Link communities reveal multiscale complexity in networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-08

AUTHORS

Yong-Yeol Ahn, James P. Bagrow, Sune Lehmann

ABSTRACT

Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society. One crucial step when studying the structure and dynamics of networks is to identify communities: groups of related nodes that correspond to functional subunits such as protein complexes or social spheres. Communities in networks often overlap such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure. However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein-protein interaction and metabolic networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon. More... »

PAGES

761

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09182

DOI

http://dx.doi.org/10.1038/nature09182

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1000936185

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20562860


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Phone", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cities", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Community Networks", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metabolic Networks and Pathways", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Mapping", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Center for Complex Network Research, Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA", 
            "Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Yong-Yeol", 
        "id": "sg:person.01241666650.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241666650.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Center for Complex Network Research, Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA", 
            "Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts 02215, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bagrow", 
        "givenName": "James P.", 
        "id": "sg:person.01356115250.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356115250.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Northeastern University", 
          "id": "https://www.grid.ac/institutes/grid.261112.7", 
          "name": [
            "Institute for Quantitative Social Science, Harvard University, Cambridge, Massachusetts 02138, USA", 
            "College of Computer and Information Science, Northeastern University, Boston, Massachusetts 02115, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lehmann", 
        "givenName": "Sune", 
        "id": "sg:person.01341136564.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341136564.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1367-2630/11/3/033015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002733277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/3/033015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002733277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0400054101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004043513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007743479"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010025359", 
          "https://doi.org/10.1038/nature05670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010025359", 
          "https://doi.org/10.1038/nature05670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06830", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010192610", 
          "https://doi.org/10.1038/nature06830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416471", 
          "https://doi.org/10.1038/nature03288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016416471", 
          "https://doi.org/10.1038/nature03288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0706851105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017158516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.122653799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1073374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019781582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2009.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020482279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022606943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.218701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022606943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.1275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023139478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.80.1275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023139478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0610245104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025075085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.016105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027056288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.016105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027056288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0703740104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027402365"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0605965104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028061681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.168701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031102174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.168701", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031102174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032155732", 
          "https://doi.org/10.1038/nature03607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033456836", 
          "https://doi.org/10.1038/nature04670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033456836", 
          "https://doi.org/10.1038/nature04670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033456836", 
          "https://doi.org/10.1038/nature04670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature06958", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034823586", 
          "https://doi.org/10.1038/nature06958"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.70.066111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035552384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.056117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.80.056117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036660715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042206621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb4100155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042206621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043981355", 
          "https://doi.org/10.1038/nature04532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043981355", 
          "https://doi.org/10.1038/nature04532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04532", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043981355", 
          "https://doi.org/10.1038/nature04532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044505190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.69.026113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048148225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511815478", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098700813"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-08", 
    "datePublishedReg": "2010-08-01", 
    "description": "Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society. One crucial step when studying the structure and dynamics of networks is to identify communities: groups of related nodes that correspond to functional subunits such as protein complexes or social spheres. Communities in networks often overlap such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure. However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein-protein interaction and metabolic networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09182", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3062845", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3058683", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3006439", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3051150", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7307", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "466"
      }
    ], 
    "name": "Link communities reveal multiscale complexity in networks", 
    "pagination": "761", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0475f5a15f1d3da13e72fbc3687dc6a75ccb40f3dd4811a03159293f2ae094d8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20562860"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09182"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1000936185"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09182", 
      "https://app.dimensions.ai/details/publication/pub.1000936185"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113644_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09182"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09182'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09182'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09182'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09182'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      21 PREDICATES      63 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09182 schema:about N2fe32a5b5e734497bffc526db61f1c03
2 N682412ba850e4ee092065c59d85f687c
3 N7da333ac1bf8419c8115673f30857351
4 N88c9b87580ce4034baeaf11d5b403655
5 N9edae8b0820246cfbd33298518f72599
6 Ncaa57532465440c295e7cec5c55c8fbe
7 Nf05fadf13fa545378e6f3001e1ec58f7
8 anzsrc-for:06
9 anzsrc-for:0601
10 schema:author N901c062f8a884268b53623941a16cd01
11 schema:citation sg:pub.10.1038/nature03288
12 sg:pub.10.1038/nature03607
13 sg:pub.10.1038/nature04532
14 sg:pub.10.1038/nature04670
15 sg:pub.10.1038/nature05670
16 sg:pub.10.1038/nature06830
17 sg:pub.10.1038/nature06958
18 https://doi.org/10.1016/j.physrep.2009.11.002
19 https://doi.org/10.1017/cbo9780511815478
20 https://doi.org/10.1038/msb4100155
21 https://doi.org/10.1073/pnas.0400054101
22 https://doi.org/10.1073/pnas.0605965104
23 https://doi.org/10.1073/pnas.0610245104
24 https://doi.org/10.1073/pnas.0703740104
25 https://doi.org/10.1073/pnas.0706851105
26 https://doi.org/10.1073/pnas.122653799
27 https://doi.org/10.1088/1367-2630/11/3/033015
28 https://doi.org/10.1093/nar/gkm883
29 https://doi.org/10.1103/physreve.69.026113
30 https://doi.org/10.1103/physreve.70.066111
31 https://doi.org/10.1103/physreve.80.016105
32 https://doi.org/10.1103/physreve.80.056117
33 https://doi.org/10.1103/physrevlett.101.168701
34 https://doi.org/10.1103/physrevlett.93.218701
35 https://doi.org/10.1103/revmodphys.80.1275
36 https://doi.org/10.1126/science.1073374
37 https://doi.org/10.1126/science.1158684
38 schema:datePublished 2010-08
39 schema:datePublishedReg 2010-08-01
40 schema:description Networks have become a key approach to understanding systems of interacting objects, unifying the study of diverse phenomena including biological organisms and human society. One crucial step when studying the structure and dynamics of networks is to identify communities: groups of related nodes that correspond to functional subunits such as protein complexes or social spheres. Communities in networks often overlap such that nodes simultaneously belong to several groups. Meanwhile, many networks are known to possess hierarchical organization, where communities are recursively grouped into a hierarchical structure. However, the fact that many real networks have communities with pervasive overlap, where each and every node belongs to more than one group, has the consequence that a global hierarchy of nodes cannot capture the relationships between overlapping groups. Here we reinvent communities as groups of links rather than nodes and show that this unorthodox approach successfully reconciles the antagonistic organizing principles of overlapping communities and hierarchy. In contrast to the existing literature, which has entirely focused on grouping nodes, link communities naturally incorporate overlap while revealing hierarchical organization. We find relevant link communities in many networks, including major biological networks such as protein-protein interaction and metabolic networks, and show that a large social network contains hierarchically organized community structures spanning inner-city to regional scales while maintaining pervasive overlap. Our results imply that link communities are fundamental building blocks that reveal overlap and hierarchical organization in networks to be two aspects of the same phenomenon.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N8e138c84a30b49b0b2ea9793caa7fd2a
45 Nfe484a8ae9db48bc8cac7585d455eb34
46 sg:journal.1018957
47 schema:name Link communities reveal multiscale complexity in networks
48 schema:pagination 761
49 schema:productId N18492fb3cec743caaac000fedf2762fd
50 N4f8e22ffecac44dbb7d98ef734f0f01e
51 N6b6791f3d3354e7b98cc5ac386f357aa
52 Na745a597d6f740c7b99720fae89a61af
53 Nd59fd0e02e584f7e9918181eb5836a1c
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000936185
55 https://doi.org/10.1038/nature09182
56 schema:sdDatePublished 2019-04-11T10:29
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N0a814f86ba9442838c0e12443d3dc310
59 schema:url https://www.nature.com/articles/nature09182
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N0a814f86ba9442838c0e12443d3dc310 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 N18492fb3cec743caaac000fedf2762fd schema:name dimensions_id
66 schema:value pub.1000936185
67 rdf:type schema:PropertyValue
68 N297be3f91630424badf67cc5cda08b56 rdf:first sg:person.01356115250.49
69 rdf:rest Nf77c16340e4643c29bd44cd4a7951460
70 N2fe32a5b5e734497bffc526db61f1c03 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
71 schema:name Humans
72 rdf:type schema:DefinedTerm
73 N4f8e22ffecac44dbb7d98ef734f0f01e schema:name doi
74 schema:value 10.1038/nature09182
75 rdf:type schema:PropertyValue
76 N682412ba850e4ee092065c59d85f687c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Metabolic Networks and Pathways
78 rdf:type schema:DefinedTerm
79 N6b6791f3d3354e7b98cc5ac386f357aa schema:name nlm_unique_id
80 schema:value 0410462
81 rdf:type schema:PropertyValue
82 N7da333ac1bf8419c8115673f30857351 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Cell Phone
84 rdf:type schema:DefinedTerm
85 N88c9b87580ce4034baeaf11d5b403655 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
86 schema:name Cities
87 rdf:type schema:DefinedTerm
88 N8e138c84a30b49b0b2ea9793caa7fd2a schema:volumeNumber 466
89 rdf:type schema:PublicationVolume
90 N901c062f8a884268b53623941a16cd01 rdf:first sg:person.01241666650.63
91 rdf:rest N297be3f91630424badf67cc5cda08b56
92 N9edae8b0820246cfbd33298518f72599 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Community Networks
94 rdf:type schema:DefinedTerm
95 Na745a597d6f740c7b99720fae89a61af schema:name pubmed_id
96 schema:value 20562860
97 rdf:type schema:PropertyValue
98 Ncaa57532465440c295e7cec5c55c8fbe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Models, Biological
100 rdf:type schema:DefinedTerm
101 Nd59fd0e02e584f7e9918181eb5836a1c schema:name readcube_id
102 schema:value 0475f5a15f1d3da13e72fbc3687dc6a75ccb40f3dd4811a03159293f2ae094d8
103 rdf:type schema:PropertyValue
104 Nf05fadf13fa545378e6f3001e1ec58f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Protein Interaction Mapping
106 rdf:type schema:DefinedTerm
107 Nf77c16340e4643c29bd44cd4a7951460 rdf:first sg:person.01341136564.42
108 rdf:rest rdf:nil
109 Nfe484a8ae9db48bc8cac7585d455eb34 schema:issueNumber 7307
110 rdf:type schema:PublicationIssue
111 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
112 schema:name Biological Sciences
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
115 schema:name Biochemistry and Cell Biology
116 rdf:type schema:DefinedTerm
117 sg:grant.3006439 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09182
118 rdf:type schema:MonetaryGrant
119 sg:grant.3051150 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09182
120 rdf:type schema:MonetaryGrant
121 sg:grant.3058683 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09182
122 rdf:type schema:MonetaryGrant
123 sg:grant.3062845 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09182
124 rdf:type schema:MonetaryGrant
125 sg:journal.1018957 schema:issn 0090-0028
126 1476-4687
127 schema:name Nature
128 rdf:type schema:Periodical
129 sg:person.01241666650.63 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
130 schema:familyName Ahn
131 schema:givenName Yong-Yeol
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01241666650.63
133 rdf:type schema:Person
134 sg:person.01341136564.42 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
135 schema:familyName Lehmann
136 schema:givenName Sune
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01341136564.42
138 rdf:type schema:Person
139 sg:person.01356115250.49 schema:affiliation https://www.grid.ac/institutes/grid.261112.7
140 schema:familyName Bagrow
141 schema:givenName James P.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356115250.49
143 rdf:type schema:Person
144 sg:pub.10.1038/nature03288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016416471
145 https://doi.org/10.1038/nature03288
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature03607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032155732
148 https://doi.org/10.1038/nature03607
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/nature04532 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043981355
151 https://doi.org/10.1038/nature04532
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/nature04670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033456836
154 https://doi.org/10.1038/nature04670
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/nature05670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010025359
157 https://doi.org/10.1038/nature05670
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/nature06830 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010192610
160 https://doi.org/10.1038/nature06830
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature06958 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034823586
163 https://doi.org/10.1038/nature06958
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.physrep.2009.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020482279
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1017/cbo9780511815478 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098700813
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1038/msb4100155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042206621
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1073/pnas.0400054101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004043513
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1073/pnas.0605965104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028061681
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1073/pnas.0610245104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025075085
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1073/pnas.0703740104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027402365
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1073/pnas.0706851105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017158516
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1073/pnas.122653799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411012
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1088/1367-2630/11/3/033015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002733277
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1093/nar/gkm883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044505190
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1103/physreve.69.026113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048148225
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1103/physreve.70.066111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035552384
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1103/physreve.80.016105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027056288
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1103/physreve.80.056117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036660715
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1103/physrevlett.101.168701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031102174
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1103/physrevlett.93.218701 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022606943
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1103/revmodphys.80.1275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023139478
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1126/science.1073374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019781582
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1126/science.1158684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007743479
204 rdf:type schema:CreativeWork
205 https://www.grid.ac/institutes/grid.261112.7 schema:alternateName Northeastern University
206 schema:name Center for Cancer Systems Biology, Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts 02215, USA
207 Center for Complex Network Research, Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
208 College of Computer and Information Science, Northeastern University, Boston, Massachusetts 02115, USA
209 Institute for Quantitative Social Science, Harvard University, Cambridge, Massachusetts 02138, USA
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...