Direct generation of photon triplets using cascaded photon-pair sources View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-07

AUTHORS

Hannes Hübel, Deny R. Hamel, Alessandro Fedrizzi, Sven Ramelow, Kevin J. Resch, Thomas Jennewein

ABSTRACT

Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is spontaneous parametric down-conversion of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations that are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal in quantum optics to realize a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none has been technically feasible. Here we report the observation of photon triplets generated by cascaded down-conversion. Each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pairs. Our photon-triplet source will allow experimental interrogation of novel quantum correlations, the generation of tripartite entanglement without post-selection and the generation of heralded entangled photon pairs suitable for linear optical quantum computing. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, suitable for three-party quantum communication. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing. More... »

PAGES

601

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09175

DOI

http://dx.doi.org/10.1038/nature09175

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032322474

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20671705


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "H\u00fcbel", 
        "givenName": "Hannes", 
        "id": "sg:person.01010264542.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010264542.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamel", 
        "givenName": "Deny R.", 
        "id": "sg:person.01140234535.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140234535.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "Department of Physics and Centre for Quantum Computer Technology, University of Queensland, Brisbane, Queensland 4072, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedrizzi", 
        "givenName": "Alessandro", 
        "id": "sg:person.01315352142.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315352142.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.10420.37", 
          "name": [
            "Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria", 
            "Faculty of Physics, University Vienna, Boltzmanngasse 5, 1090 Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ramelow", 
        "givenName": "Sven", 
        "id": "sg:person.01203047150.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203047150.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Resch", 
        "givenName": "Kevin J.", 
        "id": "sg:person.01362531266.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362531266.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Waterloo", 
          "id": "https://www.grid.ac/institutes/grid.46078.3d", 
          "name": [
            "Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jennewein", 
        "givenName": "Thomas", 
        "id": "sg:person.01177545176.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177545176.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1364/oe.15.015377", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000593961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.010501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006922166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.010501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006922166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340108240902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011432113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.55.2368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011841098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.55.2368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011841098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340108240905", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013741723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35085529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018910694", 
          "https://doi.org/10.1038/35085529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35085529", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018910694", 
          "https://doi.org/10.1038/35085529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500340308234557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020204828"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.4285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025799585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.4285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025799585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.260501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026268148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.95.260501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026268148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034120490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.1345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034120490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crhy.2006.07.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035977445"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.59.1829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037692613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.59.1829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037692613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09500349708231877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037929292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.253601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041974856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.253601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041974856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049532406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.2594", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049532406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20010009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056790655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2099541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057837594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.96.1453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.96.1453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060462932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.2076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.57.2076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060493533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.59.r35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.59.r35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060494980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.233314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060609833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.233314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060609833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.84", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060774159"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.50", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.4337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.16243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062235006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.29.002794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065222291"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-07", 
    "datePublishedReg": "2010-07-01", 
    "description": "Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is spontaneous parametric down-conversion of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations that are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal in quantum optics to realize a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none has been technically feasible. Here we report the observation of photon triplets generated by cascaded down-conversion. Each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pairs. Our photon-triplet source will allow experimental interrogation of novel quantum correlations, the generation of tripartite entanglement without post-selection and the generation of heralded entangled photon pairs suitable for linear optical quantum computing. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, suitable for three-party quantum communication. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09175", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7306", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "466"
      }
    ], 
    "name": "Direct generation of photon triplets using cascaded photon-pair sources", 
    "pagination": "601", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "99fa3de4c6747fa21d6b2ab5f1ef26d76499c6a1fb86341e618083a3473f3779"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20671705"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09175"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032322474"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09175", 
      "https://app.dimensions.ai/details/publication/pub.1032322474"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000589.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09175"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09175'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09175'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09175'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09175'


 

This table displays all metadata directly associated to this object as RDF triples.

196 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09175 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N83fe30fe731d4a23b3b7203fd56b2811
4 schema:citation sg:pub.10.1038/35085529
5 https://doi.org/10.1016/j.crhy.2006.07.014
6 https://doi.org/10.1049/el:20010009
7 https://doi.org/10.1063/1.2099541
8 https://doi.org/10.1080/09500340108240902
9 https://doi.org/10.1080/09500340108240905
10 https://doi.org/10.1080/09500340308234557
11 https://doi.org/10.1080/09500349708231877
12 https://doi.org/10.1103/physrev.96.1453
13 https://doi.org/10.1103/physreva.55.2368
14 https://doi.org/10.1103/physreva.57.2076
15 https://doi.org/10.1103/physreva.59.1829
16 https://doi.org/10.1103/physreva.59.r35
17 https://doi.org/10.1103/physrevb.69.233314
18 https://doi.org/10.1103/physrevlett.103.253601
19 https://doi.org/10.1103/physrevlett.25.84
20 https://doi.org/10.1103/physrevlett.61.2921
21 https://doi.org/10.1103/physrevlett.61.50
22 https://doi.org/10.1103/physrevlett.65.1348
23 https://doi.org/10.1103/physrevlett.75.4337
24 https://doi.org/10.1103/physrevlett.81.4285
25 https://doi.org/10.1103/physrevlett.82.1345
26 https://doi.org/10.1103/physrevlett.82.2594
27 https://doi.org/10.1103/physrevlett.95.010501
28 https://doi.org/10.1103/physrevlett.95.260501
29 https://doi.org/10.1119/1.16243
30 https://doi.org/10.1364/oe.15.015377
31 https://doi.org/10.1364/ol.29.002794
32 schema:datePublished 2010-07
33 schema:datePublishedReg 2010-07-01
34 schema:description Non-classical states of light, such as entangled photon pairs and number states, are essential for fundamental tests of quantum mechanics and optical quantum technologies. The most widespread technique for creating these quantum resources is spontaneous parametric down-conversion of laser light into photon pairs. Conservation of energy and momentum in this process, known as phase-matching, gives rise to strong correlations that are used to produce two-photon entanglement in various degrees of freedom. It has been a longstanding goal in quantum optics to realize a source that can produce analogous correlations in photon triplets, but of the many approaches considered, none has been technically feasible. Here we report the observation of photon triplets generated by cascaded down-conversion. Each triplet originates from a single pump photon, and therefore quantum correlations will extend over all three photons in a way not achievable with independently created photon pairs. Our photon-triplet source will allow experimental interrogation of novel quantum correlations, the generation of tripartite entanglement without post-selection and the generation of heralded entangled photon pairs suitable for linear optical quantum computing. Two of the triplet photons have a wavelength matched for optimal transmission in optical fibres, suitable for three-party quantum communication. Furthermore, our results open interesting regimes of non-linear optics, as we observe spontaneous down-conversion pumped by single photons, an interaction also highly relevant to optical quantum computing.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N6044319a6e214fa99197bb5f8e205680
39 Nb4ddc31a0d3b4653a7970511e321f85b
40 sg:journal.1018957
41 schema:name Direct generation of photon triplets using cascaded photon-pair sources
42 schema:pagination 601
43 schema:productId N6271b410b58844e984de1f931dfd2d30
44 N8e5b4238d03c42328d5e4e6acb3cb3c6
45 Naa135041bdf34662baa96fbc1bc9a39f
46 Ndff8e69450ff4b6b962ed81208d169d0
47 Nf1c7c4247f5443f49612cda8a694a48b
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032322474
49 https://doi.org/10.1038/nature09175
50 schema:sdDatePublished 2019-04-10T16:53
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher Ncbd962126f7c4b868c5faf23e4d5d3f6
53 schema:url https://www.nature.com/articles/nature09175
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N44a67291622a492b91f8a984c1763945 rdf:first sg:person.01177545176.06
58 rdf:rest rdf:nil
59 N5bae11168a4f4bc59e2cb0282abdcf7b rdf:first sg:person.01203047150.32
60 rdf:rest N962396eca02042e689e586e86fa87a32
61 N6044319a6e214fa99197bb5f8e205680 schema:issueNumber 7306
62 rdf:type schema:PublicationIssue
63 N6271b410b58844e984de1f931dfd2d30 schema:name pubmed_id
64 schema:value 20671705
65 rdf:type schema:PropertyValue
66 N658722d4a8ce4806a56eeefff1721309 rdf:first sg:person.01140234535.41
67 rdf:rest Ndee9cb90c0734ea1a4baae33402f53e3
68 N83fe30fe731d4a23b3b7203fd56b2811 rdf:first sg:person.01010264542.70
69 rdf:rest N658722d4a8ce4806a56eeefff1721309
70 N8e5b4238d03c42328d5e4e6acb3cb3c6 schema:name doi
71 schema:value 10.1038/nature09175
72 rdf:type schema:PropertyValue
73 N962396eca02042e689e586e86fa87a32 rdf:first sg:person.01362531266.25
74 rdf:rest N44a67291622a492b91f8a984c1763945
75 Naa135041bdf34662baa96fbc1bc9a39f schema:name readcube_id
76 schema:value 99fa3de4c6747fa21d6b2ab5f1ef26d76499c6a1fb86341e618083a3473f3779
77 rdf:type schema:PropertyValue
78 Nb4ddc31a0d3b4653a7970511e321f85b schema:volumeNumber 466
79 rdf:type schema:PublicationVolume
80 Ncbd962126f7c4b868c5faf23e4d5d3f6 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Ndee9cb90c0734ea1a4baae33402f53e3 rdf:first sg:person.01315352142.76
83 rdf:rest N5bae11168a4f4bc59e2cb0282abdcf7b
84 Ndff8e69450ff4b6b962ed81208d169d0 schema:name nlm_unique_id
85 schema:value 0410462
86 rdf:type schema:PropertyValue
87 Nf1c7c4247f5443f49612cda8a694a48b schema:name dimensions_id
88 schema:value pub.1032322474
89 rdf:type schema:PropertyValue
90 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
91 schema:name Physical Sciences
92 rdf:type schema:DefinedTerm
93 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
94 schema:name Optical Physics
95 rdf:type schema:DefinedTerm
96 sg:journal.1018957 schema:issn 0090-0028
97 1476-4687
98 schema:name Nature
99 rdf:type schema:Periodical
100 sg:person.01010264542.70 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
101 schema:familyName Hübel
102 schema:givenName Hannes
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010264542.70
104 rdf:type schema:Person
105 sg:person.01140234535.41 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
106 schema:familyName Hamel
107 schema:givenName Deny R.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01140234535.41
109 rdf:type schema:Person
110 sg:person.01177545176.06 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
111 schema:familyName Jennewein
112 schema:givenName Thomas
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177545176.06
114 rdf:type schema:Person
115 sg:person.01203047150.32 schema:affiliation https://www.grid.ac/institutes/grid.10420.37
116 schema:familyName Ramelow
117 schema:givenName Sven
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203047150.32
119 rdf:type schema:Person
120 sg:person.01315352142.76 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
121 schema:familyName Fedrizzi
122 schema:givenName Alessandro
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315352142.76
124 rdf:type schema:Person
125 sg:person.01362531266.25 schema:affiliation https://www.grid.ac/institutes/grid.46078.3d
126 schema:familyName Resch
127 schema:givenName Kevin J.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362531266.25
129 rdf:type schema:Person
130 sg:pub.10.1038/35085529 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018910694
131 https://doi.org/10.1038/35085529
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.crhy.2006.07.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035977445
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1049/el:20010009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056790655
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.2099541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057837594
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1080/09500340108240902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011432113
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1080/09500340108240905 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013741723
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1080/09500340308234557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020204828
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1080/09500349708231877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037929292
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrev.96.1453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060462932
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1103/physreva.55.2368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011841098
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physreva.57.2076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060493533
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physreva.59.1829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037692613
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physreva.59.r35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060494980
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevb.69.233314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060609833
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevlett.103.253601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041974856
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevlett.25.84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060774159
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.61.2921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798102
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.61.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798184
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1103/physrevlett.65.1348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801144
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1103/physrevlett.75.4337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812289
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1103/physrevlett.81.4285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025799585
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1103/physrevlett.82.1345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034120490
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1103/physrevlett.82.2594 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049532406
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1103/physrevlett.95.010501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006922166
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1103/physrevlett.95.260501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026268148
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1119/1.16243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062235006
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1364/oe.15.015377 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000593961
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1364/ol.29.002794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065222291
186 rdf:type schema:CreativeWork
187 https://www.grid.ac/institutes/grid.1003.2 schema:alternateName University of Queensland
188 schema:name Department of Physics and Centre for Quantum Computer Technology, University of Queensland, Brisbane, Queensland 4072, Australia
189 rdf:type schema:Organization
190 https://www.grid.ac/institutes/grid.10420.37 schema:alternateName University of Vienna
191 schema:name Faculty of Physics, University Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
192 Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
193 rdf:type schema:Organization
194 https://www.grid.ac/institutes/grid.46078.3d schema:alternateName University of Waterloo
195 schema:name Institute for Quantum Computing and Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
196 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...