A proximity-based programmable DNA nanoscale assembly line View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-05

AUTHORS

Hongzhou Gu, Jie Chao, Shou-Jun Xiao, Nadrian C. Seeman

ABSTRACT

Our ability to synthesize nanometre-scale chemical species, such as nanoparticles with desired shapes and compositions, offers the exciting prospect of generating new functional materials and devices by combining them in a controlled fashion into larger structures. Self-assembly can achieve this task efficiently, but may be subject to thermodynamic and kinetic limitations: reactants, intermediates and products may collide with each other throughout the assembly time course to produce non-target species instead of target species. An alternative approach to nanoscale assembly uses information-containing molecules such as DNA to control interactions and thereby minimize unwanted cross-talk between different components. In principle, this method should allow the stepwise and programmed construction of target products by linking individually selected nanoscale components-much as an automobile is built on an assembly line. Here we demonstrate that a nanoscale assembly line can be realized by the judicious combination of three known DNA-based modules: a DNA origami tile that provides a framework and track for the assembly process, cassettes containing three independently controlled two-state DNA machines that serve as programmable cargo-donating devices and are attached in series to the tile, and a DNA walker that can move on the track from device to device and collect cargo. As the walker traverses the pathway prescribed by the origami tile track, it sequentially encounters the three DNA devices, each of which can be independently switched between an 'ON' state, allowing its cargo to be transferred to the walker, and an 'OFF' state, in which no transfer occurs. We use three different types of gold nanoparticle species as cargo and show that the experimental system does indeed allow the controlled fabrication of the eight different products that can be obtained with three two-state devices. More... »

PAGES

202

Identifiers

URI

http://scigraph.springernature.com/pub.10.1038/nature09026

DOI

http://dx.doi.org/10.1038/nature09026

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046910530

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/20463734


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computers, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA, Single-Stranded", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Gold", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hydrogen Bonding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Metal Nanoparticles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Microscopy, Atomic Force", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Chemistry, New York University, New York, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Hongzhou", 
        "id": "sg:person.0732617053.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732617053.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chao", 
        "givenName": "Jie", 
        "id": "sg:person.07566651237.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07566651237.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University", 
          "id": "https://www.grid.ac/institutes/grid.41156.37", 
          "name": [
            "State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiao", 
        "givenName": "Shou-Jun", 
        "id": "sg:person.01337535715.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337535715.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "New York University", 
          "id": "https://www.grid.ac/institutes/grid.137628.9", 
          "name": [
            "Department of Chemistry, New York University, New York, New York 10003, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seeman", 
        "givenName": "Nadrian C.", 
        "id": "sg:person.01155412761.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155412761.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/b605212f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003109946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja031754r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003560750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja031754r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003560750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl049527q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl049527q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006541948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2009.5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009016816", 
          "https://doi.org/10.1038/nnano.2009.5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382609a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013811778", 
          "https://doi.org/10.1038/382609a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0901-76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018136728", 
          "https://doi.org/10.1038/scientificamerican0901-76"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1131372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018529985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja047543j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021609014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja047543j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021609014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635122", 
          "https://doi.org/10.1038/nature04586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635122", 
          "https://doi.org/10.1038/nature04586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature04586", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028635122", 
          "https://doi.org/10.1038/nature04586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103352", 
          "https://doi.org/10.1038/35020524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35020524", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030103352", 
          "https://doi.org/10.1038/35020524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/scientificamerican0901-74", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031014606", 
          "https://doi.org/10.1038/scientificamerican0901-74"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1170336", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036120169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415062a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038458584", 
          "https://doi.org/10.1038/415062a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/415062a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038458584", 
          "https://doi.org/10.1038/415062a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl060994c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041955989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl060994c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041955989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.1990.10507829", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042887966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja027307d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044694458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja027307d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044694458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200900078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045428552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200900078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045428552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/smll.200900078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045428552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1150082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046868065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/68/1/r05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052554623"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja047486u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055837326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja047486u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055837326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3863253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062622013"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-05", 
    "datePublishedReg": "2010-05-01", 
    "description": "Our ability to synthesize nanometre-scale chemical species, such as nanoparticles with desired shapes and compositions, offers the exciting prospect of generating new functional materials and devices by combining them in a controlled fashion into larger structures. Self-assembly can achieve this task efficiently, but may be subject to thermodynamic and kinetic limitations: reactants, intermediates and products may collide with each other throughout the assembly time course to produce non-target species instead of target species. An alternative approach to nanoscale assembly uses information-containing molecules such as DNA to control interactions and thereby minimize unwanted cross-talk between different components. In principle, this method should allow the stepwise and programmed construction of target products by linking individually selected nanoscale components-much as an automobile is built on an assembly line. Here we demonstrate that a nanoscale assembly line can be realized by the judicious combination of three known DNA-based modules: a DNA origami tile that provides a framework and track for the assembly process, cassettes containing three independently controlled two-state DNA machines that serve as programmable cargo-donating devices and are attached in series to the tile, and a DNA walker that can move on the track from device to device and collect cargo. As the walker traverses the pathway prescribed by the origami tile track, it sequentially encounters the three DNA devices, each of which can be independently switched between an 'ON' state, allowing its cargo to be transferred to the walker, and an 'OFF' state, in which no transfer occurs. We use three different types of gold nanoparticle species as cargo and show that the experimental system does indeed allow the controlled fabrication of the eight different products that can be obtained with three two-state devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1038/nature09026", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3081430", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4964689", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2994501", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2635128", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1018957", 
        "issn": [
          "0090-0028", 
          "1476-4687"
        ], 
        "name": "Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7295", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "465"
      }
    ], 
    "name": "A proximity-based programmable DNA nanoscale assembly line", 
    "pagination": "202", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "df76e9ad966656e30c1bb65bb02f4a1659e929a327bad61203f11be2f88b4c2f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "20463734"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0410462"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1038/nature09026"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046910530"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1038/nature09026", 
      "https://app.dimensions.ai/details/publication/pub.1046910530"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000434.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://www.nature.com/articles/nature09026"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1038/nature09026'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1038/nature09026'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1038/nature09026'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1038/nature09026'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      57 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1038/nature09026 schema:about N3a4ab8f9c16644f5ba3cc89d87a72e2e
2 N6485be1d6d864d3f8f145ac5facc69d9
3 N86a741eddb604f4daa15914f0e8fbeae
4 Na180dbb820134ffba712d1c00bdfe970
5 Na2c03bcb195f4d97bf2093b3f51e37a7
6 Na626c23ab4b34cbdb77355e3a0457b65
7 Nf5418c08218046788f5200160d43dc5b
8 anzsrc-for:03
9 anzsrc-for:0306
10 schema:author N725ea6897c7e4c7c8de276a55ca0a4de
11 schema:citation sg:pub.10.1038/35020524
12 sg:pub.10.1038/382609a0
13 sg:pub.10.1038/415062a
14 sg:pub.10.1038/nature04586
15 sg:pub.10.1038/nnano.2009.5
16 sg:pub.10.1038/scientificamerican0901-74
17 sg:pub.10.1038/scientificamerican0901-76
18 https://doi.org/10.1002/smll.200900078
19 https://doi.org/10.1021/ja027307d
20 https://doi.org/10.1021/ja031754r
21 https://doi.org/10.1021/ja047486u
22 https://doi.org/10.1021/ja047543j
23 https://doi.org/10.1021/nl049527q
24 https://doi.org/10.1021/nl060994c
25 https://doi.org/10.1039/b605212f
26 https://doi.org/10.1080/07391102.1990.10507829
27 https://doi.org/10.1088/0034-4885/68/1/r05
28 https://doi.org/10.1126/science.1131372
29 https://doi.org/10.1126/science.1150082
30 https://doi.org/10.1126/science.1170336
31 https://doi.org/10.1126/science.3863253
32 schema:datePublished 2010-05
33 schema:datePublishedReg 2010-05-01
34 schema:description Our ability to synthesize nanometre-scale chemical species, such as nanoparticles with desired shapes and compositions, offers the exciting prospect of generating new functional materials and devices by combining them in a controlled fashion into larger structures. Self-assembly can achieve this task efficiently, but may be subject to thermodynamic and kinetic limitations: reactants, intermediates and products may collide with each other throughout the assembly time course to produce non-target species instead of target species. An alternative approach to nanoscale assembly uses information-containing molecules such as DNA to control interactions and thereby minimize unwanted cross-talk between different components. In principle, this method should allow the stepwise and programmed construction of target products by linking individually selected nanoscale components-much as an automobile is built on an assembly line. Here we demonstrate that a nanoscale assembly line can be realized by the judicious combination of three known DNA-based modules: a DNA origami tile that provides a framework and track for the assembly process, cassettes containing three independently controlled two-state DNA machines that serve as programmable cargo-donating devices and are attached in series to the tile, and a DNA walker that can move on the track from device to device and collect cargo. As the walker traverses the pathway prescribed by the origami tile track, it sequentially encounters the three DNA devices, each of which can be independently switched between an 'ON' state, allowing its cargo to be transferred to the walker, and an 'OFF' state, in which no transfer occurs. We use three different types of gold nanoparticle species as cargo and show that the experimental system does indeed allow the controlled fabrication of the eight different products that can be obtained with three two-state devices.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree true
38 schema:isPartOf N7df9b78b82bf4cd9ae054ee6f8fb7899
39 Nb21b407715fb4ce19bcfe4baa4efbad7
40 sg:journal.1018957
41 schema:name A proximity-based programmable DNA nanoscale assembly line
42 schema:pagination 202
43 schema:productId N2f20621e8c6c4144b96e58de13a176b2
44 N310e81d851ed4ad59841cfdbfd9a8cc1
45 N76061d1a361c4a6086db43740d9a501e
46 N8a2a1c663af84e16981cadb1499280e0
47 Nc93cff2545834bce922162cd7f78f580
48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046910530
49 https://doi.org/10.1038/nature09026
50 schema:sdDatePublished 2019-04-10T21:25
51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
52 schema:sdPublisher N8baae8e9371345aca63ba6900bbd0899
53 schema:url https://www.nature.com/articles/nature09026
54 sgo:license sg:explorer/license/
55 sgo:sdDataset articles
56 rdf:type schema:ScholarlyArticle
57 N2f20621e8c6c4144b96e58de13a176b2 schema:name pubmed_id
58 schema:value 20463734
59 rdf:type schema:PropertyValue
60 N310e81d851ed4ad59841cfdbfd9a8cc1 schema:name doi
61 schema:value 10.1038/nature09026
62 rdf:type schema:PropertyValue
63 N3a4ab8f9c16644f5ba3cc89d87a72e2e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
64 schema:name Nanotechnology
65 rdf:type schema:DefinedTerm
66 N6485be1d6d864d3f8f145ac5facc69d9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
67 schema:name Microscopy, Atomic Force
68 rdf:type schema:DefinedTerm
69 N6b71085f982544368fe03ba6b4613bfc rdf:first sg:person.07566651237.06
70 rdf:rest Ncdf71af42d0f4984bde6719b8e7ca140
71 N725ea6897c7e4c7c8de276a55ca0a4de rdf:first sg:person.0732617053.29
72 rdf:rest N6b71085f982544368fe03ba6b4613bfc
73 N76061d1a361c4a6086db43740d9a501e schema:name readcube_id
74 schema:value df76e9ad966656e30c1bb65bb02f4a1659e929a327bad61203f11be2f88b4c2f
75 rdf:type schema:PropertyValue
76 N7df9b78b82bf4cd9ae054ee6f8fb7899 schema:volumeNumber 465
77 rdf:type schema:PublicationVolume
78 N86a741eddb604f4daa15914f0e8fbeae schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name DNA, Single-Stranded
80 rdf:type schema:DefinedTerm
81 N8a2a1c663af84e16981cadb1499280e0 schema:name dimensions_id
82 schema:value pub.1046910530
83 rdf:type schema:PropertyValue
84 N8baae8e9371345aca63ba6900bbd0899 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Na180dbb820134ffba712d1c00bdfe970 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
87 schema:name Computers, Molecular
88 rdf:type schema:DefinedTerm
89 Na2c03bcb195f4d97bf2093b3f51e37a7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Gold
91 rdf:type schema:DefinedTerm
92 Na626c23ab4b34cbdb77355e3a0457b65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
93 schema:name Metal Nanoparticles
94 rdf:type schema:DefinedTerm
95 Nb21b407715fb4ce19bcfe4baa4efbad7 schema:issueNumber 7295
96 rdf:type schema:PublicationIssue
97 Nc5f1546a9630462a8acbc689e8dffb1f rdf:first sg:person.01155412761.86
98 rdf:rest rdf:nil
99 Nc93cff2545834bce922162cd7f78f580 schema:name nlm_unique_id
100 schema:value 0410462
101 rdf:type schema:PropertyValue
102 Ncdf71af42d0f4984bde6719b8e7ca140 rdf:first sg:person.01337535715.30
103 rdf:rest Nc5f1546a9630462a8acbc689e8dffb1f
104 Nf5418c08218046788f5200160d43dc5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Hydrogen Bonding
106 rdf:type schema:DefinedTerm
107 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
108 schema:name Chemical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
111 schema:name Physical Chemistry (incl. Structural)
112 rdf:type schema:DefinedTerm
113 sg:grant.2635128 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09026
114 rdf:type schema:MonetaryGrant
115 sg:grant.2994501 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09026
116 rdf:type schema:MonetaryGrant
117 sg:grant.3081430 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09026
118 rdf:type schema:MonetaryGrant
119 sg:grant.4964689 http://pending.schema.org/fundedItem sg:pub.10.1038/nature09026
120 rdf:type schema:MonetaryGrant
121 sg:journal.1018957 schema:issn 0090-0028
122 1476-4687
123 schema:name Nature
124 rdf:type schema:Periodical
125 sg:person.01155412761.86 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
126 schema:familyName Seeman
127 schema:givenName Nadrian C.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01155412761.86
129 rdf:type schema:Person
130 sg:person.01337535715.30 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
131 schema:familyName Xiao
132 schema:givenName Shou-Jun
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01337535715.30
134 rdf:type schema:Person
135 sg:person.0732617053.29 schema:affiliation https://www.grid.ac/institutes/grid.137628.9
136 schema:familyName Gu
137 schema:givenName Hongzhou
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0732617053.29
139 rdf:type schema:Person
140 sg:person.07566651237.06 schema:affiliation https://www.grid.ac/institutes/grid.41156.37
141 schema:familyName Chao
142 schema:givenName Jie
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07566651237.06
144 rdf:type schema:Person
145 sg:pub.10.1038/35020524 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030103352
146 https://doi.org/10.1038/35020524
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/382609a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013811778
149 https://doi.org/10.1038/382609a0
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/415062a schema:sameAs https://app.dimensions.ai/details/publication/pub.1038458584
152 https://doi.org/10.1038/415062a
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/nature04586 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028635122
155 https://doi.org/10.1038/nature04586
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/nnano.2009.5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009016816
158 https://doi.org/10.1038/nnano.2009.5
159 rdf:type schema:CreativeWork
160 sg:pub.10.1038/scientificamerican0901-74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031014606
161 https://doi.org/10.1038/scientificamerican0901-74
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/scientificamerican0901-76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018136728
164 https://doi.org/10.1038/scientificamerican0901-76
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/smll.200900078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045428552
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/ja027307d schema:sameAs https://app.dimensions.ai/details/publication/pub.1044694458
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/ja031754r schema:sameAs https://app.dimensions.ai/details/publication/pub.1003560750
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1021/ja047486u schema:sameAs https://app.dimensions.ai/details/publication/pub.1055837326
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1021/ja047543j schema:sameAs https://app.dimensions.ai/details/publication/pub.1021609014
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1021/nl049527q schema:sameAs https://app.dimensions.ai/details/publication/pub.1006541948
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1021/nl060994c schema:sameAs https://app.dimensions.ai/details/publication/pub.1041955989
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1039/b605212f schema:sameAs https://app.dimensions.ai/details/publication/pub.1003109946
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1080/07391102.1990.10507829 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042887966
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1088/0034-4885/68/1/r05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052554623
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1126/science.1131372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018529985
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1150082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046868065
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1126/science.1170336 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036120169
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1126/science.3863253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062622013
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.137628.9 schema:alternateName New York University
195 schema:name Department of Chemistry, New York University, New York, New York 10003, USA
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.41156.37 schema:alternateName Nanjing University
198 schema:name State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093, China
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...