Real-space observation of a two-dimensional skyrmion crystal View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-06

AUTHORS

X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Matsui, N. Nagaosa, Y. Tokura

ABSTRACT

Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin-electronic phenomena such as the topological Hall effect. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (T-B) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe(1-x)Co(x)Si (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe(0.5)Co(0.5)Si using Lorentz transmission electron microscopy. With a magnetic field of 50-70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related T-B phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects. More... »

PAGES

901

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09124

DOI

http://dx.doi.org/10.1038/nature09124

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034080992

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20559382


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Japan Science and Technology Agency", 
          "id": "https://www.grid.ac/institutes/grid.419082.6", 
          "name": [
            "Advanced Electron Microscopy Group and High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0044, Japan", 
            "Multiferroics Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "X. Z.", 
        "id": "sg:person.01075114453.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075114453.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Multiferroics Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 113-8656, Japan", 
            "Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Onose", 
        "givenName": "Y.", 
        "id": "sg:person.01176560637.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176560637.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kanazawa", 
        "givenName": "N.", 
        "id": "sg:person.01361503101.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361503101.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Physics, Sung Kyun Kwan University, Suwon 440-746, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "J. H.", 
        "id": "sg:person.011514011255.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011514011255.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sungkyunkwan University", 
          "id": "https://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Physics, Sung Kyun Kwan University, Suwon 440-746, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Han", 
        "givenName": "J. H.", 
        "id": "sg:person.0764442700.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764442700.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Institute for Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.21941.3f", 
          "name": [
            "Advanced Electron Microscopy Group and High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0044, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matsui", 
        "givenName": "Y.", 
        "id": "sg:person.01356411771.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356411771.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan", 
            "Cross-Correlated Materials Research Group and Correlated Electron Research Group, RIKEN-ASI, Wako 351-0198, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nagaosa", 
        "givenName": "N.", 
        "id": "sg:person.01026056365.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026056365.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Tokyo", 
          "id": "https://www.grid.ac/institutes/grid.26999.3d", 
          "name": [
            "Multiferroics Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 113-8656, Japan", 
            "Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan", 
            "Cross-Correlated Materials Research Group and Correlated Electron Research Group, RIKEN-ASI, Wako 351-0198, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tokura", 
        "givenName": "Y.", 
        "id": "sg:person.01020060137.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020060137.01"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.96.207202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001461138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.207202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001461138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0304-8853(94)01115-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010395471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010483519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010483519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013112896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013112896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4526(95)00163-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019110233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0029-5582(62)90775-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019864545"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025508742", 
          "https://doi.org/10.1038/nature02232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025508742", 
          "https://doi.org/10.1038/nature02232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026381550", 
          "https://doi.org/10.1038/nature05056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.041203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029452091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/375561a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037624168", 
          "https://doi.org/10.1038/375561a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.054416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.054416", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044215526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.186602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045611615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018736800101286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046135675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(76)90057-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050228494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(76)90057-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050228494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35088021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052323803", 
          "https://doi.org/10.1038/35088021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35088021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052323803", 
          "https://doi.org/10.1038/35088021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.46.1002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060447956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.46.1002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060447956"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.16419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.16419", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060565654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.224431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.224431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.224424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.76.224424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060623203"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.037204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.037204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1091806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1120639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062453232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1166767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062459116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.288.5465.462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062569221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.53.2726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063107894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.78.093704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063124287"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06", 
    "datePublishedReg": "2010-06-01", 
    "description": "Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin-electronic phenomena such as the topological Hall effect. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (T-B) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe(1-x)Co(x)Si (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe(0.5)Co(0.5)Si using Lorentz transmission electron microscopy. With a magnetic field of 50-70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related T-B phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09124", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6536945", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6537726", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6536982", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6014331", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5876802", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5994509", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5931371", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5970032", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5987446", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.5884674", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7300", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "465"
      }
    ], 
    "name": "Real-space observation of a two-dimensional skyrmion crystal", 
    "pagination": "901", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a25a6e7a936fb87148253c12fbe153d01656e08a1e23e8bbe8e9a7f38df4b1e1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20559382"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09124"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034080992"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09124", 
      "https://app.dimensions.ai/details/publication/pub.1034080992"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113647_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09124"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09124'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09124'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09124'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09124'


 

This table displays all metadata directly associated to this object as RDF triples.

232 TRIPLES      21 PREDICATES      55 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09124 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N80bff28d6b174ffd97a982203c5aeb35
4 schema:citation sg:pub.10.1038/35088021
5 sg:pub.10.1038/375561a0
6 sg:pub.10.1038/nature02232
7 sg:pub.10.1038/nature05056
8 https://doi.org/10.1016/0029-5582(62)90775-7
9 https://doi.org/10.1016/0038-1098(76)90057-0
10 https://doi.org/10.1016/0304-8853(94)01115-x
11 https://doi.org/10.1016/0921-4526(95)00163-4
12 https://doi.org/10.1080/00018736800101286
13 https://doi.org/10.1103/physrev.46.1002
14 https://doi.org/10.1103/physrevb.47.16419
15 https://doi.org/10.1103/physrevb.72.224431
16 https://doi.org/10.1103/physrevb.76.224424
17 https://doi.org/10.1103/physrevb.80.054416
18 https://doi.org/10.1103/physrevb.81.041203
19 https://doi.org/10.1103/physrevlett.102.037204
20 https://doi.org/10.1103/physrevlett.102.186601
21 https://doi.org/10.1103/physrevlett.102.186602
22 https://doi.org/10.1103/physrevlett.81.742
23 https://doi.org/10.1103/physrevlett.96.207202
24 https://doi.org/10.1126/science.1091806
25 https://doi.org/10.1126/science.1120639
26 https://doi.org/10.1126/science.1166767
27 https://doi.org/10.1126/science.288.5465.462
28 https://doi.org/10.1143/jpsj.53.2726
29 https://doi.org/10.1143/jpsj.78.093704
30 schema:datePublished 2010-06
31 schema:datePublishedReg 2010-06-01
32 schema:description Crystal order is not restricted to the periodic atomic array, but can also be found in electronic systems such as the Wigner crystal or in the form of orbital order, stripe order and magnetic order. In the case of magnetic order, spins align parallel to each other in ferromagnets and antiparallel in antiferromagnets. In other, less conventional, cases, spins can sometimes form highly nontrivial structures called spin textures. Among them is the unusual, topologically stable skyrmion spin texture, in which the spins point in all the directions wrapping a sphere. The skyrmion configuration in a magnetic solid is anticipated to produce unconventional spin-electronic phenomena such as the topological Hall effect. The crystallization of skyrmions as driven by thermal fluctuations has recently been confirmed in a narrow region of the temperature/magnetic field (T-B) phase diagram in neutron scattering studies of the three-dimensional helical magnets MnSi (ref. 17) and Fe(1-x)Co(x)Si (ref. 22). Here we report real-space imaging of a two-dimensional skyrmion lattice in a thin film of Fe(0.5)Co(0.5)Si using Lorentz transmission electron microscopy. With a magnetic field of 50-70 mT applied normal to the film, we observe skyrmions in the form of a hexagonal arrangement of swirling spin textures, with a lattice spacing of 90 nm. The related T-B phase diagram is found to be in good agreement with Monte Carlo simulations. In this two-dimensional case, the skyrmion crystal seems very stable and appears over a wide range of the phase diagram, including near zero temperature. Such a controlled nanometre-scale spin topology in a thin film may be useful in observing unconventional magneto-transport effects.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N266fcefabdfc492e9004447507db0f73
37 N3e2c3062a00f4e508f1f965192804dcc
38 sg:journal.1018957
39 schema:name Real-space observation of a two-dimensional skyrmion crystal
40 schema:pagination 901
41 schema:productId N18875141945840e39ed65311e50bce57
42 N4cd388b718994027932b683f63b92e44
43 N549a926b84354e25a03ab114fe654921
44 N7cb458bd797741acaf75c65aa508ce48
45 Nd980f8877a644a7f83c6ecc61322e868
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034080992
47 https://doi.org/10.1038/nature09124
48 schema:sdDatePublished 2019-04-11T10:30
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nb700910bf22842f6ac0701a6d034ce8a
51 schema:url https://www.nature.com/articles/nature09124
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N184996a403444291aff7896944f99b8b rdf:first sg:person.01176560637.45
56 rdf:rest Nedc80249d5b8419da1f86961a0f40551
57 N18875141945840e39ed65311e50bce57 schema:name nlm_unique_id
58 schema:value 0410462
59 rdf:type schema:PropertyValue
60 N266fcefabdfc492e9004447507db0f73 schema:issueNumber 7300
61 rdf:type schema:PublicationIssue
62 N2843306e9af14046a8242164f911f29b rdf:first sg:person.01020060137.01
63 rdf:rest rdf:nil
64 N3e2c3062a00f4e508f1f965192804dcc schema:volumeNumber 465
65 rdf:type schema:PublicationVolume
66 N4cd388b718994027932b683f63b92e44 schema:name pubmed_id
67 schema:value 20559382
68 rdf:type schema:PropertyValue
69 N549a926b84354e25a03ab114fe654921 schema:name doi
70 schema:value 10.1038/nature09124
71 rdf:type schema:PropertyValue
72 N5ea9c1b230e341309505417f58bf8a0c rdf:first sg:person.01356411771.61
73 rdf:rest Nd651aa79d2ae439796022a373f89c5d6
74 N7cb458bd797741acaf75c65aa508ce48 schema:name dimensions_id
75 schema:value pub.1034080992
76 rdf:type schema:PropertyValue
77 N80bff28d6b174ffd97a982203c5aeb35 rdf:first sg:person.01075114453.03
78 rdf:rest N184996a403444291aff7896944f99b8b
79 Nb700910bf22842f6ac0701a6d034ce8a schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nd651aa79d2ae439796022a373f89c5d6 rdf:first sg:person.01026056365.79
82 rdf:rest N2843306e9af14046a8242164f911f29b
83 Nd8b5b7d8876942e1b659847e99e7a49c rdf:first sg:person.0764442700.39
84 rdf:rest N5ea9c1b230e341309505417f58bf8a0c
85 Nd980f8877a644a7f83c6ecc61322e868 schema:name readcube_id
86 schema:value a25a6e7a936fb87148253c12fbe153d01656e08a1e23e8bbe8e9a7f38df4b1e1
87 rdf:type schema:PropertyValue
88 Ne29e7f8905f34a868f1dd9ba9ef07d88 rdf:first sg:person.011514011255.84
89 rdf:rest Nd8b5b7d8876942e1b659847e99e7a49c
90 Nedc80249d5b8419da1f86961a0f40551 rdf:first sg:person.01361503101.18
91 rdf:rest Ne29e7f8905f34a868f1dd9ba9ef07d88
92 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
93 schema:name Engineering
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
96 schema:name Materials Engineering
97 rdf:type schema:DefinedTerm
98 sg:grant.5876802 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09124
99 rdf:type schema:MonetaryGrant
100 sg:grant.5884674 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09124
101 rdf:type schema:MonetaryGrant
102 sg:grant.5931371 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09124
103 rdf:type schema:MonetaryGrant
104 sg:grant.5970032 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09124
105 rdf:type schema:MonetaryGrant
106 sg:grant.5987446 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09124
107 rdf:type schema:MonetaryGrant
108 sg:grant.5994509 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09124
109 rdf:type schema:MonetaryGrant
110 sg:grant.6014331 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09124
111 rdf:type schema:MonetaryGrant
112 sg:grant.6536945 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09124
113 rdf:type schema:MonetaryGrant
114 sg:grant.6536982 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09124
115 rdf:type schema:MonetaryGrant
116 sg:grant.6537726 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09124
117 rdf:type schema:MonetaryGrant
118 sg:journal.1018957 schema:issn 0090-0028
119 1476-4687
120 schema:name Nature
121 rdf:type schema:Periodical
122 sg:person.01020060137.01 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
123 schema:familyName Tokura
124 schema:givenName Y.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020060137.01
126 rdf:type schema:Person
127 sg:person.01026056365.79 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
128 schema:familyName Nagaosa
129 schema:givenName N.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026056365.79
131 rdf:type schema:Person
132 sg:person.01075114453.03 schema:affiliation https://www.grid.ac/institutes/grid.419082.6
133 schema:familyName Yu
134 schema:givenName X. Z.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075114453.03
136 rdf:type schema:Person
137 sg:person.011514011255.84 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
138 schema:familyName Park
139 schema:givenName J. H.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011514011255.84
141 rdf:type schema:Person
142 sg:person.01176560637.45 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
143 schema:familyName Onose
144 schema:givenName Y.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01176560637.45
146 rdf:type schema:Person
147 sg:person.01356411771.61 schema:affiliation https://www.grid.ac/institutes/grid.21941.3f
148 schema:familyName Matsui
149 schema:givenName Y.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356411771.61
151 rdf:type schema:Person
152 sg:person.01361503101.18 schema:affiliation https://www.grid.ac/institutes/grid.26999.3d
153 schema:familyName Kanazawa
154 schema:givenName N.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361503101.18
156 rdf:type schema:Person
157 sg:person.0764442700.39 schema:affiliation https://www.grid.ac/institutes/grid.264381.a
158 schema:familyName Han
159 schema:givenName J. H.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764442700.39
161 rdf:type schema:Person
162 sg:pub.10.1038/35088021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052323803
163 https://doi.org/10.1038/35088021
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/375561a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037624168
166 https://doi.org/10.1038/375561a0
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nature02232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025508742
169 https://doi.org/10.1038/nature02232
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature05056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026381550
172 https://doi.org/10.1038/nature05056
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/0029-5582(62)90775-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019864545
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/0038-1098(76)90057-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050228494
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/0304-8853(94)01115-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010395471
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/0921-4526(95)00163-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019110233
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/00018736800101286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046135675
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physrev.46.1002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060447956
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physrevb.47.16419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060565654
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physrevb.72.224431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060615997
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.76.224424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060623203
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevb.80.054416 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044215526
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physrevb.81.041203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029452091
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physrevlett.102.037204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754690
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physrevlett.102.186601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010483519
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physrevlett.102.186602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045611615
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physrevlett.81.742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013112896
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physrevlett.96.207202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001461138
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1126/science.1091806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449125
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1120639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062453232
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1126/science.1166767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062459116
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1126/science.288.5465.462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062569221
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1143/jpsj.53.2726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063107894
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1143/jpsj.78.093704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063124287
217 rdf:type schema:CreativeWork
218 https://www.grid.ac/institutes/grid.21941.3f schema:alternateName National Institute for Materials Science
219 schema:name Advanced Electron Microscopy Group and High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0044, Japan
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.264381.a schema:alternateName Sungkyunkwan University
222 schema:name Department of Physics, Sung Kyun Kwan University, Suwon 440-746, Korea
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.26999.3d schema:alternateName University of Tokyo
225 schema:name Cross-Correlated Materials Research Group and Correlated Electron Research Group, RIKEN-ASI, Wako 351-0198, Japan
226 Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
227 Multiferroics Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 113-8656, Japan
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.419082.6 schema:alternateName Japan Science and Technology Agency
230 schema:name Advanced Electron Microscopy Group and High Voltage Electron Microscopy Station, National Institute for Materials Science, Tsukuba 305-0044, Japan
231 Multiferroics Project, Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Tokyo 113-8656, Japan
232 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...