Robust warming of the global upper ocean View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-05

AUTHORS

John M. Lyman, Simon A. Good, Viktor V. Gouretski, Masayoshi Ishii, Gregory C. Johnson, Matthew D. Palmer, Doug M. Smith, Josh K. Willis

ABSTRACT

A large ( approximately 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago and is attributed to warming associated with anthropogenic greenhouse gases. The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean, but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets, the global radiation imbalance and climate models. For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise. Patterns of interannual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993-2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993-2008 of 0.64 W m(-2) (calculated for the Earth's entire surface area), with a 90-per-cent confidence interval of 0.53-0.75 W m(-2). More... »

PAGES

334

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09043

DOI

http://dx.doi.org/10.1038/nature09043

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004582984

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20485432


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0405", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oceanography", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Pacific Marine Environmental Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.422706.5", 
          "name": [
            "Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA", 
            "NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington 98115-6349, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyman", 
        "givenName": "John M.", 
        "id": "sg:person.01072666751.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072666751.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter EX1 3PB, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Good", 
        "givenName": "Simon A.", 
        "id": "sg:person.013351111435.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351111435.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Hamburg", 
          "id": "https://www.grid.ac/institutes/grid.9026.d", 
          "name": [
            "KlimaCampus, University of Hamburg, Grindelberg 5, 20144 Hamburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gouretski", 
        "givenName": "Viktor V.", 
        "id": "sg:person.012357540361.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012357540361.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Japan Agency for Marine-Earth Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.410588.0", 
          "name": [
            "Climate Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan", 
            "Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ishii", 
        "givenName": "Masayoshi", 
        "id": "sg:person.01372606615.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372606615.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pacific Marine Environmental Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.422706.5", 
          "name": [
            "NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington 98115-6349, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Johnson", 
        "givenName": "Gregory C.", 
        "id": "sg:person.014207532755.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207532755.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter EX1 3PB, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palmer", 
        "givenName": "Matthew D.", 
        "id": "sg:person.016317430671.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016317430671.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Met Office", 
          "id": "https://www.grid.ac/institutes/grid.17100.37", 
          "name": [
            "Met Office Hadley Centre, Exeter EX1 3PB, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "Doug M.", 
        "id": "sg:person.010411740071.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411740071.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jet Propulsion Lab", 
          "id": "https://www.grid.ac/institutes/grid.211367.0", 
          "name": [
            "Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willis", 
        "givenName": "Josh K.", 
        "id": "sg:person.01233174007.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233174007.08"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10872-009-0027-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000456005", 
          "https://doi.org/10.1007/s10872-009-0027-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10872-009-0027-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000456005", 
          "https://doi.org/10.1007/s10872-009-0027-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10872-009-0027-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000456005", 
          "https://doi.org/10.1007/s10872-009-0027-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cosust.2009.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000888910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006jd007574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002346967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0611375104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005515377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.gloplacha.2008.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012023483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2007jcli1879.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014644495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2005jc003172", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016948619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl037155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017043808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2384.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022430260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007jc004517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023043704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007jc004690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024939765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl027834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029543516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2008gl036010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030552231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.dsr.2010.03.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034537060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmarsys.2005.11.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036499239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1058154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038004829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2259.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038158252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/os-3-59-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042136413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2003jc002260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043473026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006gl026769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044899150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/2008jcli2290.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045142316"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd012105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045144592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2009jd012105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045144592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2007gl031712", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048646976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature07080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049656749", 
          "https://doi.org/10.1038/nature07080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1065863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1112418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5461.2225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062568864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5670/oceanog.2009.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073067803"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05", 
    "datePublishedReg": "2010-05-01", 
    "description": "A large ( approximately 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago and is attributed to warming associated with anthropogenic greenhouse gases. The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean, but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets, the global radiation imbalance and climate models. For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise. Patterns of interannual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993-2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993-2008 of 0.64 W m(-2) (calculated for the Earth's entire surface area), with a 90-per-cent confidence interval of 0.53-0.75 W m(-2).", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09043", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7296", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "465"
      }
    ], 
    "name": "Robust warming of the global upper ocean", 
    "pagination": "334", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "15d6a560b2dbe4a6866256e60307ee6e7a7affe1eb7b90d3db396d6a535731f9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20485432"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09043"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004582984"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09043", 
      "https://app.dimensions.ai/details/publication/pub.1004582984"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113661_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09043"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09043'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09043'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09043'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09043'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      21 PREDICATES      57 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09043 schema:about anzsrc-for:04
2 anzsrc-for:0405
3 schema:author N8293a8956c5144a99f2446515af1ea77
4 schema:citation sg:pub.10.1007/s10872-009-0027-7
5 sg:pub.10.1038/nature07080
6 https://doi.org/10.1016/j.cosust.2009.06.001
7 https://doi.org/10.1016/j.dsr.2010.03.011
8 https://doi.org/10.1016/j.gloplacha.2008.10.004
9 https://doi.org/10.1016/j.jmarsys.2005.11.019
10 https://doi.org/10.1029/2003jc002260
11 https://doi.org/10.1029/2005jc003172
12 https://doi.org/10.1029/2006gl026769
13 https://doi.org/10.1029/2006gl027834
14 https://doi.org/10.1029/2006jd007574
15 https://doi.org/10.1029/2007gl031712
16 https://doi.org/10.1029/2007jc004517
17 https://doi.org/10.1029/2007jc004690
18 https://doi.org/10.1029/2008gl036010
19 https://doi.org/10.1029/2008gl037155
20 https://doi.org/10.1029/2009jd012105
21 https://doi.org/10.1073/pnas.0611375104
22 https://doi.org/10.1126/science.1058154
23 https://doi.org/10.1126/science.1065863
24 https://doi.org/10.1126/science.1112418
25 https://doi.org/10.1126/science.287.5461.2225
26 https://doi.org/10.1175/2007jcli1879.1
27 https://doi.org/10.1175/2008jcli2259.1
28 https://doi.org/10.1175/2008jcli2290.1
29 https://doi.org/10.1175/2008jcli2384.1
30 https://doi.org/10.5194/os-3-59-2007
31 https://doi.org/10.5670/oceanog.2009.65
32 schema:datePublished 2010-05
33 schema:datePublishedReg 2010-05-01
34 schema:description A large ( approximately 10(23) J) multi-decadal globally averaged warming signal in the upper 300 m of the world's oceans was reported roughly a decade ago and is attributed to warming associated with anthropogenic greenhouse gases. The majority of the Earth's total energy uptake during recent decades has occurred in the upper ocean, but the underlying uncertainties in ocean warming are unclear, limiting our ability to assess closure of sea-level budgets, the global radiation imbalance and climate models. For example, several teams have recently produced different multi-year estimates of the annually averaged global integral of upper-ocean heat content anomalies (hereafter OHCA curves) or, equivalently, the thermosteric sea-level rise. Patterns of interannual variability, in particular, differ among methods. Here we examine several sources of uncertainty that contribute to differences among OHCA curves from 1993 to 2008, focusing on the difficulties of correcting biases in expendable bathythermograph (XBT) data. XBT data constitute the majority of the in situ measurements of upper-ocean heat content from 1967 to 2002, and we find that the uncertainty due to choice of XBT bias correction dominates among-method variability in OHCA curves during our 1993-2008 study period. Accounting for multiple sources of uncertainty, a composite of several OHCA curves using different XBT bias corrections still yields a statistically significant linear warming trend for 1993-2008 of 0.64 W m(-2) (calculated for the Earth's entire surface area), with a 90-per-cent confidence interval of 0.53-0.75 W m(-2).
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N86d12fb7aef34a1487e2338ff5816155
39 Nc6a5eb894de44866bcc200e78ad6a284
40 sg:journal.1018957
41 schema:name Robust warming of the global upper ocean
42 schema:pagination 334
43 schema:productId N1bbe13f43176459c98c5204f0e1db9fe
44 N4641853692d34738b2792c7cb2c307af
45 N6c3df8bd86e54c6ca7a2705a9ec28b19
46 Ne33f60e9fcf74101be29b03969bb03ca
47 Nf629a0f31e5b4d43b0f1087345118ffc
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004582984
49 https://doi.org/10.1038/nature09043
50 schema:sdDatePublished 2019-04-11T10:33
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N73a29ffb364e4c7bb3dabfd13830458b
53 schema:url https://www.nature.com/articles/nature09043
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N05611359851d4d51ac999621f0fe8e28 rdf:first sg:person.012357540361.54
58 rdf:rest Nae5a4495090d42649e86c2fd647a43ca
59 N1bbe13f43176459c98c5204f0e1db9fe schema:name doi
60 schema:value 10.1038/nature09043
61 rdf:type schema:PropertyValue
62 N222bc276bbad41c18a36afd5ac0c3452 rdf:first sg:person.01233174007.08
63 rdf:rest rdf:nil
64 N4641853692d34738b2792c7cb2c307af schema:name dimensions_id
65 schema:value pub.1004582984
66 rdf:type schema:PropertyValue
67 N5c0701defce54a3ca4c80d0362070a3c rdf:first sg:person.016317430671.85
68 rdf:rest Nfffd35f02d984b289871cd7d1e142eb9
69 N675628eb416849e2a10c0085e14946fb rdf:first sg:person.013351111435.54
70 rdf:rest N05611359851d4d51ac999621f0fe8e28
71 N6c3df8bd86e54c6ca7a2705a9ec28b19 schema:name readcube_id
72 schema:value 15d6a560b2dbe4a6866256e60307ee6e7a7affe1eb7b90d3db396d6a535731f9
73 rdf:type schema:PropertyValue
74 N73a29ffb364e4c7bb3dabfd13830458b schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N8293a8956c5144a99f2446515af1ea77 rdf:first sg:person.01072666751.31
77 rdf:rest N675628eb416849e2a10c0085e14946fb
78 N86d12fb7aef34a1487e2338ff5816155 schema:volumeNumber 465
79 rdf:type schema:PublicationVolume
80 Na6ce6a77944946f7bde47aea20b3c86c rdf:first sg:person.014207532755.79
81 rdf:rest N5c0701defce54a3ca4c80d0362070a3c
82 Nae5a4495090d42649e86c2fd647a43ca rdf:first sg:person.01372606615.94
83 rdf:rest Na6ce6a77944946f7bde47aea20b3c86c
84 Nc6a5eb894de44866bcc200e78ad6a284 schema:issueNumber 7296
85 rdf:type schema:PublicationIssue
86 Ne33f60e9fcf74101be29b03969bb03ca schema:name nlm_unique_id
87 schema:value 0410462
88 rdf:type schema:PropertyValue
89 Nf629a0f31e5b4d43b0f1087345118ffc schema:name pubmed_id
90 schema:value 20485432
91 rdf:type schema:PropertyValue
92 Nfffd35f02d984b289871cd7d1e142eb9 rdf:first sg:person.010411740071.37
93 rdf:rest N222bc276bbad41c18a36afd5ac0c3452
94 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
95 schema:name Earth Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0405 schema:inDefinedTermSet anzsrc-for:
98 schema:name Oceanography
99 rdf:type schema:DefinedTerm
100 sg:journal.1018957 schema:issn 0090-0028
101 1476-4687
102 schema:name Nature
103 rdf:type schema:Periodical
104 sg:person.010411740071.37 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
105 schema:familyName Smith
106 schema:givenName Doug M.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010411740071.37
108 rdf:type schema:Person
109 sg:person.01072666751.31 schema:affiliation https://www.grid.ac/institutes/grid.422706.5
110 schema:familyName Lyman
111 schema:givenName John M.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01072666751.31
113 rdf:type schema:Person
114 sg:person.01233174007.08 schema:affiliation https://www.grid.ac/institutes/grid.211367.0
115 schema:familyName Willis
116 schema:givenName Josh K.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233174007.08
118 rdf:type schema:Person
119 sg:person.012357540361.54 schema:affiliation https://www.grid.ac/institutes/grid.9026.d
120 schema:familyName Gouretski
121 schema:givenName Viktor V.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012357540361.54
123 rdf:type schema:Person
124 sg:person.013351111435.54 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
125 schema:familyName Good
126 schema:givenName Simon A.
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013351111435.54
128 rdf:type schema:Person
129 sg:person.01372606615.94 schema:affiliation https://www.grid.ac/institutes/grid.410588.0
130 schema:familyName Ishii
131 schema:givenName Masayoshi
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372606615.94
133 rdf:type schema:Person
134 sg:person.014207532755.79 schema:affiliation https://www.grid.ac/institutes/grid.422706.5
135 schema:familyName Johnson
136 schema:givenName Gregory C.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207532755.79
138 rdf:type schema:Person
139 sg:person.016317430671.85 schema:affiliation https://www.grid.ac/institutes/grid.17100.37
140 schema:familyName Palmer
141 schema:givenName Matthew D.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016317430671.85
143 rdf:type schema:Person
144 sg:pub.10.1007/s10872-009-0027-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000456005
145 https://doi.org/10.1007/s10872-009-0027-7
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nature07080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049656749
148 https://doi.org/10.1038/nature07080
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.cosust.2009.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000888910
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.dsr.2010.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034537060
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.gloplacha.2008.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012023483
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jmarsys.2005.11.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036499239
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1029/2003jc002260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043473026
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1029/2005jc003172 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016948619
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1029/2006gl026769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044899150
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1029/2006gl027834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029543516
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1029/2006jd007574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002346967
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1029/2007gl031712 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048646976
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1029/2007jc004517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023043704
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1029/2007jc004690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024939765
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1029/2008gl036010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030552231
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1029/2008gl037155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017043808
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1029/2009jd012105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045144592
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1073/pnas.0611375104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005515377
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1126/science.1058154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038004829
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1126/science.1065863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445547
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.1112418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452200
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.287.5461.2225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062568864
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1175/2007jcli1879.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014644495
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1175/2008jcli2259.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038158252
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1175/2008jcli2290.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045142316
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1175/2008jcli2384.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022430260
197 rdf:type schema:CreativeWork
198 https://doi.org/10.5194/os-3-59-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042136413
199 rdf:type schema:CreativeWork
200 https://doi.org/10.5670/oceanog.2009.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073067803
201 rdf:type schema:CreativeWork
202 https://www.grid.ac/institutes/grid.17100.37 schema:alternateName Met Office
203 schema:name Met Office Hadley Centre, Exeter EX1 3PB, UK
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.211367.0 schema:alternateName Jet Propulsion Lab
206 schema:name Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.410588.0 schema:alternateName Japan Agency for Marine-Earth Science and Technology
209 schema:name Climate Research Department, Meteorological Research Institute, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan
210 Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.422706.5 schema:alternateName Pacific Marine Environmental Laboratory
213 schema:name Joint Institute for Marine and Atmospheric Research, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
214 NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington 98115-6349, USA
215 rdf:type schema:Organization
216 https://www.grid.ac/institutes/grid.9026.d schema:alternateName University of Hamburg
217 schema:name KlimaCampus, University of Hamburg, Grindelberg 5, 20144 Hamburg, Germany
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...