe189aa80be540619ebc0812a71e0ecf schema:name pubmed_id
107 schema:value 20811454
108 rdf:type schema:PropertyValue
109 Nfe250640b843415c8db6e07ecf5c1e30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Models, Biological
111 rdf:type schema:DefinedTerm
112 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
113 schema:name Mathematical Sciences
114 rdf:type schema:DefinedTerm
115 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
116 schema:name Applied Mathematics
117 rdf:type schema:DefinedTerm
118 sg:journal.1018957 schema:issn 0090-0028
119 1476-4687
120 schema:name Nature
121 rdf:type schema:Periodical
122 sg:person.01176221254.13 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
123 schema:familyName Semmrich
124 schema:givenName Christine
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176221254.13
126 rdf:type schema:Person
127 sg:person.01217235245.22 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
128 schema:familyName Frey
129 schema:givenName Erwin
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217235245.22
131 rdf:type schema:Person
132 sg:person.01360563054.07 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
133 schema:familyName Bausch
134 schema:givenName Andreas R.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01360563054.07
136 rdf:type schema:Person
137 sg:person.0710577026.76 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
138 schema:familyName Weber
139 schema:givenName Christoph
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0710577026.76
141 rdf:type schema:Person
142 sg:person.0715654577.46 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
143 schema:familyName Schaller
144 schema:givenName Volker
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715654577.46
146 rdf:type schema:Person
147 sg:pub.10.1038/38532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011726815
148 https://doi.org/10.1038/38532
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature03236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041809703
151 https://doi.org/10.1038/nature03236
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nrm2357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030631416
154 https://doi.org/10.1038/nrm2357
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.aop.2005.04.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018539942
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.physrep.2007.02.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001731119
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1039/b814985b schema:sameAs https://app.dimensions.ai/details/publication/pub.1043766787
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1073/pnas.0906586106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052040535
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1083/jcb.99.5.1867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009552807
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1088/1367-2630/10/2/023036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020851060
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1088/1367-2630/9/11/422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029404636
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1088/1478-3975/3/4/004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016143166
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1103/physreve.54.1791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719652
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1103/physreve.71.050901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029492339
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1103/physreve.77.011920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013592101
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1103/physreve.77.046113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044053371
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1103/physreve.81.061916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008235202
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physrevlett.101.268101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020163793
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrevlett.104.184502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050784857
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevlett.75.1226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003549718
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevlett.89.058101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018515697
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevlett.92.078101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000950540
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.93.098103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060828900
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevlett.96.258103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060832492
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1059758 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000770172
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1126/science.1110329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007256332
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1126/science.1139570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031452922
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1126/science.1140414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001182614
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1126/science.1154413 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034850215
205 rdf:type schema:CreativeWork
206 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
207 schema:name Arnold Sommerfeld Center for Theoretical Physics and CeNS, Department of Physics, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
210 schema:name Lehrstuhl für Biophysik-E27, Technische Universität München, 85748 Garching, Germany
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...